Foundation Reuse for Highway Bridges
Total Page:16
File Type:pdf, Size:1020Kb
Publication No. FHWA-HIF-18-055 Infrastructure Office of Bridges and Structures November 2018 Foundation Reuse for Highway Bridges Existing New Ground Improvement Turner-Fairbank Highway Research Center U.S. Department of Transportation 6300 Georgetown Pike Federal Highway Administration McLean, VA 22101-2296 FOREWORD Given the high percentage of deteriorated or obsolete bridges in the national bridge inventory, the reuse of bridge foundations may be a viable option that can present a significant cost savings in bridge replacement and rehabilitation efforts. The potential time savings associated with foundation reuse can, in turn, reduce mobility impacts and increase the economic viability and sustainability of a project. However, existing foundations may have uncertain material properties, geometry, or details that impact the risks associated with reuse. Unlike a new foundation, an existing foundation may have been damaged, may not have sufficient capacity, and may have limited remaining service life due to deterioration. Assessment of these issues as well as foundation strengthening and repair measures and innovative approaches to optimize loading are discussed in this report. To better demonstrate the engineering assessment of key integrity, durability and load carrying capacity issues, the report contains fifteen (15) case examples where foundation was reused by the owner agencies. On new construction, the report looks ahead and includes discussions on foundation design with consideration for reuse. Cheryl Allen Richter, P.E., Ph.D. Director, Office of Infrastructure Research and Development Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document. Quality Assurance Statement The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement. Report No. 2. Government Accession No.: 3. Recipient's Catalog No. FHWA-HIF-18-055 4. Title and Subtitle: 5. Report Date: Foundation Reuse for Highway Bridges November 2018 6. Performing Organization Code: 7. Authors: 8. Performing Organization Report No.: Agrawal, A.K., Jalinoos, F., Davis, N., Hoomaan, E., and Sanayei, M. 9. Performing Organization Name and Address: 10. Work Unit No. (TRAIS): The City College of New York 160 Convent Ave, New York, NY 10031 11. Contract or Grant No.: DTFH61-14-D-00010-T-14001 12. Sponsoring Agency Name and Address: 13. Type of Report and Period Covered: Office of Research, Development, and Technology Federal Highway Administration 14. Sponsoring Agency Code: 6300 Georgetown Pike McLean, VA 22101-2296 15. Supplementary Notes: 16. Abstract: Foundations of existing highways and over-river bridges may have significant functional value. Hence, reuse of foundations of existing bridges during reconstruction or major rehabilitation can result in significant savings in costs and time. This report on bridge foundation reuse addresses critical issues encountered during decision- making on foundation reuse, assessment of existing bridge foundations for integrity, durability and capacity, strengthening of bridge foundations / substructures and design of bridge foundations for future reuse. The report includes numerous case examples on reuse of bridge foundations in the U.S. and Canada to highlight significant benefits of foundation reuse from social, environmental and economic perspectives. These case examples also present a detailed process followed in resolving integrity, durability and capacity issues encountered during the reuse process, and will serve as a knowledgebase for transportation agencies interested in reusing bridge foundations. Planning for reuse during the construction of a new bridge is a very important sustainability initiative that has also been addressed in this manual. This document is not meant to be used as a guideline; only as decision-making tool in addressing technical challenges and risk in reusing bridge foundations. 17. Key Words: 18. Distribution Statement: Foundation reuse, substructure reuse, accelerated bridge No restrictions. This document is available reconstruction, integrity assessment, durability assessment, capacity to the public. assessment, substructure strengthening 19. Security Classification (of 20. Security Classification (of 21. No of Pages: 234 22. Price: this report): this page): Unclassified Unclassified Form DOT F 1700.7 (8-72) Reproduction of completed page authorized i SI* (MODERN METRIC) CONVERSION FACTORS APPROXIMATE CONVERSIONS TO SI UNITS Symbol When You Know Multiply By To Find Symbol LENGTH in inches 25.4 millimeters mm ft feet 0.305 meters m yd yards 0.914 meters m mi miles 1.61 kilometers km AREA in2 square inches 645.2 square millimeters mm2 ft2 square feet 0.093 square meters m2 yd2 square yard 0.836 square meters m2 ac acres 0.405 hectares ha mi2 square miles 2.59 square kilometers km2 VOLUME fl oz fluid ounces 29.57 milliliters mL gal gallons 3.785 liters L ft3 cubic feet 0.028 cubic meters m3 yd3 cubic yards 0.765 cubic meters m3 NOTE: volumes greater than 1000 L shall be shown in m3 MASS oz ounces 28.35 grams g lb pounds 0.454 kilograms kg T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") TEMPERATURE (exact degrees) oF Fahrenheit 5 (F-32)/9 Celsius oC or (F-32)/1.8 ILLUMINATION fc foot-candles 10.76 lux lx fl foot-Lamberts 3.426 candela/m2 cd/m2 FORCE and PRESSURE or STRESS lbf poundforce 4.45 newtons N lbf/in2 poundforce per square inch 6.89 kilopascals kPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol LENGTH mm millimeters 0.039 inches in m meters 3.28 feet ft m meters 1.09 yards yd km kilometers 0.621 miles mi AREA mm2 square millimeters 0.0016 square inches in2 m2 square meters 10.764 square feet ft2 m2 square meters 1.195 square yards yd2 ha hectares 2.47 acres ac km2 square kilometers 0.386 square miles mi2 VOLUME mL milliliters 0.034 fluid ounces fl oz L liters 0.264 gallons gal m3 cubic meters 35.314 cubic feet ft3 m3 cubic meters 1.307 cubic yards yd3 MASS g grams 0.035 ounces oz kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T TEMPERATURE (exact degrees) oC Celsius 1.8C+32 Fahrenheit oF ILLUMINATION lx lux 0.0929 foot-candles fc cd/m2 candela/m2 0.2919 foot-Lamberts fl FORCE and PRESSURE or STRESS N newtons 0.225 poundforce lbf kPa kilopascals 0.145 poundforce per square inch lbf/in2 *SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003) ii TABLE OF CONTENTS CHAPTER 1. INTRODUCTION TO FOUNDATION REUSE................................................1 Definition of Foundation Reuse ...................................................................................................1 Introduction ..................................................................................................................................2 Motivations ..................................................................................................................................5 Applications of Foundation Reuse ...............................................................................................8 Challenges ....................................................................................................................................9 Substructure Issues in ABC Projects ...........................................................................................9 Case Histories of Foundation Reuse ..........................................................................................13 CHAPTER 2. REUSE DECISION MODEL .............................................................................29 Introduction ................................................................................................................................29 Desk Study .................................................................................................................................32 Integrity, Capacity, and Durability Assessments .......................................................................33 Hazard Vulnerability ..................................................................................................................33 Constructability ..........................................................................................................................34 Environmental Impacts Assessment (EIA) ................................................................................34 Risk Management in Foundation Reuse ....................................................................................37 Life Cycle Cost Analysis (LCCA) .............................................................................................42 Alternative Selection ..................................................................................................................46