Design and Analysis of Laterally Loaded Deep Foundations

Total Page:16

File Type:pdf, Size:1020Kb

Design and Analysis of Laterally Loaded Deep Foundations This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don’t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective websites. Design, Analysis, and Testing of Laterally Loaded Deep Foundations that Support Transportation Facilities FHWA GEC 009 April 2018 Sponsored by Federal Highway Administration Office of Infrastructure FHWA-HIF-18-031 {cover back blank} Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-HIF-18-031 4. Title and Subtitle 5. Report Date Geotechnical Engineering Circular: Design, Analysis, and Testing of April 2018 Laterally Loaded Deep Foundations that Support Transportation Facilities 6. Performing Organization Code 7. Principal Investigator(s): 8. Performing Organization Report James Parkes, P.E., Raymond Castelli, P.E., Brian Zelenko, P.E., Robert O’Connor, P.E., Matteo Montesi, P.E, and Elizabeth Godfrey, P.E. 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) WSP USA, Inc. 1015 Half Street, SE, Suite 650 11. Contract or Grant No. Washington, DC 20003 DTFH6114D00047-5012 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Federal Highway Administration Office of Bridge Technology 1200 New Jersey Avenue, SE 14. Sponsoring Agency Code Washington, DC 20005 15. Supplementary Notes FHWA COR - Silas Nichols FHWA Task Order Manager - Khalid Mohamed 16. Abstract This Geotechnical Engineering Circular (GEC) is intended to provide recommended guidance for the LRFD design, analysis, and testing of laterally loaded deep foundations for transportation facilities. This document applies to deep foundation elements such as driven piles, drilled shafts, micropiles, and continuous flight auger (CFA) piles that are used to resist lateral loads, often in combination with axial loads, for new construction, rehabilitation, or reconstruction of transportation facilities. Applications include both single and groups of deep foundation elements for bridge foundations, excavation support, earth retention structures, noise walls, sign and signal foundations, landslide repairs, vessel or vehicle impact mitigation measures, and seismic event resistance. The objective of this document is to provide a single reference source for the state-of-the-practice with regard to recommended methodologies and guidance for the design, analysis, and testing of laterally loaded deep foundations for transportation facilities. 17. Key Works 18. Distribution Statement Deep Foundations, Lateral Load, Lateral Resistance, Structural Design, LRFD, p-y No restrictions. Method, Lateral Load Test, Drilled Shaft, Driven Pile. 19. Security Classif. (of 20. Security Classif. (of 21. No. of Pages 22. Price this report) this page) UNCLASSIFIED UNCLASSIFIED 296 Form DOT F 1700.7(8-72) Reproduction of completed page authorized FOREWORD The Geotechnical Engineering Circular (GEC) Design, Analysis, and Testing of Laterally Loaded Deep Foundations that Support Transportation Facilities provides recommended guidance for the design, analysis, and testing of laterally loaded deep foundations for transportation facilities in accordance with the Load and Resistance Factor Design (LRFD) platform. The intended audience for this document includes geotechnical, structural, and highway design and construction specialists involved with the selection, design, analysis and testing of laterally loaded deep foundations. Note - The Federal Highway Administration is the source for all images not otherwise credited in this report. Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document. Quality Assurance Statement The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement. TABLE OF CONTENTS 1 INTRODUCTION AND OVERVIEW ....................................................................... 1 1.1 Purpose............................................................................................................................................... 1 1.2 Background and History of Analysis of Laterally Loaded Deep Foundations .................................... 1 1.3 Literature Review ................................................................................................................................ 3 1.4 Organization of Manual....................................................................................................................... 3 2 LATERAL LOAD APPLICATIONS AND SELECTION OF DEEP FOUNDATION TYPE FOR TRANSPORTATION PROJECTS ....................................................... 6 2.1 Lateral Load Applications for Transportation Projects ........................................................................ 6 2.1.1 Typical Lateral Load Applications for Vertical Deep Foundations .............................................. 6 2.1.2 Batter Piles for Lateral Load Applications ................................................................................. 13 2.2 Types of Deep Foundations Addressed in this Manual .................................................................... 14 2.3 Selection of Deep Foundation Types for Resistance of Lateral Loads ............................................ 15 2.3.1 Subsurface Conditions and Geomaterial Properties ................................................................ 15 2.3.2 Properties of Deep Foundation Elements ................................................................................. 16 2.3.3 Constructability Considerations ................................................................................................ 16 2.3.4 Cost Effectiveness .................................................................................................................... 18 2.3.5 Redundancy of the Foundation System .................................................................................... 18 2.4 Exclusions ......................................................................................................................................... 19 3 GEOTECHNICAL SITE CHARACTERIZATION FOR DESIGN OF LATERALLY LOADED DEEP FOUNDATIONS ......................................................................... 20 3.1 Introduction ....................................................................................................................................... 20 3.2 Geotechnical Design Parameters ..................................................................................................... 20 3.2.1 Soil Geotechnical Design Parameters ...................................................................................... 20 3.2.2 Rock Geotechnical Design Parameters .................................................................................... 21 3.3 Subsurface Exploration..................................................................................................................... 22 3.3.1 Subsurface Exploration Program Requirements ...................................................................... 22 3.3.2 Subsurface Exploration Techniques ......................................................................................... 23 3.3.3 Considerations for Subsurface Explorations when Lateral Loads are Significant .................... 25 3.3.4 Laboratory Testing .................................................................................................................... 26 3.3.5 Groundwater Conditions ........................................................................................................... 27 4 LRFD DESIGN REQUIREMENTS AND LIMIT STATES FOR LATERALLY LOADED DEEP FOUNDATIONS ......................................................................... 28 4.1 Introduction ....................................................................................................................................... 28 4.2 Load Combinations And Load Factors ............................................................................................. 28 4.3 Strength Limit State for Laterally Loaded Foundations .................................................................... 32 i 4.4 Service Limit State for Lateral Displacements .................................................................................. 33 4.5 Extreme Event Limit State ................................................................................................................ 35 4.6 Considerations for Limit Equilibrium Applications ............................................................................ 35 5 DESIGN PROCESS AND TEAM ROLES FOR ANALYSIS OF LATERALLY LOADED DEEP FOUNDATIONS ......................................................................... 36 5.1 Design Process ................................................................................................................................
Recommended publications
  • The Evolution of Deep Foundation Quality Management Techniques in the United States
    Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in (2013) - Seventh International Conference on Geotechnical Engineering Case Histories in Geotechnical Engineering 02 May 2013, 10:30 am - 10:50 am The Evolution of Deep Foundation Quality Management Techniques in the United States Bernard H. Hertlein AECOM, Vernon Hills, IL Follow this and additional works at: https://scholarsmine.mst.edu/icchge Part of the Geotechnical Engineering Commons Recommended Citation Hertlein, Bernard H., "The Evolution of Deep Foundation Quality Management Techniques in the United States" (2013). International Conference on Case Histories in Geotechnical Engineering. 2. https://scholarsmine.mst.edu/icchge/7icchge/session10/2 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. THE EVOLUTION OF DEEP FOUNDATION QUALITY MANAGEMENT TECHNIQUES IN THE UNITED STATES Bernard H. Hertlein, M.ASCE. Principal Scientist AECOM 750 Corporate Woods Parkway Vernon Hills, Illinois 60061 [email protected] ABSTRACT The development and acceptance of quality control and assurance techniques for deep foundations in the United States is a relatively recent phenomenon, and one whose progress can be attributed to a handful of key individuals who first recognized the early promise of these methods, and worked diligently to validate them.
    [Show full text]
  • DRILLED SHAFT FOUNDATION DEFECTS Identification, Imaging, and Characterization
    DRILLED SHAFT FOUNDATION DEFECTS Identification, Imaging, and Characterization Publication No. FHWA-CFL/TD-05-007 October 2005 Tube 1 Tube 2 Tube 3 Anomaly CSL GDL IDENTIFICATION (Verification) <4,000 psi CSLT STRENGTH IMAGING (Definition) CHARACTERIZATION Central Federal Lands Highway Division 12300 West Dakota Avenue Lakewood, CO 80228 Technical Report Documentation Page 1. Report No. 2. Government Accession No 3. Recipient’s Catalog No FHWA-CFL/TD-05-003 4. Title and Subtitle 5. Report Date Defects in Drilled Shaft Foundations: March 2005 Identification, Imaging, and Characterization 6. Performing Organization Code 7. Authors 8. Performing Organization Report No. Frank Jalinoos, MS Geophysics – Principal Investigator (PI); 3755FHA Natasa Mekic, MS Geophysics; Robert E. Grimm, Ph.D., Geophysics; Kanaan Hanna, MS, Mining Engineering 9. Performing Organization Name and Address 10. Work Unit No. Blackhawk, a division of ZAPATA ENGINEERING 301 Commercial Road, Suite B 11. Contract or Grant No. Golden, Colorado 80401 DTFH68-03-P-00116 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Federal Highway Administration Final Report, May 2003-March 2005 Central Federal Lands Highway Division 14. Sponsoring Agency Code 12300 West Dakota Avenue HFTS-16.4 Lakewood, Colorado 80228 15. Supplementary Notes COTR: Khamis Haramy, FHWA-CFLHD. Advisory Panel: Scott Anderson, FHWA-FLH and Roger Surdahl FHWA- CFLHD. This project was funded under the Federal Lands Highway Technology Deployment Initiatives and Partnership Program (TDIPP.)
    [Show full text]
  • Mackays to Peka Peka Expressway ■ Tauroa Subdivision
    NZ NZ GEOMECHA JUNE 2014 issue 87 N ICS NEWS ICS E N WS NZBulletin of the GEOMECHA New Zealand Geotechnical Society Inc. NICSISSN 0111–6851 ■ Ground Improvement Ground Mackays to ■ Tauroa Subdivision Tauroa Peka Peka Expressway ■ Mackays to Peka Expressway issue 87 JUNE 2014 NZ GEOMECHANICS NEWS EWS N 6851 ICSISSN 0111– GEOMECHA N NZBulletin of the New Zealand Geotechnical Society Inc. ■ Ground Improvement Mackays to ■ Tauroa Subdivision ■ Peka Peka NZGS Life Member and IPENZ Awards Expressway ■ Mackays to Peka Peka Expressway ■ NZGS Life Member and IPENZ Awards SEARCH NZGS at yOUR tauroa subdivision ground improvement App nzgs life member and ipenz awards JUNE STORE 2014 Back issues now free online check out www.nzgs.org issue 87 30/05/14 12:04 pm NZGS TAUROANZGS_june14cv4.indd 1 SUBDIVISION june GROUND IMPROVEMENT 2014 issue 87 NZGS LIFE MEMBER AND IPENZ AWARDS NZGS Back issues now free online check out www.nzgs.org Our multidisciplinary operation specialises We’re proud to be the sole distributor in the fields of ground anchoring, soil in New Zealand for SAMWOO Anchor nailing, drilling, post-tensioning and Technology, BluGeo GRP Powerthread K60 RETAINING YOUR BUSINESS grouting. The combination of capability Bar, Tighter (Kite) Earth Anchors and Grout and depth of technical expertise makes Grippa Grout Sock (Australasia). us a market leader and supports our IS OUR BUSINESS. reputation for providing value engineered solutions to our customers. Over more than 40 years, Grouting Services has delivered We’re experts in: some of New Zealand’s most significant Ground Anchoring, Soil Nailing, Micro-Piling and Post-Tensioning contracts.
    [Show full text]
  • NDT Diagnosis of Drilled Shaft Foundations
    NDT Diagnosis of Drilled Shaft Foundations by Larry D. Olson, P.E., Principal Engineer Olson Engineering, Inc. 5191 Ward Road, Suite 1 Wheat Ridge, Colorado 80033-1905 Tel: 303/423-1212 Fax: 303/423-6071 E-Mail: [email protected] Marwan F. Aouad, Ph.D., Project Manager Olson Engineering, Inc. 5191 Ward Road, Suite 1 Wheat Ridge, Colorado 80033-1905 Tel: 303/423-1212 Fax: 303/423-6071 E-Mail: [email protected] and Dennis A. Sack, Project Manager Olson Engineering, Inc. 5191 Ward Road, Suite 1 Wheat Ridge, Colorado 80033-1905 Tel: 303/423-1212 Fax: 303/423-6071 E-Mail: [email protected] A paper prepared for presentation at the 1998 Annual Meeting of the Transportation Research Board and for publication in the Transportation Research Record Olson, Aouad and Sack Page 1 ABSTRACT Number of words = 6590 (including 250 words for each figure) Nondestructive methods based on propagation of sonic and ultrasonic waves are increasingly being used in the United States and internationally for forensic investigations of existing structures and for quality assurance of new construction. Of particular interest is the quality assurance of newly constructed drilled shaft foundations. A large number of State Departments of Transportation specify NDT testing of drilled shaft foundations, particularly for shafts drilled and placed under “wet” construction conditions. For quality assurance of drilled shaft foundations of bridges, the Crosshole Sonic Logging (CSL) and Sonic Echo/Impulse Response (SE/IR) methods are routinely used. The CSL method requires access tubes to be installed in the shaft prior to concrete placement. SE/IR measurements require that the top of the shaft be accessible after concrete placement.
    [Show full text]
  • Prism Foundation System
    TENSAR INTERNATIONAL CORPORATION Laying the Groundwork for Tomorrow The Engineered AdvantageTM With clear advantages in performance, design and installation, Tensar products and systems offer a proven technology for addressing the most challenging projects. Our entire worldwide distribution team is dedicated to providing the highest quality products and services. For more information, visit TensarCorp.com or call 800-TENSAR-1. Tensar International Corporation Tensar delivers engineered systems that combine technology, SITE SUPPORT engineering, design and products. By utilizing Tensar’s approach Tensar regional sales managers and our distribution partners to construction, you can experience the convenience of having a can advise your designers, contractors and construction crews supplier, design services and site support all through one team to ensure the proper installation of our products and prevent of qualified sales consultants and engineers. By working with unnecessary scheduling delays. Tensar you not only get our high quality products but also: EXPERIENCE YOU CAN RELY ON SITE ASSESSMENT Tensar is the industry leader in soil reinforcement. We have We can partner with any member of your team at the beginning developed products and technologies that have been at the of your project to recommend a Tensar Solution that optimizes forefront of the geotechnical industry for the past three your budget, financing and construction scheduling. decades. As a result, you know you can rely on our systems and design expertise. Our products are backed by the most thorough DESIGN ASSISTANCE/SERVICES quality assurance practices in the industry. And, we provide Experienced Tensar design engineers, regional sales managers, comprehensive design assistance for every Tensar system.
    [Show full text]
  • GEO STRATA MARCH/APRIL 2010.Indd
    Plus… Geo-Strata: A Decade of Delivery March/April 2010 Levees At Risk We build the barriers that keep clean water clean. Grout Curtain, McCook Reservoir Stage I Chicago, IL The support you need to protect your vital resources. The McCook Reservoir will store the wastewater overflow that would otherwise threaten the City of Chicago’s drinking water. To create a seal in the fractured limestone around the reservoir, Nicholson constructed a grout curtain using its computerized GROUT I.T. system which measures, records and graphically displays grouting parameters in real time. At Nicholson Construction Company, we specialize in deep foundations, earth retention, ground treatment and ground improvement techniques that help you achieve your project 1-800-388-2340 goals. Nicholson...the support you need. nicholsonconstruction.com DEEP FOUNDATIONS EARTH RETENTION GROUND TREATMENT GROUND IMPROVEMENT Micropiles • Caissons • Driven/Drilled Piles • Augercast Piles Tiebacks • Excavation and Drainage • Sheet Piling Rock / Soil Nailing • Grouting • Bridges and Complex Structures Concrete Foundations • Lock and Dam Construction Steel Erection • Demolition/Brownfields Redevelopment 1000 John Roebling Way • Saxonburg, PA 16056 Office: 724-443-1533 • Fax: 724-443-8733 www.braymanconstruction.com Features May/June 2008 January/February 2007 VOLUME 14 l ISSUE 2 Geo-Strata 19 Geo-Strata: A Decade of Delivery By James L. Withiam, Ph.D., P.E., D.GE, M.ASCE and Linda R. Bayer, IOM FIGURE 3 Hurricanes: Geotechnical Condition Assessments Lessons Learned Excavation sites based EM3 anomalies. The broad low-weak 24 What’s In Your Levee? 19 anomalies are associated with beaver dens, and the high- By Mara Johnson, Ph.D., and Louise Pellerin, Ph.D.
    [Show full text]
  • Shofana Elfa Hidayah Nim 161910301059
    DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember EVALUASI DAYA DUKUNG PONDASI BORED PILE DENGAN STATIC LOADING TEST DAN CROSSHOLE SONIC LOGGING (CSL) PADA PROYEK TRANS ICON SURABAYA SKRIPSI OLEH: SHOFANA ELFA HIDAYAH NIM 161910301059 PROGRAM STUDI STRATA 1 TEKNIK SIPIL JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS JEMBER 2020 i DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember EVALUASI DAYA DUKUNG PONDASI BORED PILE DENGAN STATIC LOADING TEST DAN CROSSHOLE SONIC LOGGING (CSL) PADA PROYEK TRANS ICON SURABAYA SKRIPSI Diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Strata 1 Teknik Sipil dan mencapai gelar Sarjana Teknik Oleh : SHOFANA ELFA HIDAYAH NIM 161910301059 PROGRAM STUDI STRATA 1 TEKNIK SIPIL JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS JEMBER 2020 ii DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember PERSEMBAHAN Skripsi ini saya persembahkan untuk : 1. Ayah dan Alm. Ibu saya yang telah memberi doa, semangat, dan materi yang tiada henti sejak saya lahir hingga saat ini. 2. Adik saya, Alfath Luthfiansyah Abror yang menjadi sumber motivasi saya untuk berbuat lebih banyak lagi sehingga dapat memudahkan jalannya kelak di masa yang akan datang. 3. Mas Riantri Hidayat yang telah menemani dan selalu membantu saya saat proses pengerjaan tugas akhir ini. Semoga selalu dipermudah jalanmu kedepannya dan semua yang menjadi cita –cita kita dapat terwujud. 4. Dosen pembimbing saya, Ibu Indra Nurtjahjaningtyas, S.T., M.T, dan Bapak Luthfi Amri Wicaksono, S.T., M.T yang selalu membimbing serta mengarahkan saya dalam pengerjaan tugas akhir ini. 5. Dosen Pembimbing Akademik saya, Bapak Dr. Gusfan Halik M.T yang telah memberikan masukan – masukan dari semester 1 hingga saat ini. 6. Sahabat –sahabat serta keluarga besar saya, Surgacorp, Biji Besi 2016, dan semua yang tidak bisa saya sebutkan satu persatu terimakasih sudah memberikan semangat, ilmu, waktu, dan doa.
    [Show full text]
  • Soils and Foundations: 2012 IBC
    Soils and Foundations January 2016 State of Connecticut Department of Administrative Services Division of Construction Services Office of Education and Data Management Soils and Foundations: 2012 IBC Presented by Douglas M. Schanne, Training Program Supervisor, OEDM for the Office of Education and Data Management Spring 2016 Career Development Series Soils and Foundations • Seminar will review the International Building Code requirements for soils and foundations: – Geotechnical investigations, foundation and soils – excavation, grading and fill, – load bearing values of soils, – dampproofing and waterproofing – design and construction of foundations • Shallow Foundations • Deep Foundations Office of Education and Data Management - January 2016 Career Development 2016 OEDM Career Development 1 Soils and Foundations January 2016 Chapter 18 ‐Soils and Foundations International Building Code 2012 • 1801 General • 1802 Definitions • 1803 Geotechnical Investigations • 1804 Excavation, Grading, and Fill • 1805 Dampproofing & Waterproofing • 1806 Presumptive Load‐Bearing Values of Soils • 1807 Walls, Posts, Poles • 1808 Foundations • 1809 Shallow Foundations • 1810 Deep Foundations 2016 OEDM Career Development 2 Soils and Foundations January 2016 Section 1801 General • Scope – The provisions of IBC Chapter 18 Soils and Foundations applies to building and foundation systems Section 1801 General • Design – Allowable bearing pressure, allowable stresses and design formulas provided shall be used with the allowable stress design load combinations
    [Show full text]
  • Types of Foundations
    Lecture Note COSC 421 1 (M.E. Haque) TYPES OF FOUNDATIONS Foundation Systems Shallow Foundation Deep Foundation Pile Foundation Pier (Caisson) Foundation Isolated spread Wall footings Combined Cantilever or footings footings strap footings Raft or Mat foundation Lecture Note COSC 421 2 (M.E. Haque) Shallow Foundations – are usually located no more than 6 ft below the lowest finished floor. A shallow foundation system generally used when (1) the soil close the ground surface has sufficient bearing capacity, and (2) underlying weaker strata do not result in undue settlement. The shallow foundations are commonly used most economical foundation systems. Footings are structural elements, which transfer loads to the soil from columns, walls or lateral loads from earth retaining structures. In order to transfer these loads properly to the soil, footings must be design to • Prevent excessive settlement • Minimize differential settlement, and • Provide adequate safety against overturning and sliding. Types of Footings Column Footing Isolated spread footings under individual columns. These can be square, rectangular, or circular. Lecture Note COSC 421 3 (M.E. Haque) Wall Footing Wall footing is a continuous slab strip along the length of wall. Lecture Note COSC 421 4 (M.E. Haque) Columns Footing Combined Footing Property line Combined footings support two or more columns. These can be rectangular or trapezoidal plan. Lecture Note COSC 421 5 (M.E. Haque) Property line Cantilever or strap footings: These are similar to combined footings, except that the footings under columns are built independently, and are joined by strap beam. Lecture Note COSC 421 6 (M.E. Haque) Columns Footing Mat or Raft Raft or Mat foundation: This is a large continuous footing supporting all the columns of the structure.
    [Show full text]
  • Deep Foundations April 2021
    NEWSLETTER A Deep Dive Into Deep Foundations April 2021 Most new buildings can be constructed on a typical shallow foundation system. But for the approximately 5% to 10% of buildings proposed to be located on unsuitable soils, a redevelopment site, or with extraordinary load requirements, a more complex solution is needed, such as ground improvement or deep foundations. So, let’s dig deeper into the foundation systems that support some of Ohio’s most remarkable buildings. Shallow foundations are considered first. Shallow foundations, often called footings, are used for the majority of projects and are the most economical foundation system. Shallow foundations transfer building loads to the underlying soil and are most commonly used where suitable bearing is present within a depth of 10 feet. Shallow foundations are appropriate when the characteristics of the underlying soil can support the weight of the proposed structure without risk of excessive settlement. When initial soil borings for new construction reveal that shallow foundations cannot support the proposed structure within acceptable settlement limits, engineers then look to fortify the building pad area using practices referred to as ground improvement. Successful ground improvement allows use of shallow foundations. Ground improvement practices fortify the existing ground to allow for a higher bearing capacity while reducing settlement to within a tolerable amount for the structure. Successful ground improvement allows for a shallow foundation system to be used. The three most commonly used ground improvements approaches for Ohio projects are two types of aggregate piers—rammed aggregate piers and vibratory stone columns—and deep dynamic compaction. GEOTECHNICAL CONSULTANTS INC.
    [Show full text]
  • Types of Deep Foundations -Timber Piles - Reinforced Concrete Piles - Pifs - Steel Piles - Composite Piles - Augercast Shafts - Drilled Shafts
    Foundation Engineering Lecture #14 Types of Deep Foundations -Timber piles - Reinforced Concrete piles - PIFs - Steel piles - Composite piles - Augercast shafts - Drilled shafts L. Prieto-Portar 2009 Surface soils with poor bearing may force engineers to carry their structural loads to deeper strata, where the soil and rock strengths are capable of carrying the new loads. These structural elements are called “deep foundations”. The oldest known deep foundation was a “pile”. Originally, piles were simply tree trunks stripped of their branches, and pounded into the soil with a large stone, much like a carpenter hammers a nail into a wooden board. Pile driving machines have been found in Egyptian excavations, consisting of a simple "A" frame, a heavy stone and a rope. Roman military bridge builders used a similar technique. Both were early examples of “driven” piles. In 1740 Christopher Phloem invented pile driving equipment using a steam machine which resembles today’s pile driving mechanisms. This method evolved by using steam to raise the weights (in lieu of human power) during the late 1800’s, and then diesel hammers were developed in Germany during WWII. The most recent advance in pile placing is the hydraulic hammer. Steel piles have been used since 1800’s and concrete piles since about 1900. In contrast, shafts or placed deep foundations are screwed (“augered”) into the soil, much like a carpenter places a screw into a wooden board. Similarly to the contrast between nailing versus screwing, the shafts are usually a quiet operation that tends to improve the soil and rock texture to carry the load.
    [Show full text]
  • October 11, 2016 Order No.: K19 Project
    DEPARTMENT OF TRANSPORTATION 1401 EAST BROAD STREET RICHMOND, VIRGINIA 23219-2000 Charles A. Kilpatrick, P.E. Commissioner October 11, 2016 Order No.: K19 Project: (NFO)8102-029-065,B627,B628,B629,C501 FHWA: STP-5A01 (717) District: Northern Virginia County: Fairfax Route: Various Bids: October 26, 2016 To Holders of Bid Proposals: Please make the following changes in your copy of the bid proposal for the captioned project: BID PROPOSAL Substitute Form C21B as it has been revised. Substitute Form C21C as it has been revised. Substitute Form C-7 as it has been revised to Sheet 1 of 33. Substitute pages 2 through 32 as those pages have been revised and due to renumbering. Add page 33 as that page has been added and due to renumbering. Substitute DMI as it has been revised. Substitute page 2 of the Table of Contents for Provisions as Special Provision SEC. 406- Reinforcing Steel Dated: R-7-12-16_(SP) has been deleted. Special Provision Section 605 Planting Dated: 8-20-15 has been deleted. Special Provision Section 703 - Traffic Signals Dated: 2-11-16 has been deleted. Special Provision Drilled Shafts Dated: 3-9-16 has been deleted. Special Provision Copied Note Sec. 505.03-Procedures (Guardrail & Attenuator ID) Dated: R-7- 12-16_(SPCN) has been added. Special Provision Copied Note Sec. 512-Maintaining Traffic (ID Stamp/Engrave G’rail/Atten) Dated: R-7-12-16_(SPCN) has been added. Special Provision Copied Note Section 512.03 (j).Traffic Signals Dated: 10-12-16 (SPCN) has been added. Special Provision Copied Note Section 700.06 – Measurement and Payment Dated: 9-29-16 (SPCN) has been added.
    [Show full text]