Galvenā Devona Lauka Osteolepiformu

Total Page:16

File Type:pdf, Size:1020Kb

Galvenā Devona Lauka Osteolepiformu DISERTATIONES GEOLOGICAE UNIVERSITAS LATVIENSIS Nr. 11 IVARS ZUPI ĥŠ GALVEN Ā DEVONA LAUKA OSTEOLEPIFORMU K ĀRTAS DAIVSPURZIVIS (SARCOPTERYGII, OSTEOLEPIFORMES) DISERT ĀCIJA RĪGA 2009 DISERTATIONES GEOLOGICAE UNIVERSITAS LATVIENSIS Nr. 11 IVARS ZUPI ĥŠ GALVEN Ā DEVONA LAUKA OSTEOLEPIFORMU K ĀRTAS DAIVSPURZIVIS (SARCOPTERYGII, OSTEOLEPIFORMES) DISERT ĀCIJA doktora gr āda ieg ūšanai ăeolo ăijas nozares pamatiežu ăeolo ăijas apakšnozar ē LATVIJAS UNIVERSIT ĀTE 2 Promocijas darbs izstr ādāts Latvijas Universit ātes Ăeolo ăijas noda Ĝas Pamatiežu ăeolo ăijas katedr ā no 2001. gada l īdz 2009. gadam Promocijas darba vad ītājs: Erv īns Lukševi čs, profesors, Dr. ăeol. (Latvijas Universit āte) Recenzenti: Promocijas padomes sast āvs: Vit ālijs Zel čs, profesors, Dr. ăeol. – padomes priekšs ēdētājs Erv īns Lukševi čs, profesors, Dr. ăeol. – padomes priekšs ēdētāja vietnieks Guntis Eberhards, emerit ētais profesors, Dr. h. ăeog. Laimdota Kalni Ħa, asoc. profesore, Dr. ăeog. Māris K Ĝavi Ħš, profesors, Dr. h. ėī m. Uldis Sedmalis, profesors, Dr. h. ėī m. Padomes sekret ārs: Ăirts Stinkulis, Dr. ăeol. Promocijas darbs pie Ħemts aizst āvēšanai ar LU Ăeolo ăijas promocijas padomes ……. gada …. ................................ s ēdes l ēmumu nr. .../........... Promocijas darba atkl āta aizst āvēšana notiks LU Ăeolo ăijas promocijas padomes s ēdē ……. gada …. ........................., R īgā, Alberta iel ā 10, J āĦ a un Elfr īdas Rutku auditorij ā (313. telpa). Promocijas darba kopsavilkuma izdošanu ir finans ējusi Latvijas Universit āte. Ar promocijas darbu ir iesp ējams iepaz īties Latvijas Universit ātes Zin ātniskaj ā bibliot ēkā Rīgā, Kalpaka bulv ārī 4 un Latvijas Akad ēmiskaj ā bibliot ēkā R īgā, Lielv ārdes iel ā 4. Atsauksmes s ūtīt: Dr. Ăirts Stinkulis, Latvijas Universit ātes Ăeolo ăijas noda Ĝa, Rai Ħa bulv āris 19, LV-1586, R īga. Fakss: +371 6733 2704, e-pasts: [email protected] © Ivars Zupi Ħš Latvijas Universit āte www.lu.lv 3 ANOT ĀCIJA Revid ēts osteolepiformu k ārtas daivspurzivju taksonomiskias sast āvs un stratigr āfisk ā izplat ība Galven ā devona lauka (Austrumeiropas platformas zieme Ĝrietumu da Ĝas) teritorij ā. Kritiski izv ērt ēts morfolo ăisko paz īmju kopums un sniegtas sugu preciz ētas diagnozes. Materi āla anal īze liecina, ka darb ā apskat āmaj ā teritorij ā k ārta p ārst āvēta ar 16 sug ām, kas pieder 9 ăint īm. Aprakst īta jauna tristihopter īdu suga Eusthenopteron kurshi sp. nov., izv ērt ējot osteolepiformu iesp ējamo pielietojam ību devona nogulumu biostratigr āfij ā, konstat ēts, ka grupai ir zin āma noz īme k ā vienam no mugurkaulnieku faunas kompleksu elementiem l īdz ās biež āk pieejamam bru Ħuzivju un bezžokle Ħu materi ālam, ko pier āda korel ācijas piem ēri, sal īdzinot Galven ā devona lauka, Skotijas un Centr ālā devona lauka griezumus. Analiz ēti daivspurzivju tafonomijas aspekti īpaši piev ēršoties Lodes m ālu karjer ā konstat ēto fosiliju sakopojumu veidošan ās apst ākĜiem. 4 ANNOTATION The diversity and stratigraphical distribution of osteolepiform sarcopterygians from the Main Devonian Field (north-western part of the East European Platform) are analysed. Morphological characters have been critically evaluated and amended diagnoses are given. It is concluded that the order is represented by 16 species, which belong to 9 genera. A new species of tristichopterids, Eusthenopteron kurshi sp. nov., is described. Evaluation of the potential application of the osteolepiforms in biostratigraphy shows that the group has certain value as elements in Devonian vertebrate assemblages along with the more frequently available placoderm and agnathan material as approved by the correlation examples between the sequences of the Main Devonian Field, Scotland and the Central Devonian Field. Certain aspects of sarcopterygian taphonomy have been discussed paying special attention to the fossil accumulations in the Lode clay quarry and their formation conditions. 5 SATURS IEVADS…………………………………………………………………………….…………….. 7 1. OSTEOLEPIFORMU K ĀRTAS RAKSTUROJUMS………………………………................. 14 1.1. P ētījumu v ēsture un teritorijas raksturojums……………………..………………… 14 1.2. Osteolepiformiem rakstur īgās īpaš ības…………………………………………….. 20 1.3. Sistem ātika………………………………………………………….………............ 22 2. MATERI ĀLS UN METODES………………………………………………………………….. 25 3. GALVEN Ā DEVONA LAUKA OSTEOLEPIFORMU SISTEM ĀTISKAIS APRAKSTS….. 30 TRISTICHOPTERIDAE …………………………………………………………………… 31 Eusthenopteron………………………………………………………………… …………..... 31 Jarvikina………………………………………………………………………… …………… 50 Platycephalichthys…………………………………………………… …………………… 52 OSTEOLEPIDIDAE…………………………………………………………………...… 61 Cryptolepis…………………………………………………………………………………….. 62 Latvius………………………………………………………………………………………..... 69 Osteolepis……………………………………………………………………… …………….. 73 Gyroptychius………………………………………………………………………………..…. 75 Thursius……………………………………………………………………………………..…. 83 Glyptopomus………………………………………………………………………………...… 86 Piez īmes par atseviš ėā m osteolepid īdu form ām………………………………. 89 4. OSTEOLEPIFORMU STRATIGR ĀFISK Ā IZPLAT ĪBA, TO PIELIETOJAM ĪBA BIOSTRATIGR ĀFIJ Ā UN PALEOBIO ĂEOGR ĀFISKIE ASPEKTI…………….…………… 91 5. DAIVSPURZIVJU TAFONOMIJAS ASPEKTI……………………………………………….. 100 SECIN ĀJUMI……………………………………….……………………………………………… 111 LITERAT ŪRA……………………………………………..……………………………………….. 113 6 CONTENTS INTRODUCTION…………………………………………………………………………………….. 7 1. PRINCIPAL ASPECTS OF THE OSTEOLEPIFORM SARCOPTERYGIANS………................ 14 1.1. History of research and characteristics of the study area…………………………….. 14 1.2. Characteristics of Osteolepiformes ….……………………………………………….. 20 1.3. Systematics……………………………………………………………………............ 22 2. MATERIAL AND METHODS………………………………………………………………….. 25 3. SYSTEMATIC DESCRIPTION OF OSTEOLEPIFORMS OF THE MAIN DEVONIAN FIELD…………………………………………………………………………………………… 30 TRISTICHOPTERIDAE ……………………………………………………………………. 31 Eusthenopteron………………………………………………………………… …….............. 31 Jarvikina………………………………………………………………………… …………….. 50 Platycephalichthys…………………………………………………… …………….……….. 52 OSTEOLEPIDIDAE……………………………………………………………….……… 61 Cryptolepis………………………………………………………………………...……………. 62 Latvius……………………………………………………………………………………………. 69 Osteolepis……………………………………………………………………… ……………… 73 Gyroptychius……………………………………………………………………………………. 75 Thursius…………………………………………………………………………………………. 83 Glyptopomus……………………………………………………………………………………. 86 Remarks on certain osteolepidid forms……………………………………………….. 89 4. STRATIGRAPHICAL DISTRIBUTION OF OSTEOLEPIFORMS, THEIR BIOSTRATIGRAPHICAL VALUE AND PALAEOBIOGEOGRAPHICAL ASPECTS …………….…………………………………………………………………………… 91 5. PECULIARITIES OF SARCOPTERYGIAN TAPHONOMY…………………….………..…… 100 CONCLUSIONS……………………………………….……………………………………………… 111 REFERENCES……………………………………………..………………………………………….. 113 7 IEVADS Veiktie p ētījumi velt īti Galven ā devona lauka (Austrumeiropas platformas zieme Ĝrietumu da Ĝas) osteolepiformu k ārtas daivspurzivju izp ētei. Apskat āmaj ā teritorij ā devona ieži daudzviet ir sastopami dab īgajos atsegumos, k ā ar ī der īgo izrakte Ħu ieguves viet ās gandr īz vis ā Latvijas teritorij ā, Igaunijas dienvidda Ĝā , da Ĝā Lietuvas un Baltkrievijas, Krievij ā – ěeĦingradas, Pleskavas, Novgorodas, Tveras un Vologdas apgabal ā. ĥemot v ērā devona sist ēmas iežu plašo izplat ību Latvij ā, tie ir noz īmīgs Latvijas ăeolo ăiskās v ēstures izp ētes objekts. Daivspurzivis, tai skait ā osteolepiformi, bija b ūtiski faunas elementi t ā laika biocenoz ēs. Kārtas raksturojums un noz īmība. Osteolepiformu k ārt ā ietilpst divas dzimtas – osteolepid īdi (Osteolepididae) un tristihopter īdi (Tristichopteridae). Kopum ā, atbilstoši pašreiz ējām zin āšan ām, osteolepiformu k ārta p ārst āvēta ar 28 ăint īm. Nov ērota ar ī plaša to ăeogr āfisk ā izplat ība. Pirmie š īs grupas p ārst āvji aprakst īti jau 19. gadsimta 30-os gados, kad public ēti pirmie dati par osteolepid īdiem no Skotijas. Šis laiks sakr īt ar ī ar devona sist ēmas izdal īšanu Anglij ā. Dr īz vien par ādās pirmie dati par osteolepiformiem piederošu atlieku atradumiem toreiz ējā Krievijas teritorij ā. 19. gadsimta otraj ā pus ē aizs ākas Skotijas un Kan ādas tristihopter īdu izp ēte (Egerton, 1861; Whiteaves, 1881; Hussakof, 1888). 20. gadsimta 30.-40. gados tiek public ēti dati par osteolepid īdiem no Baltijas (Gross, 1933, 1942; Paul, 1940). Attiec ībā uz citiem apgabaliem j āatz īmē vair āki zi Ħojumi par osteolepid īdiem un tristihopter īdiem no Turcijas (Janvier, Marcoux 1977; Janvier, 1983), Marokas (Janvier et al ., 1979; Leliévre, Janvier, 1986) un Indijas (Gupta, Janvier, 1981). Daudzveid īga devona osteolepiformu fauna zin āma no Austr ālijas – Gyroptychius ? australis (Young, Gorter, 1981); Canowindra grossi Thomson, 1973 (Thomson, 1973; Long, 1985b), Beelarongia patrichae (Long, 1987), Marsdenichthys longioccipitus (Long, 1985a), Eusthenodon cf. wängsjöi , Yambira thomsoni (Johanson, Ritchie, 2000; Johanson, 2004) un Antarktīdas – Gyroptychius ? antarcticus , Koharalepis jarviki Young, Long & Ritchie, 1992, Mahalalepis resima Young, Long & Ritchie, 1992, Platyethmoidia antarctica Young, Long & Ritchie, 1992, Vorobjevaia dolondon Young, Long & Ritchie, 1992 (Young, 1991; Young et al ., 1992). Pateicoties materi āla izcilai saglab ātībai, starp visdetaliz ētāk izp ētītajiem osteolepid īdiem j āmin Medoevia 8 lata Lebedev, 1995 no Krievijas teritorijas (Lebedev, 1995a) un Gogonasus andrewsi Rietumaustr ālij ā (Long, 1985c, 1987; Long et al ., 1997). L īdz ās daudzskaitl īgiem tristihopter īda Eusthenopteron foordi atradumiem Kan ādā, no Zieme Ĝamerikas aprakst ītas vair ākas devona osteolepid īdu sugas: Hyneria lindae (Thomson,
Recommended publications
  • Université Du Québec
    UNIVERSITÉ DU QUÉBEC PRÉCISIONS SUR L'ANATOMIE DE L'OSTÉOLÉPIFORME EUSTHENOPTERON FOORDI DU DÉVONIEN SUPÉRIEUR DE MIGUASHA, QUÉBEC MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À RIMOUSKI Comme exigence partielle du programme de Maîtrise en Gestion de la Faune et de ses Habitats PAR JOËL LEBLANC Août 2005 UNIVERSITÉ DU QUÉBEC À RIMOUSKI Service de la bibliothèque Avertissement La diffusion de ce mémoire ou de cette thèse se fait dans le respect des droits de son auteur, qui a signé le formulaire « Autorisation de reproduire et de diffuser un rapport, un mémoire ou une thèse ». En signant ce formulaire, l’auteur concède à l’Université du Québec à Rimouski une licence non exclusive d’utilisation et de publication de la totalité ou d’une partie importante de son travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, l’auteur autorise l’Université du Québec à Rimouski à reproduire, diffuser, prêter, distribuer ou vendre des copies de son travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l’Internet. Cette licence et cette autorisation n’entraînent pas une renonciation de la part de l’auteur à ses droits moraux ni à ses droits de propriété intellectuelle. Sauf entente contraire, l’auteur conserve la liberté de diffuser et de commercialiser ou non ce travail dont il possède un exemplaire. 11 TABLE DES MATIÈRES TABLE DES MATIÈRES .... ..... ............................. .. ...... .. .... .. .... ........... ... ............................. .ii LISTE DES TABLEAUX .. ............
    [Show full text]
  • Tetrapods, Amphibians, and Life on Land
    Department of Geological Sciences | Indiana University Dinosaurs and their relatives (c) 2015, P. David Polly Geology G114 Strolling through life Tetrapods, amphibians, and life on land Tetrapods - the clade of four- limbed terrestrial vertebrates Living tetrapod groups: * amphibians * mammals (including humans) * lizards and snakes * crocodilians * birds Eurypos , early Permian temnospondyl (painting by Douglas Henderson, 1990) Department of Geological Sciences | Indiana University Dinosaurs and their relatives (c) 2015, P. David Polly Geology G114 Lobe-finned fish (Sarcopterygia) Living coelacanth Fossil sarcopterygians Late Cretaceous (ca. 65 mya) Carboniferous (ca. 300 mya) Department of Geological Sciences | Indiana University Dinosaurs and their relatives (c) 2015, P. David Polly Geology G114 Comparison of pectoral fins Actinopterygian Sarcopterygian (ray finned) (lobe finned) Scapulocoracoid Humerus Ulna Radius Department of Geological Sciences | Indiana University Dinosaurs and their relatives (c) 2015, P. David Polly Geology G114 Coelacanth pectoral fins Department of Geological Sciences | Indiana University Dinosaurs and their relatives (c) 2015, P. David Polly Geology G114 Ancestral characteristics of living tetrapods • Pelvic and pectoral girdles • Forelimb with humerus, radius, and ulna bones • Hindlimb with femur, tibia, and fibula bones • five digits on the feet • sprawling posture • undulating locomotion • skull with no fenestra Department of Geological Sciences | Indiana University Dinosaurs and their relatives (c) 2015, P. David Polly Geology G114 Tetrapoda: vertebrates more closely related to living Phylogeny of Bony Fish amphibians and amniotes than to their nearest living relatives Fossil taxa coelocanths and Fish-like amphibian-like lung fish Tetrapods Tetrapods Actinopterygia Coelocanths Dipnoans (lungfish) Osteolepis Eusthenopteron Pandericthyes Acanthostega Icthyostega tetrapods Derived Tetrapoda Sarcopterygia Osteichthyes After Coates and Ruta, 2007.
    [Show full text]
  • A New Osteolepidid Fish From
    Rea. West. Aust. MU8. 1985, 12(3): 361-377 ANew Osteolepidid Fish from the Upper Devonian Gogo Formation, Western Australia J.A. Long* Abstract A new osteolepidid crossopterygian, Gogonasus andrewsi gen. et sp. nov., is des­ cribed from a single fronto-ethmoidal shield and associated ethmosphenoid, from the Late Devonian (Frasnian) Gogo Formation, Western Australia. Gogonasus is is distinguished from other osteolepids by the shape and proportions of the fronto­ ethmoidal shield, absence of palatal fenestrae, well developed basipterygoid pro­ cesses and moderately broad parasphenoid. The family Osteolepididae is found to be paraphyletic, with Gogonasus being regarded as a plesiomorphic osteolepidid at a similar level of organisation to Thursius. Introduction Much has been published on the well-preserved Late Devonian fish fauna from the Gogo Formation, Western Australia, although to date all the papers describing fish have been on placoderms (Miles 1971; Miles and Dennis 1979; Dennis and Miles 1979-1983; Young 1984), palaeoniscoids (Gardiner 1973, 1984; Gardiner and Bartram 1977) or dipnoans (Miles 1977; Campbell and Barwick 1982a, 1982b, 1983, 1984a). This paper describes the only osteolepiform from the fauna (Gardiner and Miles 1975), a small snout with associated braincase, ANU 21885, housed in the Geology Department, Australian National University. The specimen, collected by the Australian National University on the 1967 Gogo Expedition, was prepared by Dr S.M. Andrews (Royal Scottish Museum) and later returned to the ANU. Onychodus is the only other crossopterygian in the fauna. In its proportions and palatal structure the new specimen provides some additional new points of the anatomy of osteolepiforms. Few Devonian crossopte­ rygians are known from Australia, and so the specimen is significant in having resemblances to typical Northern Hemisphere species.
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • Phylogeny of Basal Tetrapoda
    Stuart S. Sumida Biology 342 Phylogeny of Basal Tetrapoda The group of bony fishes that gave rise to land-dwelling vertebrates and their descendants (Tetrapoda, or colloquially, “tetrapods”) was the lobe-finned fishes, or Sarcopterygii. Sarcoptrygii includes coelacanths (which retain one living form, Latimeria), lungfish, and crossopterygians. The transition from sarcopterygian fishes to stem tetrapods proceeded through a series of groups – not all of which are included here. There was no sharp and distinct transition, rather it was a continuum from very tetrapod-like fishes to very fish-like tetrapods. SARCOPTERYGII – THE LOBE-FINNED FISHES Includes •Actinista (including Coelacanths) •Dipnoi (lungfishes) •Crossopterygii Crossopterygians include “tetrapods” – 4- legged land-dwelling vertebrates. The Actinista date back to the Devonian. They have very well developed lobed-fins. There remains one livnig representative of the group, the coelacanth, Latimeria chalumnae. A lungfish The Crossopterygii include numerous representatives, the best known of which include Eusthenopteron (pictured here) and Panderichthyes. Panderichthyids were the most tetrapod-like of the sarcopterygian fishes. Panderichthyes – note the lack of dorsal fine, but retention of tail fin. Coelacanths Lungfish Rhizodontids Eusthenopteron Panderichthyes Tiktaalik Ventastega Acanthostega Ichthyostega Tulerpeton Whatcheeria Pederpes More advanced amphibians Tiktaalik roseae – a lobe-finned fish intermediate between typical sarcopterygians and basal tetrapods. Mid to Late Devonian; 375 million years old. The back end of Tiktaalik’s skull is intermediate between fishes and tetrapods. Tiktaalik is a fish with wrist bones, yet still retaining fin rays. The posture of Tiktaalik’s fin/limb is intermediate between that of fishes an tetrapods. Coelacanths Lungfish Rhizodontids Eusthenopteron Panderichthyes Tiktaalik Ventastega Acanthostega Ichthyostega Tulerpeton Whatcheeria Pederpes More advanced amphibians Reconstructions of the basal tetrapod Ventastega.
    [Show full text]
  • The Devonian Tetrapod Acanthostega Gunnari Jarvik: Postcranial Anatomy, Basal Tetrapod Interrelationships and Patterns of Skeletal Evolution M
    Transactions of the Royal Society of Edinburgh: Earth Sciences, 87, 363-421, 1996 The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution M. I. Coates ABSTRACT: The postcranial skeleton of Acanthostega gunnari from the Famennian of East Greenland displays a unique, transitional, mixture of features conventionally associated with fish- and tetrapod-like morphologies. The rhachitomous vertebral column has a primitive, barely differentiated atlas-axis complex, encloses an unconstricted notochordal canal, and the weakly ossified neural arches have poorly developed zygapophyses. More derived axial skeletal features include caudal vertebral proliferation and, transiently, neural radials supporting unbranched and unsegmented lepidotrichia. Sacral and post-sacral ribs reiterate uncinate cervical and anterior thoracic rib morphologies: a simple distal flange supplies a broad surface for iliac attachment. The octodactylous forelimb and hindlimb each articulate with an unsutured, foraminate endoskeletal girdle. A broad-bladed femoral shaft with extreme anterior torsion and associated flattened epipodials indicates a paddle-like hindlimb function. Phylogenetic analysis places Acanthostega as the sister- group of Ichthyostega plus all more advanced tetrapods. Tulerpeton appears to be a basal stem- amniote plesion, tying the amphibian-amniote split to the uppermost Devonian. Caerorhachis may represent a more derived stem-amniote plesion. Postcranial evolutionary trends spanning the taxa traditionally associated with the fish-tetrapod transition are discussed in detail. Comparison between axial skeletons of primitive tetrapods suggests that plesiomorphic fish-like morphologies were re-patterned in a cranio-caudal direction with the emergence of tetrapod vertebral regionalisation. The evolution of digited limbs lags behind the initial enlargement of endoskeletal girdles, whereas digit evolution precedes the elaboration of complex carpal and tarsal articulations.
    [Show full text]
  • Reconstructing Pectoral Appendicular Muscle Anatomy in Fossil Fish and Tetrapods Over the Fins-To-Limbs Transition
    Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12386 Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins-to-limbs transition Julia L. Molnar1,∗ , Rui Diogo2, John R. Hutchinson3 and Stephanie E. Pierce4 1Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY, U.S.A. 2Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Numa Adams Building, Washington, DC 20059, U.S.A. 3Structure and Motion Lab, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK 4Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, U.S.A. ABSTRACT The question of how tetrapod limbs evolved from fins is one of the great puzzles of evolutionary biology. While palaeontologists, developmental biologists, and geneticists have made great strides in explaining the origin and early evolution of limb skeletal structures, that of the muscles remains largely unknown. The main reason is the lack of consensus about appendicular muscle homology between the closest living relatives of early tetrapods: lobe-finned fish and crown tetrapods. In the light of a recent study of these homologies, we re-examined osteological correlates of muscle attachment in the pectoral girdle, humerus, radius, and ulna of early tetrapods and their close relatives. Twenty-nine extinct and six extant sarcopterygians were included in a meta-analysis using information from the literature and from original specimens, when possible. We analysed these osteological correlates using parsimony-based character optimization in order to reconstruct muscle anatomy in ancestral lobe-finned fish, tetrapodomorph fish, stem tetrapods, and crown tetrapods.
    [Show full text]
  • I Ecomorphological Change in Lobe-Finned Fishes (Sarcopterygii
    Ecomorphological change in lobe-finned fishes (Sarcopterygii): disparity and rates by Bryan H. Juarez A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Ecology and Evolutionary Biology) in the University of Michigan 2015 Master’s Thesis Committee: Assistant Professor Lauren C. Sallan, University of Pennsylvania, Co-Chair Assistant Professor Daniel L. Rabosky, Co-Chair Associate Research Scientist Miriam L. Zelditch i © Bryan H. Juarez 2015 ii ACKNOWLEDGEMENTS I would like to thank the Rabosky Lab, David W. Bapst, Graeme T. Lloyd and Zerina Johanson for helpful discussions on methodology, Lauren C. Sallan, Miriam L. Zelditch and Daniel L. Rabosky for their dedicated guidance on this study and the London Natural History Museum for courteously providing me with access to specimens. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ii LIST OF FIGURES iv LIST OF APPENDICES v ABSTRACT vi SECTION I. Introduction 1 II. Methods 4 III. Results 9 IV. Discussion 16 V. Conclusion 20 VI. Future Directions 21 APPENDICES 23 REFERENCES 62 iv LIST OF TABLES AND FIGURES TABLE/FIGURE II. Cranial PC-reduced data 6 II. Post-cranial PC-reduced data 6 III. PC1 and PC2 Cranial and Post-cranial Morphospaces 11-12 III. Cranial Disparity Through Time 13 III. Post-cranial Disparity Through Time 14 III. Cranial/Post-cranial Disparity Through Time 15 v LIST OF APPENDICES APPENDIX A. Aquatic and Semi-aquatic Lobe-fins 24 B. Species Used In Analysis 34 C. Cranial and Post-Cranial Landmarks 37 D. PC3 and PC4 Cranial and Post-cranial Morphospaces 38 E. PC1 PC2 Cranial Morphospaces 39 1-2.
    [Show full text]
  • Tiktaalik—A Fishy 'Missing Link'
    Countering the Critics Tiktaalik—a fishy ‘missing link’ Jonathan Sarfati he secularized mainstream media (MSM) are gleefully Is it transitional? promoting a recent find, Tiktaalik roseae (figure 1), as T Clack and others are naturally enthusiastic about Tikta- the end of any creationist or intelligent design idea. Some paleontologists are claiming that this is ‘a link between fishes alik’s transitional status. But this is not surprising—to her, and land vertebrates that might in time become as much of an we are all fishes anyway! She states: evolutionary icon as the proto-bird Archaeopteryx.’1 ‘Although humans do not usually think of So is Tiktaalik real evidence that fish evolved into tetra- themselves as fishes, they nonetheless share several pods (four-limbed vertebrates, i.e. amphibians, reptiles, mam- fundamental characters that unite them inextricably mals and birds)? As will be shown, there are parallels with with their relatives among the fishes … Tetrapods Archaeopteryx, the famous alleged reptile-bird intermediate, did not evolve from sarcopterygians [lobe-finned but not in the way the above quote claims! fishes]; theyare sarcopterygians, just as one would The alleged fish-to-tetrapod evolutionary transition is full of difficulties.2 In this, it parallels the record of dinosaur-to-bird,3 mammal-like reptiles,4 land-mam- mal-to-whale5 and ape-to-human evolution;6 superficially plausible, but when analyzed in depth, it col- lapses, for many parallel reasons. What was found? The above quote comes from two leading European experts in the alleged evolutionary transition from fish to tetrapod, Per Ahlberg and Jennifer Clack.
    [Show full text]
  • Fins to Limbs: What the Fossils Say1
    EVOLUTION & DEVELOPMENT 4:5, 390–401 (2002) Fins to limbs: what the fossils say1 Michael I. Coates,a,* Jonathan E. Jeffery,b and Marcello Rutaa aDepartment of Organismal Biology and Anatomy, University of Chicago, 1027 E57th Street, Chicago, IL 60637, USA bInstitute of Evolutionary and Ecological Sciences, Leiden University, Kaiserstraat 63, Postbus 9516, 2300 RA Leiden, The Netherlands *Author for correspondence (email: [email protected]) 1From the symposium on Starting from Fins: Parallelism in the Evolution of Limbs and Genitalia. SUMMARY A broad phylogenetic review of fins, limbs, and highlight a large data gap in the stem group preceding the first girdles throughout the stem and base of the crown group is appearance of limbs with digits. It is also noted that the record needed to get a comprehensive idea of transformations unique of morphological diversity among stem tetrapods is somewhat to the assembly of the tetrapod limb ground plan. In the lower worse than that of basal crown group tetrapods. The pre-limbed part of the tetrapod stem, character state changes at the pecto- evolution of stem tetrapod paired fins is marked by a gradual re- ral level dominate; comparable pelvic level data are limited. In duction in axial segment numbers (mesomeres); pectoral fins of more crownward taxa, pelvic level changes dominate and re- the sister group to limbed tetrapods include only three. This re- peatedly precede similar changes at pectoral level. Concerted duction in segment number is accompanied by increased re- change at both levels appears to be the exception rather than gional specialization, and these changes are discussed with the rule.
    [Show full text]
  • Bones, Molecules, and Crown- Tetrapod Origins
    TTEC11 05/06/2003 11:47 AM Page 224 Chapter 11 Bones, molecules, and crown- tetrapod origins Marcello Ruta and Michael I. Coates ABSTRACT The timing of major events in the evolutionary history of early tetrapods is discussed in the light of a new cladistic analysis. The phylogenetic implications of this are com- pared with those of the most widely discussed, recent hypotheses of basal tetrapod interrelationships. Regardless of the sequence of cladogenetic events and positions of various Early Carboniferous taxa, these fossil-based analyses imply that the tetrapod crown-group had originated by the mid- to late Viséan. However, such estimates of the lissamphibian–amniote divergence fall short of the date implied by molecular studies. Uneven rates of molecular substitutions might be held responsible for the mismatch between molecular and morphological approaches, but the patchy quality of the fossil record also plays an important role. Morphology-based estimates of evolutionary chronology are highly sensitive to new fossil discoveries, the interpreta- tion and dating of such material, and the impact on tree topologies. Furthermore, the earliest and most primitive taxa are almost always known from very few fossil localities, with the result that these are likely to exert a disproportionate influence. Fossils and molecules should be treated as complementary approaches, rather than as conflicting and irreconcilable methods. Introduction Modern tetrapods have a long evolutionary history dating back to the Late Devonian. Their origins are rooted into a diverse, paraphyletic assemblage of lobe-finned bony fishes known as the ‘osteolepiforms’ (Cloutier and Ahlberg 1996; Janvier 1996; Ahlberg and Johanson 1998; Jeffery 2001; Johanson and Ahlberg 2001; Zhu and Schultze 2001).
    [Show full text]
  • Tinkering and the Origins of Heritable Anatomical Variation in Vertebrates
    biology Review Tinkering and the Origins of Heritable Anatomical Variation in Vertebrates Jonathan B. L. Bard Department of Anatomy, Physiology & Genetics, University of Oxford, Oxford OX313QX, UK; [email protected] Received: 9 October 2017; Accepted: 18 February 2018; Published: 26 February 2018 Abstract: Evolutionary change comes from natural and other forms of selection acting on existing anatomical and physiological variants. While much is known about selection, little is known about the details of how genetic mutation leads to the range of heritable anatomical variants that are present within any population. This paper takes a systems-based view to explore how genomic mutation in vertebrate genomes works its way upwards, though changes to proteins, protein networks, and cell phenotypes to produce variants in anatomical detail. The evidence used in this approach mainly derives from analysing anatomical change in adult vertebrates and the protein networks that drive tissue formation in embryos. The former indicate which processes drive variation—these are mainly patterning, timing, and growth—and the latter their molecular basis. The paper then examines the effects of mutation and genetic drift on these processes, the nature of the resulting heritable phenotypic variation within a population, and the experimental evidence on the speed with which new variants can appear under selection. The discussion considers whether this speed is adequate to explain the observed rate of evolutionary change or whether other non-canonical, adaptive mechanisms of heritable mutation are needed. The evidence to hand suggests that they are not, for vertebrate evolution at least. Keywords: anatomical change; evolutionary change; developmental process; embryogenesis; growth; mutation; patterning in embryos; protein network; systems biology; variation 1.
    [Show full text]