<<

A primitive megalichthyid fi sh (, Tetrapodomorpha) from the Upper of Turkey and its biogeographical implications

Philippe JANVIER UMR 5143 du CNRS, Département Histoire de la Terre, Muséum national d’Histoire naturelle, case postale 38, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] and Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD ()

Gaël CLÉMENT UMR 5143 du CNRS, Département Histoire de la Terre, Muséum national d’Histoire naturelle, case postale 38, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected]

Richard CLOUTIER Département de Biologie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Québec, G5L 3A1 () [email protected]

Janvier P., Clément G. & Cloutier R. 2007. — A primitive megalichthyid fi sh (Sarcopterygii, Tetrapodomorpha) from the Upper Devonian of Turkey and its biogeographical implications. Geodiversitas 29 (2) : 249-268.

ABSTRACT KEY WORDS Sarcopterygii, Th e fauna of the red of Pamucak-Sapan Dere Unit of Tetrapodomorpha, the Upper Antalya Nappe (?, Turkey) is reviewed on the basis of new Megalichthyidae, “”, material. Th e association of the phyllolepid Placolepis with the arthrodire Holo- Devonian, nema in this fauna strongly suggests a Frasnian age or, at any rate, older than Turkey, the . Th e unique osteolepiform sarcopterygian of this fauna is here biogeography, new , described in detail and referred to Sengoerichthys ottoman n. gen., n. sp., which new . is considered as the most generalized megalichthyid known to date.

GEODIVERSITAS • 2007 • 29 (2) © Publications Scientifi ques du Muséum national d’Histoire naturelle, Paris. www.geodiversitas.com 249 Janvier P. et al.

RÉSUMÉ Un mégalichthyide primitif (Sarcopterygii, Tetrapodomorpha) du Dévonien supé- rieur de Turquie et ses implications biogéographiques. MOTS CLÉS Sarcopterygii, La faune de vertébrés des grès rouges de l’unité de Pamucak-Sapan Dere (Fras- Tetrapodomorpha, nien ?) de la Nappe supérieure d’Antalya (Turquie) est révisée sur la base de Megalichthyidae, “Ostéolépiformes”, nouveau matériel. L’association du phyllolépide Placolepis et de l’arthrodire Dévonien, dans cette faune suggère un âge Frasnien, en tout cas antérieur au Turquie, Famennien. L’unique sarcoptérygien ostéolépiforme de cette faune est décrit biogéographie, nouveau genre, en détail et attribué à Sengoerichthys ottoman n. gen., n. sp. Ce genre est ici nouvelle espèce. considéré comme le plus primitif des Megalichthyidae connus.

INTRODUCTION ABBREVIATIONS

Th e red sandstone of the Armutgözlek Tepe is ex- ac.qu articular condyles of the quadrate; posed in the Sarcinar Dağ, 17 km north-northwest am.f anterior mandibular fossa; of Kemer, in the Antalya Bay, Turkey (Antalya map, Brf fossa bridgei; da.co denticulate area on the vertical lamina of the e 1/25 000 , 30°29’00’’E, 36°43’16’’N; Fig. 1). It coronoids; belongs to the Pamucak-Sapan Dere Unit of the en external nostril; Upper Antalya Nappe (Janvier & Marcoux 1976, Ent entopterygoid; 1977; Janvier & Ritchie 1977; Janvier 1977, 1980, f.co coronoid fangs; 1983). Th e vertebrate fauna found in this sandstone in.pad insertion area of the posterior adductor muscle of the mandible; layer suggests a Frasnian age. Moreover, this fauna ioc opening for the infraorbital sensory canal; is the richest vertebrate fauna from an “Old Red m.sym mandibular symphysis; Sandstone” from the Near East (Seilacher nca nasal capsule; 1963; Janvier & Marcoux 1977). A preliminary oa.It overlap area for the intertemporal; faunal list and the paleobiogeographical implications oa.Ju overlap area for the jugal; oa.La overlap area for the lacrimal; of this Late Devonian vertebrate fauna from Turkey oa.Pa overlap area for the parietal; were discussed by Janvier (1983) and Lelièvre et al. oa.Po/It overlap area for the postorbital or intertem- (1993; see also review in Young 1993a). poral; Th e Armutgözlek Tepe material was collected in onc canal for the olfactory nerve; 1976 and belongs to the Museum of the Maden pac parotic crest; paf parasymphysial fangs on the interpremaxil- Tetkik ve Arama collection (MTA, Ankara, Tur- lary posterior process of the premaxilla; key) and is registered with the prefi x AT. Casts of pdn posterodorsal notch of the entopterygoid; the specimens are housed in the collection of the Prart prearticular; Muséum national d’Histoire naturelle (MNHN), pref prenasal fossa; Paris, France. New material from Armutgözlek Tepe psym.f parasymphysial fang; psym.p parasymphysial plate; was collected in 1994 and 2003 by J. Marcoux and spc.g groove for the spiracular canal; one of us (PJ) and belongs to the MNHN. It is sph.re spiraculo-hyomandibular recess; registered with the prefi x VDT. tfc trigemino-facialis chamber.

250 GEODIVERSITAS • 2007 • 29 (2) A primitive megalichthyid fi sh from the Devonian of Turkey

LOCALITY AND FAUNA Antalya N Th e geological setting of the Armutgözlek Tepe lo- cality (Fig. 1) was described by Janvier & Marcoux (1977). Th e vertebrate remains are restricted to a unique lens within the red , the latter overlying a thick series of unfossiliferous evaporites that is bracketed by the Upper and the Frasnian (the latter being dated by the vertebrate Mediterranean Sea occurrence). Th e bone is generally well preserved, pinkish in colour, and does not show traces of ther- mal alteration (i.e. the bone is weakly recrystallized, with preservation of cell lacunae and tubules of the Göynük dentine). However, in some outcrops that are close Kemer to, or even within and Mesozoic dykes, the bones are black in colour and histological features Gödene are obliterated. Izmir Th e faunal list of the Armutgözlek Tepe locality Antalya given by Janvier (1983) is modifi ed and updated 4 km here:

FIG. 1. — Location of the Armutgözlek Tepe locality (✪). Arrow in the framed map of southern Turkey indicates the Kemer area. Antiarcha Modifi ed after Janvier & Marcoux 1977. sp. Th e unique chondrichthyan tooth mentioned by Placolepis sp. indet. Janvier (1983: 2) is now determined as an osteich- Phlyctaeniida thyan pharyngeal tooth, quite similar to that of the seni Janvier & Ritchie, osteolepiform Medoevia (Lebedev 1995: fi g. 15) 1977 and most probably belongs to the megalichthyid Groenlandaspis sp. indet. described herein. New material collected during the 1994 fi eld work also allows the record of a second Holonema sp. cf. H. radiatum Obruchev, Groenlandaspis species and of Placolepis material, 1932 both currently under description. Cosmine-covered dermal bones of an “osteolepi- Ptyctodontida gen. et sp. indet. form” are abundant in the Armutgözlek Tepe local- Acanthodii ity. Some of these remains have been described, Ischnacanthiforme gen. et sp. indet. (probably such as the pectoral girdle (Janvier & Marcoux two species, judging from the ornamentation 1976; Janvier 1980), the parieto-ethmoidal divi- of isolated spines associated with characteristic sion of the and the lower jaw (Janvier 1983). jaw bones) Th ese remains have been considered as belonging to a primitive “Megalichthyinae”. New mate- Dipnoi rial and recent progress in our understanding of Oervigia sp. tetrapodomorph phylogeny allow us to provide Dipteridae gen. et sp. indet. a more precise assessment of the systematic posi- Tetrapodomorpha tion of this form, referred here to a new genus Sengoerichthys ottoman n. gen., n. sp. and species.

GEODIVERSITAS • 2007 • 29 (2) 251 Janvier P. et al.

SYSTEMATICS A large indetermined Megalichthyidae (probably a new taxon; Daeschler et al. 2003) from the Famen- OSTEICHTHYES Huxley, 1880 nian locality of Red Hill, Pennsylvania, is SARCOPTERYGII Romer, 1955 currently under study. Cope, 1887 Some other occurrences, referred with doubt TETRAPODOMORPHA Ahlberg, 1991 to megalichthyids, could be added here: a lower jaw from the Upper Pennsylvanian of Hamilton, Family MEGALICHTHYIDAE Hay, 1902 Kansas (Schultze 1988), and vertebrae and scales from the Lower of Morocco (Janvier REMARKS et al. 1979). Th e occurrence of a megalichthyid in Th e family Megalichthyidae was considered as a the Late Devonian of Colombia (Janvier & Vil- subfamily (Megalichthyinae Hay, 1902) of the larroel 1998; Janvier et al. 2004) still needs to be Osteolepididae Cope, 1889 by Vorobyeva (1977) confi rmed, although the Late Frasnian fauna of and Schultze (1988) on the basis of the cosmine the does yield a large “osteo- covering, which is in fact a plesiomorphic feature lepidid”. An isolated postparietal shield from the for the Rhipidistia, and possibly all Sarcopterygii Early Famennian of Iran could also belong to the (Cloutier & Ahlberg 1996). Later on, Ahlberg & Megalichthyidae (Vachik Hairapetian pers. comm. Johanson (1998) recognized a megalichthyid clade May 2005). within the “Osteolepididae”, but did not assign it to Young et al. (1992) defi ned seven synapomorphies a subfamily rank. Th ey considered the Osteolepididae for the Megalichthyidae (including Megalichthys as a paraphyletic group of “osteolepiforms” Agassiz, 1835, Ectosteorhachis Cope, 1880, Maha- (also paraphyletic). lalepis Young, Long & Ritchie, 1992 and Megisto- Th e Megalichthyidae include the type genus Me- lepis Obruchev, 1955): 1) external nostril elongate galichthys Agassiz, 1835 (M. hibberti Agassiz, 1843, or slit-like; 2) external nostril partly enclosed by a M. cf. hibberti of Schultze 1974, M. agassizianus posterior tectal bone; 3) posterior interpremaxillary Lohest, 1889, M. coccolepis Young, 1870, M. inter- process of premaxillary bearing tusks; 4) vomers medius Woodward, 1891, M. laticeps Traquair, 1884, short and broad, sometimes with a strong mesial M. macropomus Cope, 1892; Carboniferous-Lower process; 5) closed pineal foramen; 6) parietal bones Permian), Ectosteorhachis Cope, 1880 (E. nitidus (frontal bones of Young et al. [1992]) notched to Cope, 1880; Carboniferous-Lower Permian), and receive the posterior nasals; and 7) lacrimal notch Cladarosymblema Fox, Campbell, Barwick & Long, well developed. 1995 (C. narrienense Fox, Campbell, Barwick & Fox et al. (1995) redefi ned the diagnosis of the Long, 1995; Lower Carboniferous). Megalichthyidae on the basis of the detailed study Schultze (1988) included the poorly known of Cladarosymblema narrienense Fox, Campbell, genus Lohsania Th omson & Vaughn, 1968, from Barwick & Long, 1995, from the Lower Carbon- the Lower Permian of Utah, USA, within the iferous of Queensland, Australia. Th ey included Megalichthyidae. Young et al. (1992) also added in the Megalichthyidae the genera Megalichthys, Megistolepis Obruchev, 1955 (Upper Devonian of Ectosteorhachis, Cladarosymblema, a new genus from Siberia; Vorobyeva 1977) and Mahalalepis Young, the Permian of (to be described by Ulf Long & Ritchie, 1992 (Middle Devonian of Ant- Borgen, Stockholm, on the basis of more complete arctica; Young et al. 1992) in this family, but the material than the lower jaw and isolated scales of latter forms do not display the most diagnostic Megalichthys sp. fi gured by Heintz [1935]), and the features of the group (i.e. the least homoplasic ones; megalichthyid from Turkey described herein. Th ese see discussion in Fox et al. 1995). Long (1995) authors accepted the monophyly of the Megalich- suggested that the genus Megapomus Vorobyeva, thyidae, as supported by the characters provided 1977 (Upper Devonian of Russia) could also be by Young et al. (1992), apart from the notch of the a megalichthyid. parietal to accommodate the posterior nasal, which

252 GEODIVERSITAS • 2007 • 29 (2) A primitive megalichthyid fi sh from the Devonian of Turkey

is a variable character, but they considered that latter in showing: 1) a parietal that is shorter, rela- this list was too incomplete to accurately diagnose tive to the parieto-ethmoidal length; 2) a reduced the Megalichthyidae. In addition, they provided a or closed pineal foramen; 3) a laterally situated more detailed diagnosis to diff erentiate the Megali- external nostril; 4) marginal rounded teeth on the chthyidae from the other “osteolepiform” families, coronoids, arranged in numerous rows in front although it includes some characters found in other of the coronoid fangs; and 5) a smaller scapulo- “osteolepiforms”. However, this diagnosis provides coracoid. Th ese conditions are all plesiomorphic unique combination of characters. for the Megalichthyidae. Th erefore, Sengoerichthys n. gen. is considered here as the most generalized megalichthyid known to date. Genus Sengoerichthys n. gen.

TYPE SPECIES. — Sengoerichthys ottoman n. gen., n. sp. Sengoerichthys ottoman n. sp. ETYMOLOGY. — Named after Professor Celal Sengör, (Figs 2-12) Istanbul Teknik Üniversitesi, Istanbul, Turkey. Ostéolépiforme indet. – Janvier & Marcoux 1976: fi gs DIAGNOSIS. — Same as for the type species, by 1, 2. monotypy. Ostéolépiformes – Janvier & Marcoux 1977: 187. REMARKS Osteolepidae gen. et sp. indet. – Janvier 1977: fi g. 1. Considering the presence of parasymphysial fangs on the premaxilla and the dentary (paf, Fig. 3) Osteolepididae gen. et sp. indet. – Janvier et al. 1979: and the absence of pineal foramen (Fig. 2A), Sen- fi g. 5A. — Janvier 1980: fi gs 5A, B, 6A-E. goerichthys n. gen. fi ts the family diagnosis of Fox Indetermined osteolepiform – Rosen et al. 1981: 193. et al. (1995). However this new species also shows other megalichthyid characters in a plesiomorphic Megalichthyinae gen. et sp. indet. – Janvier 1983: fi gs state, compared to the three Carboniferous and 7A-C, 8A-G, 9A, B. Permian genera (i.e. Megalichthys, Ectosteorhachis Megalichthyinae gen. et sp. indet. – Lelièvre et al. 1993: and Cladarosymblema) assigned to this family by fi g. 7E. Fox et al. (1995). Notably, the external nostril is Janvier’s Turkish specimen – Fox et al. 1995: 109. still in a lateral position in Sengoerichthys n. gen. (Fig. 2B) whereas it is situated more dorsally and Primitive megalichthyid – Clément et al. 2005: 6. posteriorly in Megalichthys and Ectosteorhachis, HOLOTYPE. — Anterior portion of an isolated right lower and, to a lesser extent, in Cladarosymblema; and jaw (AT058, Fig. 10B1, B2). the scapulocoracoid is rather small (Fig. 8D1), as in most other “osteolepiforms”. ETYMOLOGY. — From Ottoman. Th e other features of Sengoerichthys n. gen. are DIAGNOSIS. — Megalichthyidae with a relatively elongated plesiomorphic “osteolepiform” characters or plesio- and slender skull compared to other megalichthyids; morphic megalichthyid characters. It is impossible ethmoidal part of the skull roof longer than the parietal to defi ne the new genus Sengoerichthys n. gen. by length; external nostril in lateral position and more oval in shape than slit-like; weakly developed posterior inter- an autapomorphy. It is a megalichthyid that only premaxillary processes which do not divide the prenasal presents general features, or symplesiomorphies, of fossa; large parasymphysial plate covered with numerous this group. Nevertheless its unique combination of rounded denticles; vertical laminae of coronoids bearing characters allows us to erect a new genus. numerous small denticles with enlarged denticle-covered Th is Frasnian “osteolepiform” is in many re- areas anteriorly to the coronoid fangs; anterior mandibular fossa relatively small and laterally covered by the adjacent spects quite similar to the Lower Carboniferous dermal bones; posterior lamina of the maxilla moder- Cladarosymblema narrienense from Queensland, ately deep for a Megalichthyidae; and scapulocoracoid Australia (Fox et al. 1995), but diff ers from the relatively small for a Megalichthyidae.

GEODIVERSITAS • 2007 • 29 (2) 253 Janvier P. et al.

A C

nca

onc

B

en

FIG. 2. — Sengoerichthys ottoman n. gen., n. sp., Upper Devonian, ?Frasnian, red sandstone of the Pamucak-Sapan Dere Unit, Upper Antalya Nappe; Armutgözlek Tepe, Kemer, Antalya, Turkey; parieto-ethmoidal shield (AT050) in dorsal (A) and lateral (B) views, and internal mould of the sphenethmoid of the same specimen showing part of the palate and of the nasal capsules in dorsal view (C). Abbreviations: en, external nostril; nca, nasal capsule; onc, canal for the olfactory nerve. Scale bar: 10 mm.

TYPE LOCALITY. — Armutgözlek Tepe, Kemer, Turkey. consists of three otoccipitals with the postparietal shields, two entopterygoids, a posterior part of the TYPE UNIT. — Upper Devonian, ?Frasnian, Red Sandstone of Pamucak-Sapan Dere Unit, Upper Antalya Nappe. palatoquadrate, a maxilla, as well as other fragments of dermal bones. MATERIAL EXAMINED. — Two sphenethmoids: AT050 (Fig. 2), AT051 (Fig. 3); three otoccipitals: AT063 (Fig. 4A), Skull roof AT062 (Fig. 4B), VDT09 (Fig. 5); isolated maxilla VDT10 (Fig. 7); incomplete right mandible AT055 (Fig. 10A); As a whole, the skull of Sengoerichthys n. gen. re- right mandible fragment VDT11 (Fig. 10C); incomplete sembles that of Cladarosymblema. Th e skull roof palatoquadrate AT064 (Figs 8A; 9); two entopterygoids: is relatively elongated and narrow, compared to AT065 (Fig. 8B), AT071 (Fig. 8C); gular plate AT075 the broad and short of Megalichthys and (Fig. 12); two cleithra with associated scapulocoracoid: Ectosteorhachis. Th e parieto-ethmoidal shield and AT01 (Fig. 8D), AT078; incomplete cleithrum AT02 (Fig. 8E); ?anocleithrum AT066 (Fig. 8F); scale or bone internal structures of the sphenethmoid (Figs 2; 3) fragment AT070 (Fig. 8G). were briefl y described by Janvier (1983). Most of the anterior dermal bone pattern is hidden by DESCRIPTION the cosmine covering, and the only suture that is Janvier (1980: fi gs 5A, B, 6; 1983: fi gs 7-9) and clearly visible externally is the interparietal suture. Janvier & Marcoux (1976) described the parieto- Th is sinuous suture runs from the posterior limit ethmoidal shield (as well as part of the sphenethmoid of the pineal bump to the posterior margin of the internal anatomy), the lower jaw, and the pectoral parietals. However, immersion of the counterpart of girdle of S. ottoman n. gen., n. sp. New material specimen AT050 in alcohol, before it was cleaned

254 GEODIVERSITAS • 2007 • 29 (2) A primitive megalichthyid fi sh from the Devonian of Turkey

pref with hydrochloric acid, showed some sutures de- paf limiting the parietals, posterior nasals and possibly supraorbitotectals (Janvier 1983: fi g. 8B; Fig. 6). Th e length of the parietal is about half of that of the entire ethmoidal region, and this condition en separates S. ottoman n. gen., n. sp. from all other megalichthyids. Th e anterior part of the parietal is broader than its posterior part. Contrary to the nca condition in Cladarosymblema and Megalichthys, the anterior margin of the parietal does not show any notch for the posterior nasal. Th ere is no pineal foramen (Fig. 2A), although the suture between the two parietals (“frontaux” in Janvier 1983) seems to widen anteriorly, as in Cladarosymblema (Fox et al. 1995: fi g. 7B, D). Th e lack of a pin- onc eal foramen is one of the synapomorphies of the Megalichthyidae, however this condition is largely homoplastic among osteichthyans. Th e postero- FIG. 3. — Sengoerichthys ottoman n. gen., n. sp., Upper Devonian, ?Frasnian, red sandstone of Pamucak-Sapan Dere Unit, Upper lateral part of the internal surface of the parietal Antalya Nappe; Armutgözlek Tepe, Kemer, Antalya, Turkey; inter- displays a descending process (AT050, Fig. 2C), nal mould of an incomplete sphenethmoid in dorsal view (AT051). which most likely contacted the anterior proc- Abbreviations: en, external nostril; nca, nasal capsule; onc, canal for the olfactory nerve; paf, parasymphysial fangs on the inter- ess of the supratemporal, as seen in the anterior premaxillary posterior process of the premaxilla; pref, prenasal region of a large postparietal shield referred here fossa. Scale bar: 10 mm. to Sengoerichthys n. gen. (Fig. 5). Th e anterior pit-lines are entirely situated on the parietals, and are slightly curved and asymmetrical in AT050 1972). Th e ventral surface of this anterior process (Figs 2A; 6). Th eir position is similar to that in of the supratemporal presents a large bulge, as in Cladarosymblema (Fox et al. 1995). Cladarosymblema (Fox et al. 1995: fi g. 29B). A large Contrary to the condition in Cladarosymblema, overlap area is present posteriorly to the anterior which presents some large and more or less aligned process of the supratemporal (oa.Po/It, Fig. 5C). sensory pores, it is not possible to distinguish the Th is overlap area would have been covered by the larger pores that indicate the trajectory of the eth- postorbital in a Megalichthys-like pattern, and by moidal, infraorbital and supraobital sensory line the intertemporal in a Cladarosymblema-like pat- canals. Furthermore, groups of pores (“Paul’s organ” tern. Th e available material of Sengoerichthys n. gen. in Vorobyeva & Lebedev 1986), which are obvi- does not allow to decide which pattern was present ous in some specimens of Cladarosymblema (Fox in this taxon. et al. 1995: fi g. 8A, B), Megalichthys (Jarvik 1966: fi gs 12, 14C, 15A), and some “Osteolepididae” External nostril (e.g., , Gyroptychius, Medoevia), cannot Th e external nostril of megalichthyids is delimitated be confi rmed in Sengoerichthys n. gen. by anterior and posterior dermal bones (either the Th e postparietal shield is only known by a large “prenarial” and “postnarial” [Th omson 1964], or specimen (Fig. 5). Its general shape is similar to that of the “lateral rostral” and “anterior tectal” [Fox et al. Megalichthys and Cladarosymblema. Th e anterolateral 1995], respectively). margin of the supratemporal presents an anterior Th e position of the lateral rostral relative to the process showing a complex articular structure for anterior tectal is not clear in Sengoerichthys n. gen., the parietal and the intertemporal, which seems to because the cosmine layer hides the sutures (Fig. 2B). be characteristic of the Megalichthyidae (Bjerring In contrast to all other megalichthyids, except for

GEODIVERSITAS • 2007 • 29 (2) 255 Janvier P. et al.

AB

tfc

tfc

tfc pac

Brf

FIG. 4. — Sengoerichthys ottoman n. gen., n. sp., Upper Devonian, ?Frasnian, red sandstone of Pamucak-Sapan Dere Unit, Upper Antalya Nappe; Armutgözlek Tepe, Kemer, Antalya, Turkey; internal moulds of otoccipitals in dorsal view (A, AT063; B, AT062). Ab- breviations: Brf, fossa bridgei; pac, parotic crest; tfc, trigemino-facialis chamber. Scale bar: 10 mm.

Ectosteorhachis (Schultze 1974), the external nostril Cladarosymblema in the size, shape, and position of Sengoerichthys n. gen. is not particularly elongated of the external nostril. and is only slightly longer than deep, as in gener- alized “Osteolepididae”. Its position is also clearly Neurocranium lateral and close to the oral margin (en, Fig. 2B) Th e ventral view of the sphenethmoid presents a compared to that of Megalichthys and Ectosteorhachis. large prenasal fossa (pref, Fig. 3) divided into two pits In contrast Sengoerichthys n. gen. closely resembles by a median endoskeletal crest. Th e nasal capsules

256 GEODIVERSITAS • 2007 • 29 (2) A primitive megalichthyid fi sh from the Devonian of Turkey

(nca, Figs 2C; 3) are situated postero-laterally to this fossa. Th e canals for the olfactory tracts diverge A from each other at the level of the median portion of the sphenethmoid (onc, Figs 2C; 3). Two otoccipitals, whose size agrees with those of the isolated sphenethmoids from the same locality, show some internal structures (Fig. 4A, B), such as the encephalic cavity and part of the labyrinth cavity with part of its semicircular canals. Although these structures are poorly preserved, their proportions agree with those described in Megalichthys (Romer 1937) and (Long et al. 1997). Th e dorsal impression of the parotic crest (pac, Fig. 4A), well visible on the left side of AT063, shows that the fossa bridgei (Brf, Fig. 4A) was proportion- ally large. Th e general shape of the fossa bridgei B seems to be very similar to that in Cladarosymblema and Ectosteorhachis.

Maxilla An isolated maxilla is the only cheek bone of Sen- goerichthys n. gen. known so far. Th is maxilla (Fig. 7) presents a deep posterior lamina, a feature shared by all Megalichthyidae and some “osteolepidids” (e.g., Gogonasus, Latvius and Medoevia). However this lamina is not as deep as that of Megalichthys or Ectosteorhachis and, in this respect, very similar to that of Cladarosymblema. In external view the dorsal margin of the bone shows two overlap areas, oa.lt a posterior one for the jugal and an anterior one oa.Pa for the lacrimal (oa.Ju, oa.La, Fig. 7). C ioc oa.Po/lt Palate An interpremaxillary process bearing fangs, a synapomorphy of megalichthyids, is produced by the posteromedial extension of a palatal proc- ess of the premaxillae. Th is condition is present in Sengoerichthys n. gen. (Fig. 3) although the interpremaxillary process is less developed than in Megalichthys hibberti (Jarvik 1966: fi g. 17) or

Ectosteorhachis (Th omson 1964: fi g. 3A). Because FIG. 5. — Sengoerichthys ottoman n. gen., n. sp., Upper Devonian, of its weak development, the interpremaxillary ?Frasnian, red sandstone of Pamucak-Sapan Dere Unit, Upper process does not contribute to the division of Antalya Nappe; Armutgözlek Tepe, Kemer, Antalya, Turkey; large postparietal shield (VDT09): A, imprint of the external surface; the prenasal fossa (pref, Fig. 3; “fossa apicalis” in B, reconstruction in dorsal view; C, detail of the anterior process of Jarvik 1966, 1980). Th is condition is quite simi- the supratemporal in dorsal view. Abbreviations: oa.It, overlap area for the intertemporal; oa.Pa, overlap area for the parietal; oa.Po/It, lar to that of Cladarosymblema (Fox et al. 1995: overlap area for the postorbital or intertemporal; ioc, opening for fi gs 20-22). the infraorbital sensory canal. Scale bars: 10 mm.

GEODIVERSITAS • 2007 • 29 (2) 257 Janvier P. et al.

oa.Ju oa.La

FIG. 7. — Sengoerichthys ottoman n. gen., n. sp., Upper Devo- nian, ?Frasnian, red sandstone of Pamucak-Sapan Dere Unit, Upper Antalya Nappe; Armutgözlek Tepe, Kemer, Antalya, Turkey; isolated maxilla (VDT10) in external view. Abbreviations: oa.Ju, overlap area for the jugal; oa.La, overlap area for the lacrimal. Scale bar: 10 mm.

(Long et al. 1997: fi g. 29) and Medoevia (Lebedev 1995: fi g. 9). Its internal surface is covered by the entopterygoid, dorsally and posterodorsally to which is a deep spiraculo-hyomandibular recess (sph.re, Fig. 9B, C). Th is recess is continued anteriorly by a narrow spiracular groove (spc.g, Fig. 9B). Th e ar- ticular condyle of the quadrate is large and shows a FIG. 6. — Sengoerichthys ottoman n. gen., n. sp., Upper Devo- nian, ?Frasnian, red sandstone of Pamucak-Sapan Dere Unit, constriction in its median part (ac.qu, Fig. 9A). Upper Antalya Nappe; Armutgözlek Tepe, Kemer, Antalya, Turkey; reconstruction of the skull roof in dorsal view; sutures on the parieto-ethmoidal shield based on the specimen AT050 before Lower jaw acid preparation (see Janvier 1983: fi g. 7B) and outline of the Four isolated lower jaws have been found, although postparietal shield based on the specimen AT063 (see Fig. 4A). only one provides information on the symphysial Scale bar: 10 mm. region, which is most diagnostic (Fig. 10B1, B2; Janvier 1983: fi g. 9B). Th e internal side of the An almost complete isolated entopterygoid lower jaw presents a parasymphysial plate (psym.p, (Fig. 8B) is closely similar to that of Medoevia Figs 10B2; 11), three coronoids and an elongated (Lebedev 1995: fi g. 9) and Gogonasus (Long et al. prearticular (Figs 10A2; 11). Th e dentary bears 1997: fi g. 30A) and, like the latter, shows a pos- anteriorly a pair of parasymphysial fangs (psym.f, terodorsal notch. Th is notch is also clearly visible Fig. 11). Th e size of these fangs is approximately the on a fragment of the posterior part of the ento- same as that of the coronoid fangs (f.co, Fig. 11). pterygoid (pdn, Figs 8A2; 9B). Th e oblique crest Such large parasymphysial fangs of the dentary are of the entopterygoid is well marked (Fig. 8B), also known in the Rhizodontida (Andrews 1985; Long as in Gogonasus and Medoevia. Th e entopterygoid 1989; Johanson & Ahlberg 2001), the derived of Cladarosymblema is unknown. Tristichopteridae (Jarvik 1952, 1972; Vorobyeva An isolated posterior part of a palatoquadrate 1977; Johanson & Ahlberg 1997), (Figs 8A; 9), whose size agrees with that of the (Gross 1941), as well as in most of the early tetra- sphenethmoids and otoccipitals described above, pods (Ahlberg et al. 1994; Jarvik 1996; Ahlberg shows a rounded posterior margin. Such a shape & Clack 1998). of the palatoquadrate is known in generalized Th e paired parasymphysial plates (“adsymphy- “osteolepiforms”, in contrast to that of the Tristicho- sial plates” in Schultze 1988 and Lebedev 1995; pteridae (= Eusthenopteridae; Cloutier 1996) which “crista dentalis” in Th omson 1964) of Sengoerichthys presents a much straighter margin. As a whole, n. gen. are jointed medially and their denticulated this palatoquadrate portion is very similar to that posterior expansions contact the anterior margin of Megalichthys (Watson 1926: fi g. 33), Gogonasus of the denticulated area of the anterior coronoid

258 GEODIVERSITAS • 2007 • 29 (2) A primitive megalichthyid fi sh from the Devonian of Turkey

A1 A2

BC

D1 E G

F

D2

FIG. 8. — A-E, Sengoerichthys ottoman n. gen., n. sp., Upper Devonian, ?Frasnian, red sandstone of Pamucak-Sapan Dere Unit, Upper Antalya Nappe; Armutgözlek Tepe, Kemer, Antalya, Turkey; A, incomplete left palatoquadrate and entopterygoid (AT064) in lateral (A1) and medial (A2) views; B, right entopterygoid in medial view (AT065); C, incomplete left entopterygoid in medial view (AT071); D, left cleithrum and scapulocoracoid (AT01) in medial (D1) and lateral (D2) views; E, incomplete left cleithrum in lateral view (AT02); F, G, cosmine covered elements assigned to Sengoerichthys n. gen. with some doubt; F, ?anocleithrum in lateral view (AT066); G, scale or dermal bone fragment showing traces of cosmine resorption (AT070). Scale bar: 10 mm.

GEODIVERSITAS • 2007 • 29 (2) 259 Janvier P. et al.

A in.pad

ac.qu BC

spc.g

sph.re

pdn Ent sph.re

FIG. 9. — Sengoerichthys ottoman n. gen., n. sp., Upper Devonian, ?Frasnian, red sandstone of Pamucak-Sapan Dere Unit, Upper Antalya Nappe; Armutgözlek Tepe, Kemer, Antalya, Turkey; reconstruction of the palatoquadrate in lateral (A), medial (B), and posterior (C) views based on the specimen AT064 (Fig. 7A). Abbreviations: ac.qu, articular condyles of the quadrate; Ent, entopterygoid; in.pad, insertion area of the posterior adductor muscle of the mandible; pdn, posterodorsal notch of the entopterygoid; spc.g, groove for the spiracular canal; sph.re, spiraculo-hyomandibular recess. Scale bar: 10 mm.

(Figs 10B2; 11). Some other megalichthyids also 1964: 295), but the recent revision of the material possess a denticulated posterior expansion of the referred to Megalichthys intermedius has provided parasymphysial plate contacting the anterior coro- evidence for a very small parasymphysial plate on noid, notably Ectosteorhachis, Cladarosymblema, two lower jaws (Mohun 2003). Th ese plates are and an indeterminate megalichthyid from the restricted to the mesial margin of the jaw, and bear Carboniferous of Kansas (Th omson 1964; Schultze few well developed teeth (Mohun 2003: fi g. 6). Th e 1974, 1988; Fox et al. 1995). Th is condition is also parasymphysial plates are also known to be reduced known in some other “osteolepiforms” (e.g., Gogo- in (Jarvik 1980), Megistolepis (Voro- nasus, Lamprotolepis, Litoptychius, Gyroptychius, and byeva 1977: pl. 7:6), Platycephalichthys (Vorobyeva Medoevia [Vorobyeva 1977; Long 1987; Lebedev 1977: fi g. 15C, pl. 13:1), and Panderichthys (Ahlberg 1995; Long et al. 1997]). 1991; Ahlberg & Clack 1998). On the contrary, parasymphysial plates were In Sengoerichthys n. gen., the parasymphysial supposed to be absent in Megalichthys (Th omson plates are club-shaped and larger anteriorly than

260 GEODIVERSITAS • 2007 • 29 (2) A primitive megalichthyid fi sh from the Devonian of Turkey

posteriorly. Th eir dorsal surfaces are covered with A1 numerous small denticles, as in Ectosteorhachis (Th omson 1964: fi g. 4B, C; Fox et al. 1995: fi g. 53) and Cladarosymblema (Fox et al. 1995: fi gs 46B, 49C, 50D, E, 57). Th e denticles on the parasymphysial plates and on the anterior part of the prearticular of Sengoerichthys n. gen. are similar in size to those of Cladarosymblema, and smaller than those in A2 Ectosteorhachis (Fox et al. 1995: fi gs 46B, C, 49C, 50D, E, 53A, B). Th e sutures between the coronoids are not clearly visible in Sengoerichthys n. gen. However, a number of three coronoids is suggested by the presence of three pairs of coronoid fangs (Figs 10A2; 11). Judg- ing from the space between the coronoid fangs, it seems that the anterior coronoid is longer than the middle and posterior ones, as in Cladarosymblema, Gogonasus, and Medoevia (Long 1985; Fox et al. 1995; Lebedev 1995; Long et al. 1997). B1 A remarkable feature is the presence of numerous small rounded denticles on the vertical lamina of the coronoids (da.co, Figs 10B2; 11). Th ese den- ticles are more or less aligned on the narrow vertical B2 lamina of the coronoids, except anteriorly to the coronoid fangs where the vertical lamina displays enlarged areas covered with irregularly scattered denticles. Among megalichthyids, Ectosteorhachis also presents more than one row of denticles on the vertical lamina of the coronoids (Fox et al. 1995: C fi g. 53C). In Cladarosymblema, the vertical lamina of the coronoids is reduced and devoid of denticles, without enlarged areas anteriorly to the coronoid fangs (Fox et al. 1995: fi g. 50D, E). However, Fox et al. (1995: 167) noticed that clusters of few small teeth (not denticles, since they have folded bases) are FIG. 10. — Sengoerichthys ottoman n. gen., n. sp., Upper Devo- present on the vertical lamina of two specimens of nian, ?Frasnian, red sandstone of Pamucak-Sapan Dere Unit, Cladarosymblema. Th is condition is also known in Upper Antalya Nappe; Armutgözlek Tepe, Kemer, Antalya, Turkey; incomplete lower jaws: A, right lower jaw (AT055) in lateral (A1) Medoevia (Lebedev 1995: fi g. 11), Gogonasus (Fox et and medial (A2) views; B, right lower jaw (holotype AT058) in me- al. 1995: fi g. 52B-E; Long et al. 1997: fi g. 36), and dial (B1) and dorsal (B2) views; C, right lower jaw in medial view Kenichthys (Chang & Zhu 1993), and is supposed (VDT11). Scale bars: 10 mm. to be a primitive condition for “osteolepiforms” (Vorobyeva 1977: 63). However, this condition plesiomorphic for all sarcopterygians, since it is is most likely plesiomorphic for rhipidistians as a known in (Yu 1998). Quite a similar whole, since it is also known in the porolepidids condition is encountered, though less developed, Porolepis and Heimenia (Kulczycki 1960; Jarvik in the early Obruchevichthys, Elginerpe- 1972; Clément 2001), in Powichthys (Jessen 1980) ton, Acanthostega, and Gephyrostegus and in (Chang 1991). It could also be (Ahlberg & Clack 1998).

GEODIVERSITAS • 2007 • 29 (2) 261 Janvier P. et al.

psym.p f.co psym.f

da.co

m.sym

am.f

Prart

FIG. 11. — Sengoerichthys ottoman n. gen., n. sp., Upper Devonian, ?Frasnian, red sandstone of Pamucak-Sapan Dere Unit, Upper Antalya Nappe; Armutgözlek Tepe, Kemer, Antalya, Turkey; right lower jaw in medial view based on the specimens AT055 and AT058 (Fig. 10A, B). Abbreviations: am.f, anterior mandibular fossa; da.co, denticulate area on the vertical lamina of the coronoids; f.co, coronoid fangs; m.sym, mandibular symphysis; Prart, prearticular; psym.f, parasymphysial fang; psym.p, parasymphysial plate. Scale bar: 10 mm.

Th e anterior limit of the denticulated area of the parasymphysial plate). Sengoerichthys n. gen. and prearticular is situated at the level of the anterior Cladarosymblema are very similar in this respect, coronoid fang, as in Cladarosymblema (Fox et al. and diff erent from Megalichthys and Ectosteorhachis 1995: fi g. 51A, B). where the anterior mandibular fossa is larger and Th e medial surface of the parasymphysial plate, uncluttered (Mohun 2003). coronoids, and prearticular are thus covered with numerous small rounded denticles. A similar exten- Gular plate sive denticulated covering of the medial side of the Th e gular is more elongated than that of other lower jaw is known in the osteolepidids Gogonasus megalichthyids (Fig. 12). Th is elongation is linked (Fox et al. 1995: fi g. 52; Long et al. 1997: fi g. 36D) to the more elongate shape of the entire head of and Medoevia (Lebedev 1995: fi g. 11), but also in Sengoerichthys n. gen. the other megalichthyids Cladarosymblema, Megali- chthys, and Ectosteorhachis. As suggested above, this Pectoral girdle condition is nevertheless most likely plesiomorphic Th e pectoral girdle is mainly known by a well for “osteolepiforms”, and even for rhipidistians. preserved cleithrum and associated scapulocora- Sengoerichthys n. gen. shows a deep groove be- coid (Fig. 8D1) previously described in detail by tween the dentary and the coronoids (Fig. 10B2), Janvier & Marcoux (1976) and Janvier (1980). as in the megalichthyids Cladarosymblema and Th e triradiate scapulocoracoid is less extensive on Ectosteorhachis (Fox et al. 1995), but also Medoevia the internal surface of the cleithrum than in other (Lebedev 1995: fi g. 11) and Gogonasus (Long et al. megalichthyids (Andrews & Westoll 1970: fi g. 2; 1997: fi g. 36). Th is feature is also known in other Th omson & Rackoff 1974: fi g. 1; Fox et al. 1995: groups, such as the Rhizodontida. fi g. 63), but it is nevertheless larger than in most An anterior mandibular fossa is present in Sengoe- other “osteolepiforms” (e.g., Eusthenopteron), with richthys n. gen. between the symphysial region and the exception of Medoevia (Lebedev 1995: fi g. 21). the anterior tip of the prearticular (am.f, Fig. 11). In Medoevia, the internal surface of the scapuloco- It most likely accommodated the vomerine fang. racoid presents a very similar triangular shape to It is fl oored by the Meckelian bone and laterally that of Sengoerichthys n. gen. A strikingly similar delimited by dermal bones (i.e. the anterior part of morphology of the scapulocoracoid (i.e. a subtri- the anterior coronoid and the posterior part of the angular shape with an enlarged anterior region)

262 GEODIVERSITAS • 2007 • 29 (2) A primitive megalichthyid fi sh from the Devonian of Turkey

also occurs in the tristichopterid Cabonnichthys (Ahlberg & Johanson 1997: fi g. 13A). An anocleithrum (Fig. 8F) presents a cosmine- covered triangular area and two overlap areas for the cleithrum and the supracleithrum, respectively. Th is anocleithrum is assigned to Sengoerichthys n. gen. with some doubt since the other megalichthyids do not have a cosmine-covered anocleithrum. Furthermore its shape is diff erent from that of the FIG. 12. — Sengoerichthys ottoman n. gen., n. sp., Upper Devonian, anocleithrum of Cladarosymblema (Fox et al. 1995: ?Frasnian, red sandstone of Pamucak-Sapan Dere Unit, Upper fi g. 59C, D) and its anterodorsal process seems Antalya Nappe; Armutgözlek Tepe, Kemer, Antalya, Turkey; right bifi d, as in the dipnoans Andreyevichthys (Krupina gular plate (AT075) in internal view. Scale bar: 10 mm. 1997), (Jarvik 1980) and (Campbell & Barwick 1987). Th erefore, it is not ?upper Pragian-Eifelian of the Dulcie Sandstone and ruled out that this anocleithrum may belong to a Cravens Peak Beds of Australia (Young & Goujet dipnoan rather than to Sengoerichthys n. gen. 2003) to the uppermost Famennian of eastern Turkey (Janvier et al. 1984), Australia and South Africa, DERMAL ORNAMENTATION AND SCALES but is restricted to the Famennian in Euramerica Most of the dermal bones and isolated scales re- (see review in Janvier & Clément 2005) with one ferred to Sengoerichthys n. gen. are covered with a possible occurrence in the uppermost Frasnian of continuous cosmine sheet. However some thick Scatt Craig, (Newman 2005). elements (Fig. 8D2, E, G) show evidence of major Th e Armutgözlek Tepe locality was fi rst referred cosmine resorption as in the Carboniferous and to the Frasnian by Janvier & Marcoux (1977), but Permian megalichthyids (Th omson 1975). We rule later to the Famennian by Janvier (1983), based out dipnoan derivation for these isolated remains, on the presence of phyllolepids, and despite the because of the absence of Westoll-lines on all cos- presence of the arthrodire Holonema, which is not mine covered elements found at the Armutgözlek recorded with certainty above the Frasnian-Famen- Tepe locality. nian boundary. Since then, phyllolepids have been Th e vermiculate ornamentation of the cleithrum shown to occur in well before the Fa- of Sengoerichthys n. gen. (Fig. 8D2, E) is known mennian, in the Frasnian and (Long 1984; in numerous “osteolepiforms” but well marked in Ritchie 1984; Young 1993a, 2005a, b), although megalichthyids. Th is ornamentation is almost iden- the group remains unknown before the Famen- tical to that of the cleithrum of Cladarosymblema nian outside Gondwana. Knowing that southern (Fox et al. 1995: fi g. 60A). Turkey was, in Devonian times, part of the Gond- wanan margin, the presence of phyllolepids and Holonema in the Armutgözlek Tepe fauna made BIOSTRATIGRAPHICAL AND a Frasnian age plausible. Moreover, new fi ndings PALEOBIOGEOGRAPHICAL suggest that at least one phyllolepid in this fauna CONSIDERATIONS can be referred to the genus Placolepis (Dupret et al. 2005). Th e latter is known in the Givetian and Th e Gondwanan affi nities of the Armutgözlek Tepe Frasnian of Australia (Young 2005a) and the ar- fauna are mainly indicated by the presence of the throdire Holonema is known from the late Emsian phyllolepid placoderm Placolepis sp. (Dupret et al. to the late Frasnian. Th e Holonema species found 2005) and, to some extent, by the presence of two in the Armutgözlek Tepe locality is very similar to species of the arthrodire Groenlandaspis. Th e latter H. radiatum from the Frasnian of Russia and Iran genus is widely distributed in Gondwana (Australia, (Lelièvre et al. 1981) and close to H. westolli from , South Africa, Falkland Islands) from the the Frasnian of Australia.

GEODIVERSITAS • 2007 • 29 (2) 263 Janvier P. et al.

If the Frasnian age for this locality is correct, then Th e apparently rapid dispersal of these organisms the presence of a megalichthyid in Turkey would into Euramerica during the Famennian provides support the hypothesis of an earlier Gondwanan evidence for some kind of continental link; i.e. occurrence for this group (Janvier et al. 1979). No a continuity of the marginal deposits, between megalichthyid remains have yet been recorded in Euramerica and Gondwana (Young 1993b). Most Euramerica before the Famennian. In contrast early paleogeographical reconstructions for the Mahalalepis from the Givetian of Antarctica (Young Late Devonian (Van der Voo 1988; Kent & Van et al. 1992), if eventually identifi ed as a megali- der Voo 1990; Scotese & McKerrow 1990; Li et al. chthyid, provides evidence for earlier occurrence 1993, 1995) showed a major discrepancy with the of this group in Gondwana, well before the Fa- paleontological data, notably an increasingly large mennian. It should be pointed out, however, that oceanic space between Euramerica and Gondwana the Famennian of Russia and Siberia also yields a from the Early to the Late Devonian, although a number of cosmine-covered “osteolepiforms”, no- contact between these two supercontinents by the tably Megistolepis (Vorobyeva 1977) and Cryptolepis Early Carboniferous is widely accepted. However, (Vorobyeva 1975; Lebedev 1995), whose affi nities it is likely that the Euramerica-Gondwana contact are still unclear, and it is not ruled out that they had occurred by the Famennian, but the precise turn out to be primitive megalichthyids. location of this contact is still uncertain. According Th e Armutgözlek Tepe fauna is the westernmost to Dalziel et al. (1994) it could have taken place Late Devonian vertebrate fauna of Gondwanan type either between the southern margin of Euramerica associated to an “” facies, with (present-day eastern Europe) and the central re- the exception of the ?Givetian-Frasnian faunas in gion of the northern margin of the Gondwana the red sandstones of Colombia (Janvier & Villarroel (present-day Near or Middle East), or between 2000) and Venezuela (Young & Moody 2002). the southwestern margin of Euramerica (present- Th e composition of the vertebrate fauna of the day western ) and the northeastern Armutgözlek Tepe locality is consistent with the margin of Gondwana (present-day northwestern hypothesis that phyllolepids, and probably mega- ). Th e recent fi ndings of Frasnian lichthyids, had a broad distribution in Gondwana vertebrate-bearing “Old Red Sandstone” facies in by the Frasnian, but had not yet dispersed into Colombia and Venezuela (Janvier & Villarroel 2000; Euramerica ( + ). A similar case Young et al. 2000) possibly support the latter pos- can be made for other fi shes, probably restricted sibility. Th e Frasnian fauna of the Cuche Formation to marginal or freshwater environments, such as (Colombia) yields two taxa, the antiarch the placoderm Groenlandaspis, the lungfi sh Soeder- and the porolepiform (or, at any rate berghia, the rhizodontid tetrapodomorphs, and the a holoptychiid), which commonly occur as early gyracanthid acanthodians. Th e genus Groenlandaspis as the Middle Devonian in Euramerica, but have is known in Gondwana since the ?Pragian-Emsian hitherto never been recorded from Gondwana, but only in the Famennian of Euramerica. Th e with the exception of a holoptychiid in the upper rhynchodipterid lungfi sh is known in Famennian of Australia. Th e Colombian occur- the Frasnian and Famennian of Australia, but only rences are the only instance of Euramerican verte- in the Famennian of Pennsylvania, East brate taxa that may have dispersed into Gondwana and Belgium (Lehman 1959; Ahlberg et al. 2001; before the Famennian, and it may hint at an early Clément & Boisvert 2006). Rhizodontids are known Gondwana-Euramerica connection at the level of from the Givetian-Frasnian of Gondwana (Janvier northwestern South America. & Villarroel 2000; Johanson & Ahlberg 2001) but the earliest Euramerican occurrences are so far only in the late Famennian of Pennsylvania (Davis et al. Acknowledgements 2001, 2004) and the Middle Famennian of Belgium Th e authors are indebted to Prof. A. M. Celal Sengör (Clément et al. 2004). (Istanbul Technical University) and the MNHN

264 GEODIVERSITAS • 2007 • 29 (2) A primitive megalichthyid fi sh from the Devonian of Turkey

for their help to the 1994 fi eld work. Th e photo- lungfi shes – A review, in BEMIS W. E., BURGGREN W. graphs were made by D. Serrette (MNHN). We W. & K EMP N. E. (eds), Th e biology and evolution of thank our reviewers, G. Young and H.-P. Schultze, lungfi shes. Journal of Morphology 1: 93-131. CHANG M.-M. 1991. — Head and shoulder for their comments and suggestions which have girdle of Youngolepis, in CHANG M.-M., LIU Y. H. improved this article, which is a contribution to & ZHANG G. R. (eds), Early and Related IGCP Project 491 (Middle Palaeozoic vertebrate Problems of Evolutionary Biology. Science Press, Bei- biogeography, palaeogeography and climate). Gaël jing: 355-378. Clément contributed to this study when he was at CHANG M.-M. & ZHU M. 1993. — A new Middle Devonian osteolepidid from Qujing, Yunnan. Mem- the Subdepartment of Evolutionary Organismal oirs of the Association of Australasian Palaeontologists Biology, Department of Physiology and Devel- 15: 183-198. opmental Biology, Evolutionary Biology Centre, CLÉMENT G. 2001. — Evidence of lack of choana in Uppsala University, Sweden. the . Journal of Vertebrate 21 (4): 795-802. CLÉMENT G. & BOISVERT C. A. 2006. — Lohest’s true and false “Devonian ”: evidence for a REFERENCES rhynchodipterid lungfi sh Soederberghia in the Famen- nian of Belgium. Journal of Vertebrate Paleontology AHLBERG P. E. 1991. — Tetrapod and near-tetrapod 26 (2): 276-283. from the Upper Devonian of Scotland. Nature CLÉMENT G., AHLBERG P. E., BLIECK A., POTY E., 354: 298-301. THOREZ J., CLACK J. A., BLOM H. & JANVIER P. AHLBERG P. E. & CLACK J. A. 1998. — Lower jaws, 2004. — Palaeogeography: Devonian tetrapod from lower tetrapods – a review based on the Devonian Western Europe. Nature 427: 412-413. genus Acanthostega. Transactions of the Royal Society CLÉMENT G., DUPRET V. & J ANVIER P. 2005. — A of 89: 11-46. primitive megalichthyid (Osteolepiformes, Sarcop- AHLBERG P. E. & JOHANSON Z. 1997. — Second tristi- terygii) from the Late Devonian of Turkey, chopterid (Sarcopterygii, Osteolepiformes), from the – phylogeny – palaeogeography, in HAIRAPETIAN V. Upper Devonian of Canowindra, New South Wales, & GINTER M. (eds), IGCP 491 Project: Middle Pa- Australia, and phylogeny of the Tristichopteridae. laeozoic vertebrate biogeography, palaeogeography Journal of Vertebrate Paleontology 17: 653-673. and climate: Devonian vertebrates of the continental AHLBERG P. E. & JOHANSON Z. 1998. — Osteolepi- margins, Yerevan, Armenia. Ichthyolith Issues special forms and the ancestry of tetrapods. Nature 395: publication 8: 6-7. 792-794. CLOUTIER R. 1996. — Taxonomic review of Eusthe- AHLBERG P. E., JOHANSON Z. & DAESCHLER E. B. nopteron foordi Whiteaves, in SCHULTZE H.-P. & 2001. — Th e Late Devonian lungfi sh Soederberghia CLOUTIER R. (eds), Devonian and Plants of (Sarcopterygii, Dipnoi) from Australia and North Miguasha, Quebec, Canada. Verlag Dr. Friedrich Pfeil, America, and its biogeographical implications. Journal München: 271-284. of Vertebrate Paleontology 21: 1-12. CLOUTIER R. & AHLBERG P. E. 1996. — Morphology, AHLBERG P. E., LUKSEVICS E. & LEBEDEV O. 1994. — Th e characters, and the interrelationships of basal sar- fi rst tetrapod fi nds from the Devonian (Upper Famen- copterygians, in STIASSNY M. L. J., PARENTI L. R. nian) of Latvia. Philosophical Transactions of the Royal & JOHNSON G. D. (eds), Interrelationships of Fishes. Society of London B 343: 303-328. Academic Press, New York: 445-479. ANDREWS S. M. 1985. — Rhizodont crossopterygian fi sh DAESCHLER E. B., FRUMES A. C. & MULLISON F. C . from the Dinantian of Foulden, , Scot- 2003. — Groenlandaspidid placoderm fi shes from land, with a re-evaluation of this group. Transactions the Late Devonian of North America. Records of the of the Royal Society of Edinburgh 76: 67-95. Australian Museum 55: 45-60. ANDREWS S. M. & WESTOLL T. S. 1970. — Th e postcra- DALZIEL I. W. D., DALLA SALDA L. H. & GAHAGAN L. M. nial skeleton of rhipidistian fi shes, excluding Eusthe- 1994. — Laurentia-Gondwana interaction nopteron. Transactions of the Royal Society of Edinburgh and the origin of the Appalachian-Andean mountain 68: 391-489. system. Bulletin of the Geological Society of America BJERRING H. C. 1972. — Morphological observations 106: 243-252. on the exoskeletal skull roof of an osteolepiform DAVIS M. C., SHUBIN N. & DAESCHLER E. B. 2001. — from the Carboniferous of Scotland. Acta Zoologica Immature rhizodontids from the Devonian of North 53: 73-92. America. Bulletin of the Museum of Comparative Zool- CAMPBELL K. S. W. & BARWICK R. E. 1987. — Paleozoic ogy 156 (1): 171-187.

GEODIVERSITAS • 2007 • 29 (2) 265 Janvier P. et al.

DAVIS M. C., SHUBIN N. & DAESCHLER E. B. 2004. — A aspis Heintz (Pisces, Placodermi, Arthrodira) dans le new specimen of taylori (Sarcopterygii, Dévonien moyen d’Asie. Comptes Rendus de l’Académie Osteichthyes) from the Famennian des Sciences, Paris D 284: 1385-1388. of North America. Journal of Vertebrate Paleontology JANVIER P. & V ILLARROEL C. A. 1998. — Los peces 24 (1): 26-40. Devonicos del Macizo de Floresta (Boyaca, Colom- DUPRET V., CLÉMENT G. & JANVIER P. 2005. — Th e bia). Consideraciones taxonomicas, bioestratigrafi cas, Frasnian-Famennian interchange between Gondwa- biogeografi cas y ambientales. Geologia Colombiana nan and Euramerican vertebrate faunas. Which way? 23: 3-18. Middle East or South America?, in HAIRAPETIAN V. JANVIER P. & V ILLARROEL C. A. 2000. — Th e Devo- & GINTER M. (eds), IGCP 491 Project: Middle Pa- nian vertebrates of Colombia. Palaeontology 43 (4): laeozoic vertebrate biogeography, palaeogeography 729-763. and climate: Devonian vertebrates of the continental JANVIER P., TERMIER G. & TERMIER H. 1979. — Th e margins, Yerevan, Armenia. Ichthyolith Issues special osteolepiform rhipidistian fi sh Megalichthys in the publication 8: 8-9. Lower Carboniferous of Morocco, with remarks on FOX R. C., CAMPBELL K. S. W., BARWICK R. E. & LONG the palaeobiogeography of the Upper Devonian and J. A. 1995. — A new osteolepiform fi sh from the Permo-Carboniferous osteolepids. Neues Jahrbuch für Lower Carboniferous Raymond Formation, Drum- Geologie und Paläontologie, Monatshefte 1: 7-14. mond Basin, Queensland. Memoirs of the Queensland JANVIER P. , L ETHIERS F. , M ONOD O. & BALKAS Ö. Museum 38 (1): 99-221. 1984. — Discovery of a vertebrate fauna at the De- GROSS W. 1941. — Über den Unterkiefer einiger de- vonian-Carboniferous boundary in SE Turkey (Hak- vonischer Crossopterygier. Abhandlungen der Preußi- kari Province). Journal of Petroleum 7 (2): schen Akademie der Wissenschaften, Matematische und 147-168. naturwissenschaftliche Klasse 7: 1-51. JANVIER P., VILLARROEL C. & CLÉMENT G. 2004. — Th e HEINTZ A. 1935. — Fischreste aus dem Unterperm Late Devonian fi shes from Colombia: additional data Norwegens. Norsk Geologisk Tidsskrift 14 (1934): and biogeographical relationships, in RICHTER M. & 176-194. SMITH M.-M. (eds), 10th International Symposium on JANVIER P. 1977. — Vertébrés dévoniens de deux nou- Early Vertebrates/Lower Vertebrates, Gramado, Brazil, veaux gisements du Moyen-Orient. Le problème Abstract Volume: 22-23. des relations intercontinentales au Dévonien vu à la JARVIK E. 1952. — On the fi sh-like tail in the ichthyo- lumière de la paléobiogéographie des rhipidistiens stegid stegocephalians with descriptions of a new ostéolépiformes et des premiers tétrapodes. Annales stegocephalian and a new crossopterygian from the de la Société géologique du Nord 97: 373-382. Upper Devonian of East Greenland. Meddelelser om JANVIER P. 1980. — Osteolepid remains from the Devo- Grønland 114 (12): 1-90. nian of the Middle East, with particular reference JARVIK E. 1966. — Remarks on the structure of the to the endoskeletal shoulder girdle, in PANCHEN A. snout in Megalichthys and certain other rhipidistid L. (ed.), Th e Terrestrial Environment and the Origin crossopterygians. Arkiv för Zoologi 19: 41-98. of Land Vertebrates, Systematics Association Special JARVIK E. 1972. — Middle and Upper Devonian Porolepi- Volume 15. Academic Press, London: 223-254. formes from East Greenland with special reference JANVIER P. 1983. — Les vertébrés dévoniens de la Nappe to groenlandica n. sp., and a discussion supérieure d’Antalya (Taurus Lycien occidental, Tur- on the structure of the head in the Porolepiformes. quie). Géologie méditerranéenne 10 (1): 1-13. Meddelelser om Grønland 187 (2): 1-307. JANVIER P. & CLÉMENT G. 2005. — A new groenlan- JARVIK E. 1980. — Basic Structure and Evolution of Verte- daspidid arthrodire (Vertebrata: Placodermi) from brates. Volume 1. Academic Press, London, 575 p. the Famennian of Belgium. Geologica Belgica 8 (1-2): JARVIK E. 1996. — Th e Devonian tetrapod . 51-67. Fossils & Strata 40: 1-213. JANVIER P. & MARCOUX J. 1976. — Remarques sur la JESSEN H. 1980. — Lower Devonian Porolepiformes ceinture scapulaire d’un poisson choanate ostéolépi- from the Canadian Arctic with special reference to forme des grès rouges de l’Armutgözlek Tepe (Tau- Powichthys thorsteinssoni Jessen. Palaeontographica rus Lycien occidental, Turquie). Comptes Rendus de 167: 180-214. l’Académie des Sciences, Paris D 283: 619-622. JOHANSON Z. & AHLBERG P. E. 1997. — A new tristi- JANVIER P. & MARCOUX J. 1977. — Les grès rouges de chopterid (Osteolepiformes: Sarcopterygii) from the l’Armutgözlek Tepe : leur faune de poissons (antiarch- Mandagery Sandstone (Late Devonian, Famennian) es, arthrodires et crossoptérygiens) d’âge dévonien near Canowindra, NSW, Australia. Transactions of supérieur (Nappes d’Antalya, Taurides occidentales, the Royal Society of Edinburgh: Earth Sciences 88: Turquie). Géologie méditerranéenne 4 (3): 183-188. 39-68. JANVIER P. & RITCHIE A. 1977. — Le genre Groenland- JOHANSON Z. & AHLBERG P. E. 2001. — Devonian

266 GEODIVERSITAS • 2007 • 29 (2) A primitive megalichthyid fi sh from the Devonian of Turkey

rhizodontids and tristichopterids (Sarcopterygii; South Wales Press, Sydney; Johns Hopkins University Tetrapodomorpha) from East Gondwana. Transac- Press, Baltimore, 223 p. tions of the Royal Society of Edinburgh: Earth Sciences LONG J. A., BARWICK R. E. & CAMPBELL K. S. W. 92: 43-74. 1997. — Osteology and functional morphology of KENT D. V. & VAN DER VOO R. 1990. — Palaeozoic the osteolepiform fi sh Gogonasus andrewsae Long, palaeogeography from palaeomagnetism of the At- 1985, from the Upper Devonian , lantic-bordering , in MCKERROW W. S. & Western Australia. Records of the Western Australian SCOTESE C. R. (eds), Palaeozoic biogeography and Museum, Supplement 53: 1-89. palaeobiogeography. Geological Society of London MOHUN S. 2003. — Taxonomic and Phylogenetic Recon- Memoirs 12: 49-56. struction of Megalichthys. M. Sc. thesis, University of KRUPINA N. I. 1997. — Th e shoulder girdle and opercular London, Imperial College, London, UK, 100 p. series of Andreyevichthys epitomus, a Late Devonian NEWMAN M. J. 2005. — A systematic review of the Dipnoan from the Tula Region of Russia. Paleonto- placoderm genus Cosmacanthus and a description of logical Journal 31 (1): 81-86. acanthodian remains from the Upper Devonian of KULCZYCKI J. 1960. — Porolepis (Crossopterygii) from Scotland. Palaeontology 48 (5): 1111-1116. the Lower Devonian of the Holy Cross Mountains. RITCHIE A. 1984. — A new Placoderm, Placolepis gen. Acta Palaeontologica Polonica 5: 65-104. nov. (Phyllolepidae), from the Late Devonian of New LEBEDEV O. A. 1995. — Morphology of a new osteole- South Wales, Australia. Proceedings of the Linnean pidid fi sh from Russia, in ARSENAULT M., LELIÈVRE Society of New South Wales 107 (3): 321-353. H. & JANVIER P. (eds), Studies on early vertebrates. ROMER A. S. 1937. — Th e braincase of the Carboniferous Bulletin du Muséum national d’Histoire naturelle, Paris, crossopterygian Megalichthys nitidus. Bulletin of the 4e sér., sect. C, 17 (1-4): 287-341. Museum of Comparative Zoology 82 (1): 1-73. LEHMAN J.-P. 1959. — Les dipneustes du Dévonien ROSEN D. E., FOREY P. L., GARDINER B. G. & PATTER- supérieur du Groenland. Meddelelser om Grønland SON C. 1981. — Lungfi shes, tetrapods, paleontology 160: 1-58. and plesiomorphy. Bulletin of the American Museum LELIÈVRE H., JANVIER P. & B LIECK A. 1993. — Silu- of Natural History 167: 159-276. rian-Devonian vertebrate biostratigraphy of western SCHULTZE H.-P. 1974. — Osteolepidide Rhipidistia Gondwana and related terranes (South America, (Pisces) aus dem Pennsylvanian von Illinois/USA. Africa, Armorica-Bohemia, Middle East), in LONG Neues Jahrbuch für Geologie und Paläontologie, Ab- J. A. (ed.), Palaeozoic Vertebrate Biostratigraphy and handlungen 146: 29-50. Biogeography. Belhaven, London: 139-173. SCHULTZE H.-P. 1988. — An osteolepidid rhipidisti- LELIÈVRE H., JANVIER P. & G OUJET D. 1981. — Les an in Upper Pennsylvanian deposits of Hamilton, vertébrés dévoniens de l’Iran Central. IV : arthrodires Kansas. Kansas Geological Survey Guidebook Series et ptyctodontes. Geobios 14 (6): 677-709. 6: 181-183. LI Z.-X., POWELL C. MCA. & TRENCH A. 1993. — Pal- SCOTESE C. R. & MCKERROW W. S. 1990. — Revised aeozoic global reconstructions, in LONG J. A. (ed.), world maps and introduction, in MCKERROW W. S. Palaeozoic Vertebrate Biostratigraphy and Biogeography. & SCOTESE C. R. (eds), Palaeozoic biogeography Belhaven, London: 25-53. and palaeobiogeography. Geological Society of London LI Z.-X., ZHANG L. H. & POWELL C. MCA. 1995. — Memoirs 12: 1-21. South China in Rodinia; part of the missing link SEILACHER A. 1963. — Kaledonischer unterbau der between Australia-East Antarctica and Laurentia? Irakiden. Neues Jahrbuch für Geologie und Paläonto- Geology 23: 407-410. logie 1963: 527-542. LONG J. A. 1984. — New phyllolepids from Victoria and THOMSON K. S. 1964. — Revised generic diagnoses of the relationships of the group. Proceedings of the Lin- the fi shes Megalichthys and Ectosteorhachis (family nean Society of New South Wales 107 (3): 263-308. Osteolepidae). Bulletin of the Museum of Comparative LONG J. A. 1985. — A new osteolepid fi sh from the Upper Zoology 131: 285-311. Devonian Gogo Formation, western Australia. Records THOMSON K. S. 1975. — On the biology of cosmine. of the Western Australian Museum 12: 361-367. Bulletin of the Peabody Museum of Natural History LONG J. A. 1987. — An unusual osteolepiform fi sh from 40: 1-59. the Late Devonian of Victoria, Australia. Palaeontol- THOMSON K. S. & RACKOFF J. S. 1974. — Th e shoulder ogy 30: 839-852. girdle of the Permian rhipidistian fi sh Ectosteorhachis LONG J. A. 1989. — A new rhizodontiform fi sh from nitidus Cope: structure and possible function. Journal the Early Carboniferous of Victoria, Australia, with of Paleontology 48: 170-179. remarks on the phylogenetic position of the group. VAN DER VOO R. 1988. — Paleozoic paleogeography of Journal of Vertebrate Paleontology 9: 1-17. North America, Gondwana, and displaced terranes: LONG J. A. 1995. — Th e Rise of Fishes. University of New comparisons of paleomagnetism with paleoclimatology

GEODIVERSITAS • 2007 • 29 (2) 267 Janvier P. et al.

and biogeographical patterns. Geological Society of Old Red Sandstone . Geological Magazine America 100: 311-324. 142 (2): 173-186. VOROBYEVA E. I. 1975. — [An osteolepid crossopterygian YOUNG G. C. 2005b. — New phyllolepids (Placoderm from the Ketleri Formation of Latvia], in GRIGELIS fi shes) from the Middle-Late Devonian of South- A. A. (ed.), Fauna and of the Palaeozoic eastern Australia. Journal of Vertebrate Paleontology and Mesozoic of Baltics and Byelorussia. Mintis, Vilnius 25 (2): 261-273. 233-237 (in Russian). YOUNG G. C. & GOUJET D. 2003. — Devonian fi sh VOROBYEVA E. I. 1977. — [Morphology and evolution remains from the Dulcie Sandstone and Cravens Peak of sarcopterygian fi shes]. Trudy Paleontologischeskogo Beds, Georgina Basin, central Australia. Records of the Instituta Akademia, Nauk SSSR 163: 1-239 (in Rus- Western Australian Museum, Supplement 65: 1-85. sian). YOUNG G. C. & MOODY J. M. 2002. — A middle-late VOROBYEVA E. I. & LEBEDEV O. A. 1986. — New Devonian fi sh fauna from the Sierra de Perijà, west- osteolepidid crossopterygians from the Devonian ern Venezuela, South America. Mitteilungen aus dem and Carboniferous of the East European Platform. Museum für Naturkunde in Berlin, Geowissenschaftliche Paleontological Journal 20: 50-56. Reihe 5: 153-204. WATSON D. M. S. 1926. — Th e evolution and origin of YOUNG G. C., LONG J. A. & RITCHIE A. 1992. — Cros- the Amphibia. Philosophical Transactions of the Royal sopterygian fi shes from the Devonian of Antarc- Society of London series B, 214: 189-257. tica: systematics, relationships and biogeographic YOUNG G. C. 1993a. — Middle Palaeozoic macroverte- signifi cance. Records of the Australian Museum 14: brate biostratigraphy of eastern Gondwana, in LONG 1-77. J. A. (ed.), Palaeozoic Vertebrate Biostratigraphy and YOUNG G. C., MOODY J. M. & CASAS J. 2000. — New Biogeography. Belhaven, London: 208-251. discoveries of Devonian Vertebrates from South YOUNG G. C. 1993b. — Vertebrate faunal provinces in America, and implications for Gondwana-Euramerica the Middle Palaeozoic, in LONG J. A. (ed.), Palaeozoic contact. Comptes Rendus de l’Académie des Sciences Vertebrate Biostratigraphy and Biogeography. Belhaven, 331: 755-761. London: 293-323. YU X. 1998. — A new porolepiform-like fi sh, Psarolepis YOUNG G. C. 2005a. — An articulated phyllolepid fi sh romeri, gen. et sp. nov. (Sarcopterygii, Osteichthyes) (Placodermi) from the Devonian of Central Australia: from the Lower Devonian of Yunnan, China. Journal implications for non-marine connections with the of Vertebrate Paleontology 18 (2): 261-274.

Submitted on 14 November 2005; accepted on 15 November 2006.

268 GEODIVERSITAS • 2007 • 29 (2)