Salt River Fish Monitoring Summary 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BIG RIVER ECOSYSTEM: Program 2
BIG RIVER ECOSYSTEM: A Question of Net Worth PURPOSE To explore biodiversity at the ecosystem level. KERA CONNECTIONS to Life Science Program 2 Core Content: Structure and Function in Living Systems Academic Expectations: 2.2 Patterns, 2.3 Systems, 2.4 Models & Scale ANSWERS TO Process Skills: Observation, Modeling aFIELD NOTES OBJECTIVES 1. In a hot and hostile environment, Students should be able to: the evaporated water cannot be 1.identify five “big river” organisms incorporated into living cells (as 2.construct a diagram showing interactions between living and we know them). nonliving parts of an ecosystem 2. An extremely cold environment, 3. discuss factors that affect the level of biodiversity in their river basin. or frozen desert, does not allow cells to utilize water. VOCABULARY 3. Answers will vary but should Teachers may wish to discuss the following terms: display logical flow of water and aquatic, commercial, ecosystem, water cycle and watershed. allow for recirculation in a loop. 4. Arteries and veins. aFIELD NOTEBOOK 5. A pumping heart. Ideas for Teachers 6. Diagram A shows many different A. Develop a concept map for the water cycle. Include these items in types of ecosystems in close the concept map: clouds, groundwater, apple tree, stream, precipita- proximity. tion, condensation, evaporation, harvest mouse, snowflakes, sun and 7. Add a watering hole, plant a humans. What other cycles are needed to maintain an ecosystem? miniature forest, create a B. Biospheres, containing algae, brine shrimp and water, are often meadow of wildflowers. Most shown in advertisements. Analyze how the biosphere is self-main- importantly, break up a monocul- taining. -
Effects of Eutrophication on Stream Ecosystems
EFFECTS OF EUTROPHICATION ON STREAM ECOSYSTEMS Lei Zheng, PhD and Michael J. Paul, PhD Tetra Tech, Inc. Abstract This paper describes the effects of nutrient enrichment on the structure and function of stream ecosystems. It starts with the currently well documented direct effects of nutrient enrichment on algal biomass and the resulting impacts on stream chemistry. The paper continues with an explanation of the less well documented indirect ecological effects of nutrient enrichment on stream structure and function, including effects of excess growth on physical habitat, and alterations to aquatic life community structure from the microbial assemblage to fish and mammals. The paper also dicusses effects on the ecosystem level including changes to productivity, respiration, decomposition, carbon and other geochemical cycles. The paper ends by discussing the significance of these direct and indirect effects of nutrient enrichment on designated uses - especially recreational, aquatic life, and drinking water. 2 1. Introduction 1.1 Stream processes Streams are all flowing natural waters, regardless of size. To understand the processes that influence the pattern and character of streams and reduce natural variation of different streams, several stream classification systems (including ecoregional, fluvial geomorphological, and stream order classification) have been adopted by state and national programs. Ecoregional classification is based on geology, soils, geomorphology, dominant land uses, and natural vegetation (Omernik 1987). Fluvial geomorphological classification explains stream and slope processes through the application of physical principles. Rosgen (1994) classified stream channels in the United States into seven major stream types based on morphological characteristics, including entrenchment, gradient, width/depth ratio, and sinuosity in various land forms. -
Ecosystem Services Generated by Fish Populations
AR-211 Ecological Economics 29 (1999) 253 –268 ANALYSIS Ecosystem services generated by fish populations Cecilia M. Holmlund *, Monica Hammer Natural Resources Management, Department of Systems Ecology, Stockholm University, S-106 91, Stockholm, Sweden Abstract In this paper, we review the role of fish populations in generating ecosystem services based on documented ecological functions and human demands of fish. The ongoing overexploitation of global fish resources concerns our societies, not only in terms of decreasing fish populations important for consumption and recreational activities. Rather, a number of ecosystem services generated by fish populations are also at risk, with consequences for biodiversity, ecosystem functioning, and ultimately human welfare. Examples are provided from marine and freshwater ecosystems, in various parts of the world, and include all life-stages of fish. Ecosystem services are here defined as fundamental services for maintaining ecosystem functioning and resilience, or demand-derived services based on human values. To secure the generation of ecosystem services from fish populations, management approaches need to address the fact that fish are embedded in ecosystems and that substitutions for declining populations and habitat losses, such as fish stocking and nature reserves, rarely replace losses of all services. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Ecosystem services; Fish populations; Fisheries management; Biodiversity 1. Introduction 15 000 are marine and nearly 10 000 are freshwa ter (Nelson, 1994). Global capture fisheries har Fish constitute one of the major protein sources vested 101 million tonnes of fish including 27 for humans around the world. There are to date million tonnes of bycatch in 1995, and 11 million some 25 000 different known fish species of which tonnes were produced in aquaculture the same year (FAO, 1997). -
Lower Eel River Total Maximum Daily Loads For· Temperature and Sediment
., U.s. Environmental Protection Agency Region IX Lower Eel River Total Maximum Daily Loads for· Temperature and Sediment Approved by: l~ltl(Jl Alexis Strauss, Date Director, Water Division TABLE OF CONTENTS CHAPTER 1: INTRODUCTION................................................................................................ 1 1.1. OVERVIEW OF THE TMDL PROGRAM ................................................................... 1 1.2. WATERSHED CHARACTERISTICS .......................................................................... 2 1.3. ENDANGERED SPECIES ACT CONSULTATION.................................................... 4 1.4. DOCUMENT ORGANIZATION .................................................................................. 5 CHAPTER 2: PROBLEM STATEMENT ................................................................................. 7 2.1. WATER QUALITY STANDARDS............................................................................... 7 2.2. FISH POPULATION AND ENDANGERED SPECIES CONCERNS......................... 9 2.3. STREAM TEMPERATURE PROBLEMS .................................................................. 14 2.4. SEDIMENT PROBLEMS ............................................................................................ 26 CHAPTER 3: TEMPERATURE TMDLS ............................................................................... 30 3.1. INTERPRETING THE EXISTING WATER QUALITY STANDARDS FOR TEMPERATURE ........................................................................................................ -
Linking Biological Toxicity and the Spectral Characteristics Of
Chen et al. Environ Sci Eur (2019) 31:84 https://doi.org/10.1186/s12302-019-0269-y RESEARCH Open Access Linking biological toxicity and the spectral characteristics of contamination in seriously polluted urban rivers Zhongli Chen1, Zihan Zhu1, Jiyu Song1, Ruiyan Liao1, Yufan Wang1, Xi Luo1, Dongya Nie1, Yumeng Lei1, Ying Shao1* and Wei Yang2,3 Abstract Background: Urban river pollution risks to environments and human health are emerging as a serious concern worldwide. With the aim to achieve the health of urban river ecosystem, numerous monitoring programs have been implemented to investigate the spectral characteristics of contamination. While due to the complexity of aquatic pollutants, the linkages between harmful efects and the spectral characteristics of contamination are still a major challenge for capturing main threats to urban aquatic environments. To establish these linkages, surface water (SW), sediment pore water (SDPW), and riparian soil pore water (SPW) were collected from fve sites of the seriously pol- luted Qingshui Stream, China. The water-dissolved organic carbon (DOC), total nitrogen (TN), total phosphate (TP), fuorescence excitation–emission matrix, and specifc ultraviolet absorbance were applied to analyze the spectral characteristics of urban river contamination. The Photobacterium phosphorem 502 was used to test the acute toxicity of the samples. Finally, the correlations between acute toxicity and concentrations of DOC, TN, TP, and the spectral characteristics were explored. Results: The concentrations of DOC, TN, and TP in various samples amounted from 11.41 2.31 to 3844.67 87.80 mg/L, from 1.96 0.06 to 906.23 26.01 mg/L and from 0.06 0.01 to 101.00± 8.29 mg/L, respec- tively. -
Project Name
COASTAL CONSERVANCY Staff Recommendation March 25, 2021 WILLIAMS CREEK RESTORATION PLAN Project No. 11-025-05 Project Manager: Michael Bowen RECOMMENDED ACTION: Authorization to disburse up to $307,170 to the Humboldt County Resource Conservation District to conduct studies and prepare designs, permit applications, and a management plan for restoration of the Williams Creek watershed near Ferndale, Humboldt County, CA. LOCATION: Williams Creek watershed near Ferndale, Humboldt County, CA. EXHIBITS Exhibit 1: Project Location Map Exhibit 2: Project Photos Exhibit 3: Project Letters RESOLUTION AND FINDINGS: Staff recommends that the State Coastal Conservancy adopt the following resolution and findings. Resolution: The State Coastal Conservancy hereby authorizes disbursement of an amount not to exceed three hundred seven thousand one hundred seventy dollars ($307,170) to the Humboldt County Resource Conservation District (“the grantee”) to conduct studies and prepare designs, permit applications, and a management plan for the enhancement of the Williams Creek watershed near Ferndale, CA. Prior to commencement of the project, the grantee shall submit for the review and written approval of the Executive Officer of the Conservancy (Executive Officer) the following: 1. A detailed work program, schedule, and budget. 2. Names and qualifications of any contractors to be retained in carrying out the project. 3. A plan for acknowledgement of Conservancy funding and Proposition 1 as the source of that funding. Page 1 of 9 WILLIAMS CREEK RESTORATION PLAN Findings: Based on the accompanying staff report and attached exhibits, the State Coastal Conservancy hereby finds that: 1. The proposed authorization is consistent with Chapter 5.5 of Division 21 of the Public Resources Code, regarding integrated coastal and marine resources protection. -
Geology and Ground-Water Features of the Eureka Area Humboldt County, California
Geology and Ground-Water Features of the Eureka Area Humboldt County, California By R, E. EVENSON GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1470 Prepared in cooperation with the California Department of Water Resources UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. S EATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U. S. Geological Survey Library has cataloged this publication as follows: Evenson, Robert Edward, 1924- Geology and ground-water features of the Eureka area, Humboldt County, California. Prepared in cooperation with the California Dept. of Water Eesources. Washing ton, U. S. Govt. Print. Off., 1959 iv, 80 p. maps, diagrs., tables. 25 cm. (U. S. Geological Survey Water-supply paper 1470) Part of illustrative matter fold. col. in pocket. Bibliography: p. 77. 1. Water-supply California Humboldt Co. 2. Water, Under ground California Humboldt Co. i. Title: Eureka area, Hum boldt County, California. (Series) TC801.U2 no. 1470 551.490979412 GS 59-169 copy 2. GB1025.C2E9 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Abstract___-_____-__--_--_-_-_________-__--_--_-_-______ ___ 1 Introduction._____________________________________________________ 2 Purpose and scope of the work________ _________________________ 2 Location and extent of the area_______________-_-__-__--________ 3 Previous work_______________________________________________ 3 Well-numbering system________________________________________ -
Spatial Heterogeneity and Controls of Ecosystem Metabolism in a Great Plains River Network
Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network Walter K. Dodds, Sophie A. Higgs, Margaret J. Spangler, James Guinnip, Jeffrey D. Scott, Skyler C. Hedden, Bryan D. Frenette, et al. Hydrobiologia The International Journal of Aquatic Sciences ISSN 0018-8158 Volume 813 Number 1 Hydrobiologia (2018) 813:85-102 DOI 10.1007/s10750-018-3516-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer International Publishing AG, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Hydrobiologia (2018) 813:85–102 https://doi.org/10.1007/s10750-018-3516-0 PRIMARY RESEARCH PAPER Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network Walter K. Dodds . Sophie A. Higgs . Margaret J. Spangler . James Guinnip . Jeffrey D. Scott . Skyler C. Hedden . Bryan D. Frenette . Ryland Taylor . Anne E. Schechner . David J. Hoeinghaus . Michelle A. Evans-White Received: 17 June 2017 / Revised: 14 December 2017 / Accepted: 11 January 2018 / Published online: 20 January 2018 Ó Springer International Publishing AG, part of Springer Nature 2018 Abstract Gross primary production and ecosystem limitation, and was positively related to nutrients. -
Key Restoration Methods of a Polluted River Ecosystem
Key Restoration Methods of a Polluted River Chalachew Yenew* Ecosystem: A Systematic Review Environmental Health Science, Social and Population Health (SPH) Unit, College of Medicine and Health Sciences, Debre Tabor University, Ethiopia Abstract Background: River is one of a freshwater ecosystem that plays an important role in people's living, aquatic and terrestrial living organisms, and agricultural production. Compared to other ecosystems, rivers support a disproportionately large number of *Corresponding author: plant and animal species. However, excessive human activities have busted the original Chalachew Yenew ecological balance by polluting the river ecosystem. As a result, partial or total affected the structure and functions of the river ecosystem. This review aimed to investigate the major ecological restoration methods of the polluted river ecosystem. [email protected] Methods: We have adopted the procedures from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The required data were Environmental Health Science, Social and collected via a literature search of MEDLINE/PubMed, Google Scholar, Science Direct, Population Health (SPH) Unit, College of EMBASE, HINARI, and Cochrane Library from the 9th of September, 2019 to the 5th Medicine and Health Sciences, Debre Tabor of March, 2020 using combined terms. Articles were included in our review; only if University, Ethiopia it assessed empirically and comparison and contrast between two or more different restoration methods. This review; it is mainly included published research articles, national reports, and annual reports and excluded opinion essays. Citation: Yenew C (2021) Key Restoration Results: Commonly used methods for restoration of polluted rivers around the Methods of a Polluted River Ecosystem: A globe could be categorized depending on the physical, chemical, and biological Systematic Review. -
COASTAL CUTTHROAT TROUT Oncorhynchus Clarkii Clarkii (Richardson)
COASTAL CUTTHROAT TROUT Oncorhynchus clarkii clarkii (Richardson) Moderate Concern. Status Score = 2.7 out of 5.0. Coastal cutthroat trout populations in California are small, fragmented, and face multiple threats, including cumulative impacts from land use practices and predicted outcomes of climate change in their range. However, their numbers appear to be stable in the few watersheds they inhabit along the Northern California coast. Description: Coastal cutthroat trout are similar in appearance to coastal rainbow trout (O. mykiss) but have heavier spotting, particularly below the lateral line, and heavy spots on ventral fins. Adults have spotting on the lower mandible and more pointed heads than coastal rainbow trout. The spots become nearly invisible when fish become silvery during smolting and migrations to and from the sea. Mature fish in fresh water have a dark coppery or brassy appearance, especially on the fins (Behnke 1992, Moyle 2002). Cutthroat trout are more slender than rainbow trout and possess characteristic red to orange to yellow slashes under the mandibles, though the slashes are rarely visible until the fish reach over 80 mm total length (TL) (Scott and Crossman 1973, Behnke 1992). Larger fish have long maxillary bones extending past the eye. Well-developed teeth are found on the jaws, vomer, palatines, tongue, and sometimes on the basibranchial bones (Rizza 2015). The dorsal fin has 9-11 rays, the anal fin 8-12 rays, the pelvic fins 9-10 rays, and the pectoral fins 12-15 rays. There are 15-28 gill rakers on each arch and 9-12 branchiostegal rays. The caudal fin is moderately forked and scales are smaller than those of rainbow trout, with 140-200 along the lateral line (Behnke 1992). -
Management, Ecosystems and Ecosystem-Based Management of Fisheries in the Gulf of Mexico
Management, Ecosystems and Ecosystem-based Management of Fisheries in the Gulf of Mexico James H. Cowan, Jr., LSU Jake Rice, DFO, Canada Carl Walters, UBC, Fisheries Center Tim Essington and Ray Hilborn, UW John Day, LSU Kevin Boswell, LSU Source: LSU Earth Scan Laboratory Topics for Discussion (2 parts) Part 1. What I don’t know about fish/habitat relationships in the Mississippi River ecosystem Part 2. What I don’t know about ecosystem based fisheries management (ESBFM) But first, what is ESBFM? Short answer---we have no idea “Neither the science of ecosystem assessments nor the policy of integrated ecosystem-scale management is yet mature. Although modest progress has been made (examples include the Convention on Biological Diversity [CBD] 2009; NOAA 2009), consensus has not yet emerged on key components of the scientific basis for ecosystem-scale assessment and management (e.g., the appropriate spatial scale at which management should operate and/or is likely to be effective), nor on the form and extent of integration of fisheries management with other regulatory agencies” Now to the western Gulf of Mexico, for example-- Cowan et al. 2012 US Landings by Port LA alone accounts for 75% of landings in the US Gulf!! LA The “Fertile GoM Crescent” What generates this productivity? km 2 coastal wetlands (and estuarine dependency of juveniles) FL LA MX (from Deegan et al. 1986) 40% of the coastal wetlands in the US 14,834 km2 >80% of US coastal wetland loss >70% of species estuarine dependent A conundrum?--let’s look at the commercial landings -
Pesticide Use Harming Key Species Ripples Through the Ecosystem Regulatory Deficiencies Cause Trophic Cascades That Threaten Species Survival Boulder Creek
Pesticide Use Harming Key Species Ripples through the Ecosystem Regulatory deficiencies cause trophic cascades that threaten species survival Boulder Creek, Boulder, Colorado © Beyond Pesticides DREW TOHER stabilizing the water table, and both worked in tandem to provide cool, deep, shaded water for native fish. espite a growing body of scientific literature, complex, ecosystem-wide effects of synthetic When a predator higher up on the food chain is eliminated, pesticides are not considered by the U.S. Envi- that predator’s prey is released from predation, often causing ronmental Protection Agency (EPA). Beyond a trophic cascade that throws the ecosystem out of balance. direct toxicity, pesticides can significantly reduce, It is not always the top-level predator that creates a trophic Dchange the behavior of, or destroy populations of plants cascade. The loss or reduction of populations at any trophic and animals. These effects can ripple up and down food level—including amphibians, insects, or plants—can result chains, causing what is known as a trophic cascade. in changes that are difficult to perceive, but nonetheless A trophic cascade is one easily-understood example equally damaging to the stability and long-term health of of ecosystem-mediated pesticide effects. an ecosystem. Salient research on the disruptive, cascading effects that pesticides have at the ecosystem level must lead In determining legal pesticide use patterns that protect regulators to a broader consideration of the indirect impacts ecosystems (the complex web of organisms in nature) EPA caused by the introduction of these chemicals into complex requires a set of tests intended to measure both acute and living systems.