Wo 2007/103515 A2

Total Page:16

File Type:pdf, Size:1020Kb

Wo 2007/103515 A2 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 13 September 2007 (13.09.2007) WO 2007/103515 A2 (51) International Patent Classification: CA 95008 (US). CRAMERI, Andreas [CH/US]; 12020 A61K 38/16 (2006.01) C40B 40/10 (2006.01) Green Hills Court, Los Altos Hills, CA 94022 (US). C40B 40/08 (2006.01) C07K 14/47 (2006.01) (74) Agents: WONG, Karen, K. et al.; Wilson Sonsini (21) International Application Number: Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA PCT/US2007/005952 94306-1050 (US). (22) International Filing Date: 6 March 2007 (06.03.2007) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) Filing Language: English AT,AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, (26) Publication Language: English GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, (30) Priority Data: LT,LU, LY,MA, MD, MG, MK, MN, MW, MX, MY, MZ, 60/743,410 6 March 2006 (06.03.2006) US NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, 60/743,622 21 March 2006 (2 1.03.2006) US SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, 11/528,927 27 September 2006 (27.09.2006) US TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW 11/528,950 27 September 2006 (27.09.2006) US (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): AMU- kind of regional protection available): ARIPO (BW, GH, NIX, INC. [US/US]; 500 Ellis Street, Suite B, Mountain GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, View, C 94043 (US). ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, (72) Inventors; and FR, GB, GR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, PL, (75) Inventors/Applicants (for US only): SCHELLEN- PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, BERGER, Volker [DE/US]; 914 Moreno Avenue, Palo GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). Alto, California 94303 (US). STEMMER, Willem, P. [NL/US]; 108 Kathy Court, Los Gatos, CA 95030 (US). Published: WANG, Chia-wei [-/US]; 3444 El Camino Real #307, — without international search report and to be republished Santa Clara, CA 95051 (US). SCHOLLE, Michael, D. upon receipt of that report [US/US]; 100 N. Whisman Road, Apt. 3613, Mountain View, CA 94043 (US). POPKOV, Mikhail [CA/US]; 9917 For two-letter codes and other abbreviations, refer to the "G uid Aviary Drive, San Diego, CA 92131 (US). GORDON, ance Notes on Codes and Abbreviations" appearing at the beg in Nathaniel, C. [US/US]; 1415 Sharp Court, Campbell, ning of each regular issue of the PCT Gazette. (54) Title: UNSTRUCTURED RECOMBINANT POLYMERS AND USES THEREOF (57) Abstract: The present invention provides unstructured recombinant polymers (URPs) andproteins containing one or more of the URPs. The present invention also provides microproteins, toxins and other related proteinaceous entities, as well as genetic packages displaying these entities. The present invention also provides recombinant polypeptides including vectors encoding the subject proteinaceous entities, as well as host cells comprising the vectors. The subject compositions have a variety of utilities including a range of pharmaceutical applications. UNSTRUCTURED RECOMBINANT POLYMERS AND USES THEREOF CROSS-REFERENCE [0001] This application claims the benefit of U.S. Provisional Application No. 60/743,410 filed March 6, 2006, which application is incorporated herein by reference. This application is a continuation-in- ρart application of 11/528,927 and 11/528,950, filed on September 27, 2006, which in turn claim priority to provisional applications serial nos. 60/721,270, 60/721,188, filed on 9/27/2005 and 60/743,622 filed on 03/21/06, all of which are herein incorporated by reference in their entirety. BACKGROUND OF THE INVENTION [0002] It has been well documented that properties of proteins, in particular plasma clearance and imrnunogenicity, can be improved by attaching hydrophilic polymers to these proteins (Kochendoerfer, G. (2003) Expert Opin Biol Ther, 3: 1253-61), (Greenwald, R. B., et al. (2003) Adv Drug Deliv Rev, 55: 217- 50), (Harris, J. M., et al. (2003) Nat Rev Drug Discov, 2: 214-2 1). Examples of polymer-modified proteins that have been approved by the FDA for treatment of patients are Adagen, Oncaspar, PEG-Intron, Pegasys, Somavert, and Neulasta. Many more polymer-modified proteins are in clinical trials. These polymers exert their effect by increasing the hydrodynamic radius (also called Stokes' radius) of the modified protein relative to the unmodified protein, which reduces the rate of clearance by kidney filtration (Yang, K., et al. (2003) Protein Eng, 16: 761-70). In addition, polymer attachment can reduce interaction of the modified protein with other proteins, cells, or surfaces. In particular, polymer attachment can reduce interactions between the modified protein and antibodies and other components of the immune system thus reducing the formation of a host immune response to the modified protein. Of particular interest is protein modification by PEGylation, i.e. by attaching linear or branched polymers of polyethylene glycol. Reduced immunogenicity upon PEGylation was shown for example for phenylalanine ammonia lyase (Garnez, A., et al. (2005) MoI Ther, 11: 986-9), antibodies (Deckert, P. M., et al. (2000) IntJ Cancer, 87: 382-90.), Staphylokinase (Collen, D., et al. (2000) Circulation, 102: 1766-72), and hemoglobin (Jin, C , et al. (2004) Protein Pept Lett, 11: 353-60). Typically, such polymers are conjugated with the protein of interest via a chemical modification step after the unmodified protein has been purified. [0003] Various polymers can be attached to proteins. Of particular interest are hydrophilic polymers that have flexible conformations and are well hydrated in aqueous solutions. A frequently used polymer is polyethylene glycol (PEG). These polymers tend to have large hydrodynamic radi relative to their molecular weight (Kubetzko, S., et al. (2005) MoI Pharmacol, 68: 1439-54). The attached polymers tend to have limited interactions with the protein they have been attached to and thus the polymer-modified protein retains its relevant functions. [0004] The chemical conjugation of polymers to proteins requires complex multi-step processes. Typically, the protein component needs to be produced and purified prior to the chemical conjugation step. The conjugation step can result in the formation of product mixtures that need to be separated leading to significant product loss. Alternatively, such mixtures can be used as the final pharmaceutical product. Some examples are currently marketed PEGylated Interferon-alpha products that are used as mixtures (Wang, B. L., etal. (1998) JSubmicrosc Cytol Pathol, 30: 503-9; Dhalluin,C , et al. (2005) Bioconjug Chem, 16: 504-17). -Such mixtures are difficult to manufacture and characterize and they contain isomers with reduced or no therapeutic activity. [0005] Methods have been described that allow the site-specific addition of polymers like PEG. Examples are the selective PEGylation at a unique glycosylation site of the target protein or the selective PEGylation of a non-natural amino acid that has been engineered into the target proteins. In some cases it has been possible to selectively PEGylate the N-terminus of a protein while avoiding PEGylation of lysine side chains in the target protein by carefully controlling the reaction conditions. Yet another approach for the site-specific PEGylation of target proteins is the introduction of cysteine residues that allow selective conjugation. All these methods have significant limitations. The selective PEGylation of the N-terminus requires careful process control and side reactions are difficult to eliminate. The introduction of cysteines for PEGylation can interfere with protein production and/or purification. The specific introduction of non-natural amino acids requires specific host organisms for protein production. A further limitation of PEGylation is that PEG is typically manufactured as a mixture of polymers with similar but not uniform length. The same limitations are inherent in many other chemical polymers. [0006] Chemical conjugation using multifunctional polymers which would allow the synthesis of products with multiple protein modules is even more complex then the polymer conjugation of a single protein domain. [0007] Recently, it has been observed that some proteins of pathogenic organisms contain repetitive peptide sequences that seem to lead to a relatively long serum halflife of the proteins containing these sequences (Alvarez, P., et al. (2004) J Biol Chem, 279: 3375-81). It has also been demonstrated that oligomeric sequences that are based on such pathogen-derived repetitive sequences can be fused to other proteins resulting in increased serum halflife. However, these pathogen-derived oligomers have a number of deficiencies. The pathogen-derived sequences tend to be immunogenic. It has been described that the sequences can be modified to reduce their immunogenicity. However, no attempts have been reported to remove T cell epitopes from the sequences contributing to the formation of immune reactions. Furthermore, the pathogen-derived sequences have not been optimized for pharmacological applications which require
Recommended publications
  • Supporting Online Material
    1 2 3 4 5 6 7 Supplementary Information for 8 9 Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic 10 retinopathy 11 12 *Samuel A. Mills, *Andrew I. Jobling, *Michael A. Dixon, Bang V. Bui, Kirstan A. Vessey, Joanna A. Phipps, 13 Ursula Greferath, Gene Venables, Vickie H.Y. Wong, Connie H.Y. Wong, Zheng He, Flora Hui, James C. 14 Young, Josh Tonc, Elena Ivanova, Botir T. Sagdullaev, Erica L. Fletcher 15 * Joint first authors 16 17 Corresponding author: 18 Prof. Erica L. Fletcher. Department of Anatomy & Neuroscience. The University of Melbourne, Grattan St, 19 Parkville 3010, Victoria, Australia. 20 Email: [email protected] ; Tel: +61-3-8344-3218; Fax: +61-3-9347-5219 21 22 This PDF file includes: 23 24 Supplementary text 25 Figures S1 to S10 26 Tables S1 to S7 27 Legends for Movies S1 to S2 28 SI References 29 30 Other supplementary materials for this manuscript include the following: 31 32 Movies S1 to S2 33 34 35 36 1 1 Supplementary Information Text 2 Materials and Methods 3 Microglial process movement on retinal vessels 4 Dark agouti rats were anaesthetized, injected intraperitoneally with rhodamine B (Sigma-Aldrich) to label blood 5 vessels and retinal explants established as described in the main text. Retinal microglia were labelled with Iba-1 6 and imaging performed on an inverted confocal microscope (Leica SP5). Baseline images were taken for 10 7 minutes, followed by the addition of PBS (10 minutes) and then either fractalkine or fractalkine + candesartan 8 (10 minutes) using concentrations outlined in the main text.
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Gene Pval Qval Log2 Fold Change AAMP 0.895690332 0.952598834
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut Gene pval qval Log2 Fold Change AAMP 0.895690332 0.952598834 -0.21 ABI3BP 0.002302151 0.020612283 0.465 ACHE 0.103542461 0.296385483 -0.16 ACTG2 2.99E-07 7.68E-05 3.195 ACVR1 0.071431098 0.224504378 0.19 ACVR1C 0.978209579 0.995008423 0.14 ACVRL1 0.006747504 0.042938663 0.235 ADAM15 0.158715519 0.380719469 0.285 ADAM17 0.978208929 0.995008423 -0.05 ADAM28 0.038932876 0.152174187 -0.62 ADAM8 0.622964796 0.790251882 0.085 ADAM9 0.122003358 0.329623107 0.25 ADAMTS1 0.180766659 0.414256926 0.23 ADAMTS12 0.009902195 0.05703885 0.425 ADAMTS8 4.60E-05 0.001169089 1.61 ADAP1 0.269811968 0.519388039 0.075 ADD1 0.233702809 0.487695826 0.11 ADM2 0.012213453 0.066227879 -0.36 ADRA2B 0.822777921 0.915518785 0.16 AEBP1 0.010738542 0.06035531 0.465 AGGF1 0.117946691 0.320915024 -0.095 AGR2 0.529860903 0.736120272 0.08 AGRN 0.85693743 0.928047568 -0.16 AGT 0.006849995 0.043233572 1.02 AHNAK 0.006519543 0.042542779 0.605 AKAP12 0.001747074 0.016405449 0.51 AKAP2 0.409929603 0.665919397 0.05 AKT1 0.95208288 0.985354963 -0.085 AKT2 0.367391504 0.620376005 0.055 AKT3 0.253556844 0.501934205 0.07 ALB 0.064833867 0.21195036 -0.315 ALDOA 0.83128831 0.918352939 0.08 ALOX5 0.029954404 0.125352668 -0.3 AMH 0.784746815 0.895196237 -0.03 ANG 0.050500474 0.181732067 0.255 ANGPT1 0.281853305 0.538528647 0.285 ANGPT2 0.43147281 0.675272487 -0.15 ANGPTL2 0.001368876 0.013688762 0.71 ANGPTL4 0.686032669 0.831882134 -0.175 ANPEP 0.019103243 0.089148466 -0.57 ANXA2P2 0.412553021 0.665966092 0.11 AP1M2 0.87843088 0.944681253 -0.045 APC 0.267444505 0.516134751 0.09 APOD 1.04E-05 0.000587404 0.985 APOE 0.023722987 0.104981036 -0.395 APOH 0.336334555 0.602273505 -0.065 Sundar R, et al.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • R&D Assay for Alzheimer's Disease
    R&DR&D assayassay forfor Alzheimer’sAlzheimer’s diseasedisease Target screening⳼ Ⲽ㬔 antibody array, ᢜ⭉㬔 ⸽ἐⴐ Amyloid β-peptide Alzheimer’s disease⯸ ኸᷠ᧔ ᆹ⸽ inhibitor, antibody, ELISA kit Surwhrph#Surilohu#Dqwlerg|#Duud| 6OUSFBUFE 1."5SFBUFE )41 $3&# &3, &3, )41 $3&# &3, &3, 壤伡庰䋸TBNQMF ɅH 侴䋸嵄䍴䋸BOBMZUFT䋸䬱娴哜塵 1$ 1$ 1$ 1$ 5IFNPTUSFGFSFODFEBSSBZT 1$ 1$ QQ α 34, .4, 503 Q α 34, .4, 503 %SVHTDSFFOJOH0òUBSHFUFòFDUT0ATHWAY涭廐 6OUSFBUFE 堄币䋸4BNQMF侴䋸8FTUFSOPS&-*4"䍘䧽 1."5SFBUFE P 8FTUFSOCMPU廽喜儤应侴䋸0, Z 4VCTUSBUF -JHIU )31DPOKVHBUFE1BO "OUJQIPTQIPUZSPTJOF .FBO1JYFM%FOTJUZ Y $BQUVSF"OUJCPEZ 5BSHFU"OBMZUF "SSBZ.FNCSBOF $3&# &3, &3, )41 .4, Q α 34, 503 Human XL Cytokine Array kit (ARY022, 102 analytes) Adiponectin,Aggrecan,Angiogenin,Angiopoietin-1,Angiopoietin-2,BAFF,BDNF,Complement,Component C5/C5a,CD14,CD30,CD40L, Chitinase 3-like 1,Complement Factor D,C-Reactive Protein,Cripto-1,Cystatin C,Dkk-1,DPPIV,EGF,EMMPRIN,ENA-78,Endoglin, Fas L,FGF basic,FGF- 7,FGF-19,Flt-3 L,G-CSF,GDF-15,GM-CSF,GRO-α,Grow th Hormone,HGF,ICAM-1,IFN-γ,IGFBP-2,IGFBP-3, IL-1α,IL-1β, IL-1ra,IL-2,IL-3,IL-4,IL- 5,IL-6,IL-8, IL-10,IL-11,IL-12, IL-13,IL-15,IL-16,IL-17A,IL-18 BPa,IL-19,IL-22, IL-23,IL-24,IL-27, IL-31,IL-32α/β/γ,IL-33,IL-34,IP-10,I-TAC,Kallikrein 3,Leptin,LIF,Lipocalin-2,MCP-1,MCP-3,M-CSF,MIF,MIG,MIP-1α/MIP-1β,MIP-3α,MIP-3β,MMP-9, Myeloperoxidase,Osteopontin, p70, PDGF-AA, PDGF-AB/BB,Pentraxin-3, PF4, RAGE, RANTES,RBP4,Relaxin-2, Resistin,SDF-1α,Serpin E1, SHBG, ST2, TARC,TFF3,TfR,TGF- ,Thrombospondin-1,TNF-α, uPAR, VEGF, Vitamin D BP Human Protease (34 analytes) /
    [Show full text]
  • Mitochondrial Protein Quality Control Mechanisms
    G C A T T A C G G C A T genes Review Mitochondrial Protein Quality Control Mechanisms Pooja Jadiya * and Dhanendra Tomar * Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA * Correspondence: [email protected] (P.J.); [email protected] (D.T.); Tel.: +1-215-707-9144 (D.T.) Received: 29 April 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases. Keywords: mitochondria; proteome; ubiquitin; proteasome; chaperones; protease; mitophagy; mitochondrial protein quality control; mitochondria-associated degradation; mitochondrial unfolded protein response 1. Introduction Mitochondria are double membrane, dynamic, and semiautonomous organelles which have several critical cellular functions.
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • Structure of Neurolysin Reveals a Deep Channel That Limits Substrate Access
    Structure of neurolysin reveals a deep channel that limits substrate access C. Kent Brown*†, Kevin Madauss*, Wei Lian‡, Moriah R. Beck§, W. David Tolbert¶, and David W. Rodgersʈ Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536 Communicated by Stephen C. Harrison, Harvard University, Cambridge, MA, December 29, 2000 (received for review November 14, 2000) The zinc metallopeptidase neurolysin is shown by x-ray crystallog- cytosolic, but it also can be secreted or associated with the raphy to have large structural elements erected over the active site plasma membrane (11), and some of the enzyme is made with a region that allow substrate access only through a deep narrow mitochondrial targeting sequence by initiation at an alternative channel. This architecture accounts for specialization of this neu- transcription start site (12). ropeptidase to small bioactive peptide substrates without bulky Although neurolysin cleaves a number of neuropeptides in secondary and tertiary structures. In addition, modeling studies vitro, its most established (5, 13, 14) role in vivo (along with indicate that the length of a substrate N-terminal to the site of thimet oligopeptidase) is in metabolism of neurotensin, a 13- hydrolysis is restricted to approximately 10 residues by the limited residue neuropeptide. It hydrolyzes this peptide between resi- size of the active site cavity. Some structural elements of neuro- dues 10 and 11, creating shorter fragments that are believed to ␤ lysin, including a five-stranded -sheet and the two active site be inactive. helices, are conserved with other metallopeptidases. The connect- Neurotensin (pGlu-Leu-Tyr-Gln-Asn-Lys-Pro-Arg-Arg- ing loop regions of these elements, however, are much extended Pro s Tyr-Ile-Leu) is found in a variety of peripheral and in neurolysin, and they, together with other open coil elements, central tissues where it is involved in a number of effects, line the active site cavity.
    [Show full text]
  • ADAM8 Expression in Invasive Breast Cancer Promotes Tumor Dissemination and Metastasis
    ADAM8 expression in invasive breast cancer promotes tumor dissemination and metastasis Mathilde Romagnoli, Nora Mineva, Michael Polmear, Catharina Conrad, Srimathi Srinivasan, Delphine Loussouarn, Sophie Barillé-Nion, Irene Georgakoudi, Aine Dagg, Enda Mcdermott, et al. To cite this version: Mathilde Romagnoli, Nora Mineva, Michael Polmear, Catharina Conrad, Srimathi Srinivasan, et al.. ADAM8 expression in invasive breast cancer promotes tumor dissemination and metastasis. EMBO Molecular Medicine, Wiley Open Access, 2014, 6 (2), pp.278-294. 10.1002/emmm.201303373. inserm-02447040 HAL Id: inserm-02447040 https://www.hal.inserm.fr/inserm-02447040 Submitted on 21 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Research Article ADAM8 expression in invasive breast cancer promotes tumor dissemination and metastasis Mathilde Romagnoli1, Nora D Mineva1, Michael Polmear2, Catharina Conrad3, Srimathi Srinivasan1, Delphine Loussouarn4, Sophie Barille-Nion4, Irene Georgakoudi2, Aine Dagg5,6, Enda W McDermott6, Michael J Duffy6, Patricia M. McGowan5,6, Uwe Schlomann3, Maddy Parsons7,Jorg€ W Bartsch3 & Gail E Sonenshein1,* Abstract Introduction The transmembrane metalloprotease-disintegrin ADAM8 mediates Cancer metastasis results from a multistep process that selects for cell adhesion and shedding of ligands, receptors and extracellular invasive tumor cells capable of escaping from the primary site and matrix components.
    [Show full text]
  • VPS10P-Domain Receptor Family
    R&D Systems Tools for Cell Biology Research™ NEUROSCIENCE FOCUS: NEUROTROPHIC FACTORS VPS10P-domain Receptor Family FEATURED DATA: APP · BDNF · b-NGF · NGF R · Phospho-APP · Phospho-TrkA · Phospho-TrkB · Phospho-TrkC · SorCS2 · SorLA · Sortilin · TrkA VPS10P-domain Receptors Vacuolar protein sorting 10 protein (VPS10P)-domain receptors are type I transmembrane proteins that bind a range of ligands including neu- rotrophins, neuropeptides, and other transmembrane proteins. Additional studies suggest novel roles for VPS10P-domain receptors in ciliary neurotrophic factor (CNTF) signaling, and in the trafficking of Lipoprotein Lipase (LPL) and Cholesterol. In vertebrates, there are five members of the family, Sortilin, sorting protein-related receptor with A-type repeats (SorLA), Sortilin-related receptor CNS expressed 1 (SorCS1), SorCS2, and SorCS3. These multifunctional molecules have been shown to affect neuronal viability and function by regulating protein transport and signal transduction. Each receptor is expressed in distinct neuronal populations, suggesting discrete functions in different cell types. Variable function between family members is supported by the subcellular expression of each receptor. Sortilin and SorLA are predominantly found intracellularly, in the trans-Golgi network (TGN), with less than 10% at the cell surface. Subcellular trafficking of SorCS1 is dependent on the splice variant. SorCS1a is predominantly intracellular, SorCS1b is expressed at the cell surface, and SorCS1c is evenly divided between the two. SorCS2
    [Show full text]
  • Airway Inflammation in Mice Adam8 Limits the Development of Allergic
    Adam8 Limits the Development of Allergic Airway Inflammation in Mice Martin D. Knolle, Takahiro Nakajima, Anja Hergrueter, Kushagra Gupta, Francesca Polverino, Vanessa J. Craig, This information is current as Susanne E. Fyfe, Muhammad Zahid, Perdita Permaul, of October 2, 2021. Manuela Cernadas, Gilbert Montano, Yohannes Tesfaigzi, Lynette Sholl, Lester Kobzik, Elliot Israel and Caroline A. Owen J Immunol 2013; 190:6434-6449; Prepublished online 13 May 2013; Downloaded from doi: 10.4049/jimmunol.1202329 http://www.jimmunol.org/content/190/12/6434 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2013/05/13/jimmunol.120232 Material 9.DC1 References This article cites 77 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/190/12/6434.full#ref-list-1 Why The JI? Submit online. by guest on October 2, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Adam8 Limits the Development of Allergic Airway Inflammation in Mice Martin D.
    [Show full text]
  • ADAM10 Controls Collagen Signaling and Cell Migration on Collagen by Shedding the Ectodomain of Discoidin Domain Receptor 1 (DDR1)
    M BoC | ARTICLE ADAM10 controls collagen signaling and cell migration on collagen by shedding the ectodomain of discoidin domain receptor 1 (DDR1) Yasuyuki Shitomia, Ida B. Thøgersenb, Noriko Itoa, Birgit Leitingerc, Jan J. Enghildb, and Yoshifumi Itoha aKennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom; bDepartment of Molecular Biology and Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark; cNational Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom ABSTRACT Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds and Monitoring Editor transmits signals from various collagens in epithelial cells. However, how DDR1–dependent Jean E. Schwarzbauer signaling is regulated has not been understood. Here we report that collagen binding in- Princeton University duces ADAM10-dependent ectodomain shedding of DDR1. DDR1 shedding is not a result of Received: Oct 21, 2014 an activation of its signaling pathway, since DDR1 mutants defective in signaling were shed Revised: Dec 4, 2014 in an efficient manner. DDR1 and ADAM10 were found to be in a complex on the cell surface, Accepted: Dec 16, 2014 but shedding did not occur unless collagen bound to DDR1. Using a shedding-resistant DDR1 mutant, we found that ADAM10-dependent DDR1 shedding regulates the half-life of colla- gen-induced phosphorylation of the receptor. Our data also revealed that ADAM10 plays an important role in regulating DDR1-mediated cell adhesion to achieve efficient cell migration on collagen matrices. INTRODUCTION Extracellular matrix (ECM) is essential in multicellular organisms to discoidin domain receptors (DDRs), glycoprotein VI, leukocyte-asso- maintain functional tissue structures; it acts as scaffolding to support ciated, immunoglobulin-like receptors, and mannose receptors such cell migration and as a reservoir for growth factors.
    [Show full text]