Baptria 2011-1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Luonnontilan Selvitys
ENONTEKIÖN KUNTA KILPISJÄRVI 2020 ͳHANKE LUONNONTILAN SELVITYS 15.12.2010 Pohjakartat © Maamittauslaitos 2010 Valokuvat © FCG Finnish Consulting Group / Minna Tuomala ja Jari Kärkkäinen ENONTEKIÖN KUNTA KILPISJÄRVI 2020 ͳHANKE LUONNONTILAN SELVITYS 15.12.2010 Kilpisjärvi 2020 -hanke Sisällys Luonnontilan selvitys SISÄLLYS 1 JOHDANTO ...................................................................................6 2 SELVITYSALUE .............................................................................7 2.1 Kaavatilanne .......................................................................... 8 2.2 Suojelualueet ja suojeluohjelmien alueet ....................................8 3 TUTKIMUSMENETELMÄT JA AINEISTO ..........................................9 3.1 Maastotyöt ............................................................................. 9 3.2 Muu aineisto ........................................................................... 9 4 LUONNONOLOSUHTEET ..............................................................10 4.1 Ilmasto .................................................................................10 4.2 Kallioperä ..............................................................................10 4.3 Maaperä ...............................................................................12 4.4 Vesiolot ................................................................................12 4.4.1 Pohjavedet ....................................................................12 4.4.2 Pintavedet ....................................................................13 -
Phylogeny and Evolution of Lepidoptera
EN62CH15-Mitter ARI 5 November 2016 12:1 I Review in Advance first posted online V E W E on November 16, 2016. (Changes may R S still occur before final publication online and in print.) I E N C N A D V A Phylogeny and Evolution of Lepidoptera Charles Mitter,1,∗ Donald R. Davis,2 and Michael P. Cummings3 1Department of Entomology, University of Maryland, College Park, Maryland 20742; email: [email protected] 2Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 3Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742 Annu. Rev. Entomol. 2017. 62:265–83 Keywords Annu. Rev. Entomol. 2017.62. Downloaded from www.annualreviews.org The Annual Review of Entomology is online at Hexapoda, insect, systematics, classification, butterfly, moth, molecular ento.annualreviews.org systematics This article’s doi: Access provided by University of Maryland - College Park on 11/20/16. For personal use only. 10.1146/annurev-ento-031616-035125 Abstract Copyright c 2017 by Annual Reviews. Until recently, deep-level phylogeny in Lepidoptera, the largest single ra- All rights reserved diation of plant-feeding insects, was very poorly understood. Over the past ∗ Corresponding author two decades, building on a preceding era of morphological cladistic stud- ies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yield- ing to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution. -
Travaux Scientifiques Du Parc National De La Vanoise : BUVAT (R.), 1972
ISSN 0180-961 X a Vanoise .'.Parc National du de la Recueillis et publiés sous la direction de Emmanuel de GUILLEBON Directeur du Parc national et Ch. DEGRANGE Professeur honoraire à l'Université Joseph Fourier, Grenoble Ministère de l'Environnement Direction de la Nature et des Paysages Cahiers du Parc National de la Vanoise 135 rue du Docteur Julliand Boîte Postale 706 F-73007 Chambéry cedex ISSN 0180-961 X © Parc national de la Vanoise, Chambéry, France, 1995 SOMMAIRE COMPOSITION DU COMITÉ SCIENTIFIQUE ........................................................................................................ 5 LECTURE CRITIQUE DES ARTICLES .......................................................................................................................... 6 LISTE DES COLLABORATEURS DU VOLUME ..................................................................................................... 6 EN HOMMAGE : ]V[arius HUDRY (1915-1994) ........................................................................................... 7 CONTRIBUTIONS SCIENTIFIQUES M. HUDRY (+). - Vanoise : son étymologie .................................................................................. 8 J. DEBELMAS et J.-P. EAMPNOUX. - Notice explicative de la carte géolo- gique simplifiée du Parc national de la Vanoise et de sa zone périphé- rique (Savoie) ......................................................................................................,.........................................^^ 16 G. NlCOUD, S. FUDRAL, L. JUIF et J.-P. RAMPNOUX. - Hydrogéologie -
New Pest Response Guidelines False Codling Moth Thaumatotibia Leucotreta
United States Department of New Pest Response Agriculture Marketing and Regulatory Guidelines Programs Animal and False Codling Moth Plant Health Inspection Service Thaumatotibia leucotreta Cooperating State Departments of Agriculture August 13, 2007 New Pest Response Guidelines False Codling Moth Thaumatotibia leucotreta August 13, 2007 New Pest Response Guidelines: False Codling Moth Thaumatotibia leucotreta was prepared by Jeffrey Stibick, USDA–APHIS–PPQ–Emergency and Domestic Programs and edited by Patricia S. Michalak, USDA–APHIS–PPQ–Manuals Unit. Cite this report as follows: Stibick, J. 2006. New Pest Response Guidelines: False Codling Moth Thaumatotibia leucotreta. USDA–APHIS–PPQ–Emergency and Domestic Programs, Riverdale, Maryland [http://www.aphis.usda.gov/ import_export/plants/ppq_manuals.shtml]. R. L. Dunkle May 3, 2007 Richard Dunkle, Deputy Administrator Date USDA–APHIS–PPQ Emergency and Domestic Programs Emergency Planning Joel Floyd, Team Leader 4700 River Road Unit 137 Riverdale, Maryland 20737 Telephone: 310/734-4396 [email protected] 1 Credits False Codling Moth Contributors Stephanie Bloem, U. S. Department of Agriculture (USDA)–Animal and Plant Health Inspection Service (APHIS)–Center for Plant Health Science and Technology (CPHST), Raleigh, North Carolina Jim E. Carpenter, USDA–Agricultural Research Service (ARS)–Crop Protection and Management Research, Tifton, Georgia Susan Ellis, USDA–APHIS–Plant Protection and Quarantine–Office of the Deputy Administrator, Riverdale, Maryland Todd Gilligan, Ohio State University, Museum of Biodiversity, Columbus, Ohio Jeffrey N. L. Stibick, USDA–APHIS–PPQ–Emergency and Domestic Programs, Riverdale, Maryland Shaharra J. Usnick, USDA–APHIS–PPQ–Plant Health Programs, Riverdale, Maryland Robert C. Venette, USDA–Forest Service, St. Paul, Minnesota Industry, State Regulatory Officers, Universities, and Governmental Agencies as credited in: September 1983. -
Seven Species of Olethreutinae (Lepidoptera
JAPB63_proof ■ 19 May 2015 ■ 1/6 Journal of Asia-Pacific Biodiversity xxx (2015) 1e6 55 HOSTED BY Contents lists available at ScienceDirect 56 57 Journal of Asia-Pacific Biodiversity 58 59 60 journal homepage: http://www.elsevier.com/locate/japb 61 62 63 Original Article 64 65 1 Seven species of Olethreutinae (Lepidoptera: Tortricidae) new to 66 2 67 3 Korea 68 4 69 a b c,* 5 Q14 Jae-Cheon Sohn , Kyu-Tek Park , Soowon Cho 70 6 a 71 7 Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA Q1 b The Korean Academy of Science and Technology, Seongnam, Gyeonggi-do, Korea 72 8 c Department of Plant Medicine, Chungbuk National University, Cheongju, Chungcheongbuk-do, Korea 73 9 74 10 75 11 article info abstract 76 12 77 13 Article history: Seven species of Olethreutinae, namely, Bactra venosana (Zeller), Eudemis brevisetosa Oku, Gypsonoma 78 14 Received 10 March 2015 dealbana (Frölich), Hedya iophaea (Meyrick), Lobesia takahirai Bae, Pammene nemorosa Kuznetsov, and 79 Received in revised form 15 Phaecadophora fimbrata Walsingham are reported from Korea for the first time. Photos of adult habitus 80 20 April 2015 16 and genitalia are provided if available. Accepted 23 April 2015 81 Copyright Ó 2015, National Science Museum of Korea (NSMK) and Korea National Arboretum (KNA). 17 Available online xxx 82 Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license (http:// 18 83 creativecommons.org/licenses/by-nc-nd/4.0/). 19 Keywords: 84 20 fauna 85 host plants 21 86 22 new record Tortricoidea 87 23 88 24 89 25 90 26 Introduction In this paper, we report seven species of Olethreutinae new to 91 27 Korea. -
Lepidoptera: Tortricidae): New Synonymies and Holarctic Records
© Entomologica Fennica. 26 October 1998 Boreal Olethreutini 1. {Lepidoptera: Tortricidae): New Synonymies and Holarctic Records Jukka Jalava & William E. Miller Jalava, J. & Miller, W. E. 1998: Boreal Olethreutini 1. (Lepidoptera, Tortrici dae): New Synonymies and Holarctic Records.- Entomol. Fennica 9: 137-142. We examined specimens of selected boreal palaearctic and nearctic taxa of Tortricidae to ascertain whether they might be holarctic conspecifics. Our findings confirm one putative synonymy: Tia enervana (Erschoff, 1877) = Argyroploce vulgana McDunnough, 1922, support four new synonymies: Olethreutes aquilonanus (Karvonen, 1932) = 0. kononenkoi Kuznetsov, 1991, 0. heinrichanus (McDunnough, 1927) = 0. hyperboreanus (Karvonen, 1932), 0 . turfosanus (Herrich-Schaffer, 1851) = 0 . intermistanus (Clemens, 1865), 0. septentrionanus (Curtis, 1835) = 0. schaefferanus (Herrich-Schiiffer, 1851) and resurrect one name from synonymy: the nearctic 0. kennethanus McDun nough, 1941 is not conspecific with the palaearctic 0. obsoletanus (Zetterstedt, 1840). Through synonymies and records, seven species are new for the Nearctic, and ten are considered holarctic. These results increase the percentage of holarctic Beringian tortricid species from 48 to 61. Jukka Jalava, Finnish Museum ofNatural History, Zoological Museum, Division of Entomology, P. 0. Box 17 (P. Rautatiekatu 13) FIN-00014 University of Helsinki, Finland William E. Miller, Department ofEntomology, University ofMinnesota , 1980 Folwell Avenue, St. Paul, Minnesota 55108-6125, USA Received 23 May 1997, accepted 20 Apri/1998 1. Introduction 2. Materials and methods Our collaboration started after Miller ( 1995) syn Much of our material was collected by various onymized the Nearctic E. arctica Miller of Alaska Finnish-Russian expeditions to Siberia starting in and Yukon with the Transpalaearctic Epiblema 1982 (Kuznetsov & Jalava 1988, Kuznetsov & simplonianum (Duponchel), thus making the lat Mikkola 1991). -
Bulletin 132
fj/^ (U^^tj^.J-'^'^^^^ ^^^^ S>nTHSONI.\N INSTITTTION UNITED STATES NATIONAL MUSEUM Bulletin 132 REVISION OF THE NORTH AMERICAN MOTHS OF THE SUBFAMILIES LASPEYRESIINAE AND OLETHREUTINAE BY CARL HEINRICH Of the Bureau of Entomology, United St^es Deparimirtt of Agriculture WASHINGTON GOVERNMENT PRINTING OFFICE 1926 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 75 CENTS PER COPY — ADVERTISEMENT The scientific publications of the National Museum consist of two series Proceedings and Bulletins. The Proceedings, the first volume of which was issued in 1878, are intended primarily as a medium for the publication of original papers based on the collections of the National Museum, setting forth newly acquired facts in biology, anthropology, and geology derived therefrom, or containing descriptions of new forms and revisions of limited groups. One or two volumes are completed annually and copies of each paper, in pamphlet form, are dis- tributed as soon as published to libraries and scientific organizations and to specialists and others interested in the different subjects. The dates at which these separate papers are published are recorded in the table of contents of the volume. The Bulletins^ the first of which was issued in 1875, consist of a series of separate organizations comprising chiefly monographs of large zoological groups and other general systematic treatises (occa- sionally in several volumes), faunal works, reports of expeditions, and catalogues of type specimens, special collections, etc. The majority of the volumes are octavos, but a quarto size has been adopted in a few instances in which large plates were regarded as indispensable. -
Boreal Olethreutini 2, (Tortricidae): Wing and Genitalia Illustrations , a New Synonymy, and a New Holarctic Addition
Journal of the Lepidnpterists' Society 54(2), 2000, 47~Sl BOREAL OLETHREUTINI 2, (TORTRICIDAE): WING AND GENITALIA ILLUSTRATIONS , A NEW SYNONYMY, AND A NEW HOLARCTIC ADDITION WILLIAM K MILLER Department of Entomology, University of Minnesota, 1980 Folwell Avenue, St. Paul, Minnesota 5510S, USA AND JUKKA JALAVA Division of Entomology, Zoological Museum, Finnish Museum of Natural History, P.O. Box 17 (P. Rautatiekatu 13) FIN-00014 University of Helsinki, FINLAND ABSTRACT. We provide photographs of wings and genitalia of the Holarctic Tia enervana (Erschoff), Olethreutes aquilonanus (Karvonen), O. heinrichanus (McDunnaugh), 0. concretanus (Wocke), 0. nordegganus (McDunnough), and the Nearctic O. mengelanus (Fernald), O. cos timaculanus (Fernald), and O. bowmananus (McDunnough). We report O. kennethanus McDunnough to be a juniar synonym of O. nordeg ganus (McDunnough). We present new Nearctic distribution records for O. heinrichanus and O. bowmananus, and the first Palaearctic records far 0. nordegganus, which establish it as Holarctic. Recent discoveries change to 63% the Beringian tortricids that are also Holaretie. Additional key words: Holaretic, Nearctic, Palaearctic. We previously reported 11 boreal species of Tortri Tia enervana (Erschoff) cidae newly confirmed or discovered to be Holarctic (Figs. 1-3) (Jalava & Miller 1998, Miller 1995). Here we revisit Forewing length 6.0-S.0 mm (n = 13). We previously confirmed eight of these species, all poorly known. The wings of that this taxon is Holarctic (Jalava & Miller 1998). Genitalia of one or both sexes have been line illustrated by Dang (1990), Kuznetsav four have not been illustrated before, and sexes of four (1987), Heinrich (1926), and McDunnough (1922). The wings were have not previously been associated or their female illustrated in color by Kuznetsov et al. -
Lepidoptera: Gelechioidea: Xyloryctidae) Share a Uniform Relationship with Wing Venation 363-371 75 (3): 363 – 371 20.12.2017
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2017 Band/Volume: 75 Autor(en)/Author(s): Schachat Sandra R. Artikel/Article: Connecting the dots: Spots and bands on the wings of Lichenaula Meyrick, 1890 (Lepidoptera: Gelechioidea: Xyloryctidae) share a uniform relationship with wing venation 363-371 75 (3): 363 – 371 20.12.2017 © Senckenberg Gesellschaft für Naturforschung, 2017. Connecting the dots: Spots and bands on the wings of Lichenaula Meyrick, 1890 (Lepidoptera: Gelechioidea: Xyloryctidae) share a uniform relationship with wing venation Sandra R. Schachat Mississippi Entomological Museum, Mississippi State, MS 39762, USA; Department of Paleobiology, Smithsonian Institution, Washington, DC 20013, USA; Current address: Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA; Sandra R. Schachat [[email protected]] Accepted 26.vi.2017. Published online at www.senckenberg.de/arthropod-systematics on 11.xii.2017. Editors in charge: Monika Eberhard & Klaus-Dieter Klass Abstract Recent studies have shown that wing pattern in various lineages of microlepidoptera follows one of two predictive models. In the first, called the “alternating wing-margin” model, dark and light pattern elements straddle alternating veins along the costal margin of the wing. In the second, called the “uniform wing-margin” model, pattern elements of a single color straddle all veins along the costa. However, of the dozens of families and superfamilies of moths, a small minority have been studied in this context. In the present contribution, the relationship between wing pattern and wing venation is examined in Lichenaula Meyrick, 1890 (Gelechioidea: Xyloryctidae). -
Nota Lepidopterologica
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Nota lepidopterologica Jahr/Year: 1998 Band/Volume: 21 Autor(en)/Author(s): Spitzer Karel, Jaros Josef Artikel/Article: Argyroploce arbutella (Tortricidae) associated with a montane peat bog in the Sumava Mountains, Czech Republic 283-289 ©Societas Europaea Lepidopterologica; download unter http://www.biodiversitylibrary.org/ und www.zobodat.at Nota lepid. 21 (4): 283-289; 01.XIL1998 ISSN 0342-7536 Argyroploce arbutella (Tortricidae) associated with a montane peat bog in the Sumava Mountains, Czech Republic Karel Spitzer & Josef Jaros Institute of Entomology, Czech Academy of Sciences, Branisovskâ 31, CZ- 370 05 Ceské Budejovice, Czech Republic Summary. The boreo-alpine tortricid moth Argyroploce arbutella (Linnaeus, 1758) seems to be a characteristic cold-adapted species associated with dry stony and rocky treeless habitats. The host plant is usually Arctostaphylos uva-ursi (L.), which does not occur on peatbogs. In the Sumava Mts. (SW Bohemia, Czech Republic), an isolated but abundant A. arbutella population was discovered in a montane peatbog Chalupskâ slat Nature Reserve near Borovâ Lada, at an altitude of 930 m. The only local host plant is Vaccinium vitis-idaea (L.), associated with the treeless central parts of the bog ecosystem. Adults are diurnal and heliophilous, flying from June to August. This Sumava bog population is unique in the Czech Republic. The nearest Austrian and German populations of A. arbutella are recorded from the montane rocky and scree communities with Arctostaphylos only. There are no other records of a tyrphophilous association of A. arbutella with peatlands. -
Immigrant Tortricidae: Holarctic Versus Introduced Species in North America
insects Article Immigrant Tortricidae: Holarctic versus Introduced Species in North America Todd M. Gilligan 1,*, John W. Brown 2 and Joaquín Baixeras 3 1 USDA-APHIS-PPQ-S&T, 2301 Research Boulevard, Suite 108, Fort Collins, CO 80526, USA 2 Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; [email protected] 3 Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Carrer Catedràtic José Beltran, 2, 46980 Paterna, Spain; [email protected] * Correspondence: [email protected] Received: 13 August 2020; Accepted: 29 August 2020; Published: 3 September 2020 Simple Summary: The family Tortricidae includes approximately 11,500 species of small moths, many of which are economically important pests worldwide. A large number of tortricid species have been inadvertently introduced into North America from Eurasia, and many have the potential to inflict considerable negative economic and ecological impacts. Because native species behave differently than introduced species, it is critical to distinguish between the two. Unfortunately, this can be a difficult task. In the past, many tortricids discovered in North America were assumed to be the same as their Eurasian counterparts, i.e., Holarctic. Using DNA sequence data, morphological characters, food plants, and historical records, we analyzed the origin of 151 species of Tortricidae present in North America. The results indicate that the number of Holarctic species has been overestimated by at least 20%. We also determined that the number of introduced tortricids in North America is unexpectedly high compared other families, with tortricids accounting for approximately 23–30% of the total number of moth and butterfly species introduced to North America. -
Intressanta Fynd Av Fjiiltfjflrilar I Sverige 1998
Intressanta fynd av fjiiltfjflrilar i Sverige 1998 NILS RYRHOLM & ANDERS OHLSSON Ryrholm, N. & Ohlsson, A.: Intressanta fynd av fjallfjiirilar i Sverige 1998. [Interesting records of Lepidoptera in the taiga- and tundra regions of Sweden 1998.1 - Ent. Tidskr. l2O (l-2):43-53. Lund, Sweden 1999. ISSN 0013-886x. This is the fifth report on interesting finds and events from the Swedish mountain range and adjacent areas that are generally not reported in the national lists for Micro- and Macrolepi- doptera. Despite the mostly unfavourable weather, with the exception for a relatively warm period in the very north during the first three weeks ofJuly, a large number of species has been observed during 1998. Some species, such as Metaxmeste schrankiana, Loxostege ephippialis, Pyrgus centaureae, Colias nastes, Pieris napi, Clossianafreija, C. frigga, Eu- phydryas iduna, Erebia pandrose, Caloplusia hochenwarthi, Sympistis heliophila, Anarta melanopa, Xestia lyngei, X. tecta, X. alpicola and X. lorezi, have appeared in higher, or even much higher, numbers than normal. Also taiga forest species, such as Xesrla Laetabilis, X. distensa, X. speciosa andX. rhaetica, were more abundant than during an average year. Presumably this is due to the mainly favourable weather during previous years. Among the more remarkable finds were: Depressaria leucocephala, Coleophora paeltsaella (n sp.), Ptycera petasitis, Gnorimoschema valesiella, G. herbichi, G. nordlandicolella, Diasemia reticulais, Clossiana polaris ald Xestia borealis. Other remarkable finds were: Olethreu- tes boisduvaliana, which was found for the first time in Sweden for more than 20 years; Acerbia alpina which also this year was found in large numbers on NissuntjflLrro and last, but not least, Xestia atrata, which was re-found in Hiirjedalen - this was the third record in Sweden and the fourth in Europe.