Lepidoptera: Gelechioidea: Xyloryctidae) Share a Uniform Relationship with Wing Venation 363-371 75 (3): 363 – 371 20.12.2017

Total Page:16

File Type:pdf, Size:1020Kb

Lepidoptera: Gelechioidea: Xyloryctidae) Share a Uniform Relationship with Wing Venation 363-371 75 (3): 363 – 371 20.12.2017 ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2017 Band/Volume: 75 Autor(en)/Author(s): Schachat Sandra R. Artikel/Article: Connecting the dots: Spots and bands on the wings of Lichenaula Meyrick, 1890 (Lepidoptera: Gelechioidea: Xyloryctidae) share a uniform relationship with wing venation 363-371 75 (3): 363 – 371 20.12.2017 © Senckenberg Gesellschaft für Naturforschung, 2017. Connecting the dots: Spots and bands on the wings of Lichenaula Meyrick, 1890 (Lepidoptera: Gelechioidea: Xyloryctidae) share a uniform relationship with wing venation Sandra R. Schachat Mississippi Entomological Museum, Mississippi State, MS 39762, USA; Department of Paleobiology, Smithsonian Institution, Washington, DC 20013, USA; Current address: Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA; Sandra R. Schachat [[email protected]] Accepted 26.vi.2017. Published online at www.senckenberg.de/arthropod-systematics on 11.xii.2017. Editors in charge: Monika Eberhard & Klaus-Dieter Klass Abstract Recent studies have shown that wing pattern in various lineages of microlepidoptera follows one of two predictive models. In the first, called the “alternating wing-margin” model, dark and light pattern elements straddle alternating veins along the costal margin of the wing. In the second, called the “uniform wing-margin” model, pattern elements of a single color straddle all veins along the costa. However, of the dozens of families and superfamilies of moths, a small minority have been studied in this context. In the present contribution, the relationship between wing pattern and wing venation is examined in Lichenaula Meyrick, 1890 (Gelechioidea: Xyloryctidae). Species of Lichenaula have wing pattern elements ranging from spots to bands to mottled textures, and they all conform to the uniform wing-margin model. No plausible support was found for the alternating wing-margin model. In previous studies, the relationship between pattern and ve­ nation along the dorsal wing margin has remained unclear due to loss of wing veins and confluence of pattern elements, but certain species of Lichenaula, especially L. maculosa (Turner, 1898), provide evidence that the uniform wing-margin model holds for the dorsum as well as the costa. Previous studies have found that ancestral wing veins continue to influence the development of wing patterns that follow the alternating wing-margin model, even if not expressed in the adult wing, but the wing patterns of Lichenaula suggest that this is not the case for the uniform wing-margin model. Instead, it appears that the only veins that determine the development of wing pattern in Lichenaula are those that are expressed in the adult wing. Considered in preliminary phylogenetic context, it appears that multiple transitions have occurred between the ancestral alternating wing-margin model and the more derived uniform wing-margin model. Key words Color pattern, development, evolution, homology, microlepidoptera, morphology, scales. 1. Introduction The paraphyletic grade microlepidoptera contains tens in microlepidoptera and, more specifically, the relation­ of thousands of species of moths (VAN NIEUKERKEN et al. ship between wing pattern and wing venation (BRAUN 2011), often small and brown; the typically diminutive 1914; VAN BEMMELEN 1916; LEMCHE 1935). This area of size and drab coloration of these moths belies the tremen­ study is now experiencing a revival that began with the dous diversity of their wing patterns. Many decades ago, proposal of a predictive model based on moths in the fam­ various researchers studied the evolution of wing pattern ily Tortricidae (BROWN & POWELL 1991; BAIXERAS 2002). ISSN 1863-7221 (print) | eISSN 1864-8312 (online) 363 Schachat: Wing pattern of Lichenaula "costa" A "costa" Sc3 R1 A "costa"Sc2 Sc3 R1 R2 A Sc1 Sc2 3 1 R2 Sc1 2 Sc R R2 Rs1 Sc1 Sc Rs1 Rs1 Rs2 Rs2 h Rs2 h Rs3 Rs3 Rs3 Rs4 Rs4 Rs4 M1 M1 M1 M2 M2 M2 M3 3A M3 3A 2A M4 M3 2A 5 M4 2A 1A M 4 1A CuA1M5 M 1A CuA2CuA1M5 CuP2CuP1CuA2CuA1 2CuP1CuA2 "dorsum" CuP2CuP1 "dorsum" CuP "costa" B "costa" Sc3 R1 B "costa"Sc2 Sc3 R1 R2 B Sc1 Sc2 3 1 R2 Sc1 2 Sc R R2 Rs1 Sc1 Sc Rs1 Rs1 Rs2 Rs2 h Rs2 h Rs3 Rs3 Rs3 Rs4 Rs4 Rs4 M1 M1 M1 M2 M2 M2 M3 3A M3 3A 2A M4 M3 2A 5 M4 2A 1A M 4 1A CuA1M5 M 1A CuA2CuA1M5 CuP2CuP1CuA2CuA1 2CuP1CuA2 "dorsum" CuP2CuP1 "dorsum" CuP Fig. 1. The two variants of the “wing-margin” model. Either series of pattern elements – "costa" those illustrated in blue, or those illustrated C "costa" Sc3 R1 C "costa"Sc2 Sc3 R1 R2 C Sc1 Sc2 3 1 R2 in red – could develop a dark color. A: The Sc1 2 Sc R R2 Rs1 Sc1 Sc Rs1 Rs1 Rs2 Rs2 original version of the model, called the “al­ Rs2 h ternating wing­margin” model here. B: A hy­ h Rs3 Rs3 Rs3 pothesized intermediate stage based on Sabat­ Rs4 inca demissa. C: The “uniform wing-margin” Rs4 Rs4 model. The wing venation illustrated here is M1 M1 M1 based on a recent update of the plesiomor­ M2 CHACHAT M2 phic groundplan for Lepidoptera (S M2 M3 & GIBBS 2016). — Abbreviations: h: humeral 3A M3 3A 2A M4 M3 2A 5 M4 2A 1A M 4 vein; Sc: subcosta; R: radius; Rs: radial sector; 1A CuA1M5 M 1A CuA2CuA1M5 CuP2CuP1CuA2CuA1 M: media; CuA: anterior cubitus; CuP: poste­ 2CuP1CuA2 "dorsum" CuP2CuP1 "dorsum" CuP rior cubitus; A: anals. This model, now called the “alternating wing-margin” following observations of a handful of species belong­ model, posits that microlepidopteran wing patterns are ing to the micropterigid genus Sabatinca Walker, 1863 based on two alternating series of bands – one light, one (Fig. 1B); these species are derived within the genus and dark – with each band straddling one vein along the cos­ distantly related to each other, so wing patterns follow­ tal margin of the wing (Fig. 1A). Support for this model ing the uniform wing­margin model were interpreted has been found in various genera of Micropterigidae, a as representing a derived, convergent state (SCHACHAT family that occurs within the most early-diverging lin­ & BROWN 2016). In Psychidae, very few wing patterns eage of Lepidoptera (SCHACHAT & BROWN 2015, 2016). match the alternating wing-margin model, and such an The predictive power of this model was further bolstered interpretation relies on assumptions about the fusion of by empirical confirmation of one of the model’s key as­ wing veins that are very difficult to test; however, many sumptions, a primitive 3-branched Sc vein for Lepido- psychid wing patterns follow the uniform wing-margin ptera (SCHACHAT & GIBBS 2016). model precisely (SCHACHAT & BROWN 2017). And in the However, the lepidopteran tree of life includes many tineid genus Moerarchis Durrant, 1914, color pattern in dozens of microlepidopteran families other than Micro­ some specimens follows the alternating wing­margin pterigidae and Tortricidae (VAN NIEUKERKEN et al. 2011), model near the apex of the wing, but the uniform wing- and support for the alternating wing­margin model in margin model holds more broadly (SCHACHAT 2017). these families has been equivocal thus far. At present, Because the alternating wing-margin model holds for only a few representatives of a few families have been the most basal Sabatinca species and for most other mi­ studied in this context. The wing patterns of tineoid cropterigid genera with patterned wings, this variant of moths most closely follow the “uniform wing-margin” the wing-margin model very likely represents the ances­ model, in which every single vein along the wing costa tral state for lepidopteran wing pattern. And because the – as opposed to every other vein – is surrounded by a alternating wing-margin model holds for Tortricidae as pattern element of the same color (Fig. 1C). This vari­ well, it could plausibly be used to predict wing pattern ant of the “wing-margin” model was originally proposed in any lineage of microlepidoptera. Because the uniform 364 ARTHROPOD SYSTEMATICS & PHYLOGENY — 75 (3) 2017 Fig. 2. Watercolor illustrations of Lichenaula specimens from four species, dorsal views. Courtesy of Celia L. Curtis. wing-margin was inspired by derived, distantly related BROWN 2017; SCHACHAT 2017), but the Gelechioidea have micropterigid species and is not yet known to hold for not yet been examined in this context. Lichenaula there­ any other monotrysian moths, it likely represents a com­ fore presents an opportunity to broaden the morphologi­ mon homoplastic character state. cal and taxonomic scope of this growing area of inquiry. A number of unresolved issues remain with regards to the relationship between wing pattern and venation in microlepidoptera. No examination of any single lineage has yet found full and unequivocal support for the uni­ 2. Materials and methods form wing-margin model. Furthermore, the frequency of wing patterns following the alternating and uniform wing-margin models is still not known. Lastly, many mi­ All species examined are listed in Table 1. All specimens crolepidoptera have speckled or mottled wing patterns; examined here belong to the genus Lichenaula and are such patterns were included in a broad overview of the held in the Australian National Insect Collection in Can­ Psychidae (SCHACHAT & BROWN 2017) but have otherwise berra, Australia. Only forewings were examined because received no attention. hindwings do not have any color pattern. The methods The Australian genus Lichenaula Meyrick, 1890 used here parallel those of recent studies (SCHACHAT & belongs to the subfamily Xyloryctinae (Xyloryctidae), BROWN 2017; SCHACHAT 2017). in the superfamily Gelechioidea (HODGES 1998; KAILA To observe the relationship between wing pattern 2004; KAILA et al. 2011; HEIKKILÄ et al. 2011). This ge­ and wing venation, the clearing agent Histolene was ap­ nus contains species with a variety of wing patterns: plied to individual forewings.
Recommended publications
  • SYSTEMATICS of the MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of T
    SYSTEMATICS OF THE MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Sibyl Rae Bucheli, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Daniel Herms Dr. Hans Klompen _________________________________ Dr. Steven C. Passoa Advisor Graduate Program in Entomology ABSTRACT The phylogenetics, systematics, taxonomy, and biology of Gelechioidea (Insecta: Lepidoptera) are investigated. This superfamily is probably the second largest in all of Lepidoptera, and it remains one of the least well known. Taxonomy of Gelechioidea has been unstable historically, and definitions vary at the family and subfamily levels. In Chapters Two and Three, I review the taxonomy of Gelechioidea and characters that have been important, with attention to what characters or terms were used by different authors. I revise the coding of characters that are already in the literature, and provide new data as well. Chapter Four provides the first phylogenetic analysis of Gelechioidea to include molecular data. I combine novel DNA sequence data from Cytochrome oxidase I and II with morphological matrices for exemplar species. The results challenge current concepts of Gelechioidea, suggesting that traditional morphological characters that have united taxa may not be homologous structures and are in need of further investigation. Resolution of this problem will require more detailed analysis and more thorough characterization of certain lineages. To begin this task, I conduct in Chapter Five an in- depth study of morphological evolution, host-plant selection, and geographical distribution of a medium-sized genus Depressaria Haworth (Depressariinae), larvae of ii which generally feed on plants in the families Asteraceae and Apiaceae.
    [Show full text]
  • Entomology of the Aucklands and Other Islands South of New Zealand: Lepidoptera, Ex­ Cluding Non-Crambine Pyralidae
    Pacific Insects Monograph 27: 55-172 10 November 1971 ENTOMOLOGY OF THE AUCKLANDS AND OTHER ISLANDS SOUTH OF NEW ZEALAND: LEPIDOPTERA, EX­ CLUDING NON-CRAMBINE PYRALIDAE By J. S. Dugdale1 CONTENTS Introduction 55 Acknowledgements 58 Faunal Composition and Relationships 58 Faunal List 59 Key to Families 68 1. Arctiidae 71 2. Carposinidae 73 Coleophoridae 76 Cosmopterygidae 77 3. Crambinae (pt Pyralidae) 77 4. Elachistidae 79 5. Geometridae 89 Hyponomeutidae 115 6. Nepticulidae 115 7. Noctuidae 117 8. Oecophoridae 131 9. Psychidae 137 10. Pterophoridae 145 11. Tineidae... 148 12. Tortricidae 156 References 169 Note 172 Abstract: This paper deals with all Lepidoptera, excluding the non-crambine Pyralidae, of Auckland, Campbell, Antipodes and Snares Is. The native resident fauna of these islands consists of 42 species of which 21 (50%) are endemic, in 27 genera, of which 3 (11%) are endemic, in 12 families. The endemic fauna is characterised by brachyptery (66%), body size under 10 mm (72%) and concealed, or strictly ground- dwelling larval life. All species can be related to mainland forms; there is a distinctive pre-Pleistocene element as well as some instances of possible Pleistocene introductions, as suggested by the presence of pairs of species, one member of which is endemic but fully winged. A graph and tables are given showing the composition of the fauna, its distribution, habits, and presumed derivations. Host plants or host niches are discussed. An additional 7 species are considered to be non-resident waifs. The taxonomic part includes keys to families (applicable only to the subantarctic fauna), and to genera and species.
    [Show full text]
  • USDA, Forest Service Forest Health Protection GSA Contract No
    SERA TR 02-43-13-03b Triclopyr - Revised Human Health and Ecological Risk Assessments Final Report Prepared for: USDA, Forest Service Forest Health Protection GSA Contract No. GS-10F-0082F USDA Forest Service BPA: WO-01-3187-0150 USDA Purchase Order No.: 43-1387-2-0245 Task No. 13 Submitted to: Dave Thomas, COTR Forest Health Protection Staff USDA Forest Service Rosslyn Plaza Building C, Room 7129C 1601 North Kent Street Arlington, VA 22209 Submitted by: Patrick R. Durkin Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Telephone: (315) 637-9560 Fax: (315) 637-0445 E-Mail: [email protected] Home Page: www.sera-inc.com March 15, 2003 TABLE OF CONTENTS LIST OF APPENDICES ...................................................... iv LIST OF WORKSHEETS ...................................................... v LIST OF ATTACHMENTS .................................................... v LIST OF TABLES ............................................................ v LIST OF FIGURES ......................................................... viii ACRONYMS, ABBREVIATIONS, AND SYMBOLS .............................. ix COMMON UNIT CONVERSIONS AND ABBREVIATIONS ......................... xi CONVERSION OF SCIENTIFIC NOTATION .................................... xii EXECUTIVE SUMMARY ................................................... xiii 1. INTRODUCTION ........................................................ 1-1 2. PROGRAM DESCRIPTION ................................................ 2-1 2.1. OVERVIEW
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Species Dossier: Hagenella Clathrata
    Species dossier: Hagenella clathrata Window winged sedge July 2011 Mating adult pair Hagenella clathata Contact details Ian Wallace, Curator of Conchology & Aquatic Biology World Museum William Brown Street, Liverpool, L3 8EN Tel: 0151 478 4385 Email: [email protected] Species dossier: Hagenella clathrata Contents Introduction ................................................................................... 3 Summary....................................................................................... 3 Ecology ......................................................................................... 3 History in Britain ............................................................................ 6 European distribution .................................................................... 9 Recent Survey Work ..................................................................... 9 Survey methods ............................................................................ 9 Identification.................................................................................. 9 Threats........................................................................................ 10 Action plan for the Window Winged Sedge ( Hagenella clathrata ) 11 List of references......................................................................... 12 Appendix 2 Records of ( Hagenella clathrata ) from the UK ......... 15 Cover image © Matthew Wallace (2009) Hagenella clathrata (Kolenati, 1848) Window winged sedge (Trichoptera: Phryganeidae) Genus
    [Show full text]
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • Acta Bianco 2/2007.Xp
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Acta Entomologica Slovenica Jahr/Year: 2008 Band/Volume: 16 Autor(en)/Author(s): Boulard Michel Artikel/Article: PLATYLOMIA OPERCULATA DISTANT, 1913, A CICADA THAT TAKES WATER FROM HOT SPRINGS AND BECOMES VICTIM OF THE PEOPLE (RHYNCHOTA: CICADOMORPHA: CICADIDAE) 105-116 ©Slovenian Entomological Society, download unter www.biologiezentrum.at ACTA ENTOMOLOGICA SLOVENICA LJUBLJANA, DECEMBER 2008 Vol. 16, øt. 2: 105–116 PLATYLOMIA OPERCULATA DISTANT, 1913, A CICADA THAT TAKES WATER FROM HOT SPRINGS AND BECOMES VICTIM OF THE PEOPLE (RHYNCHOTA: CICADOMORPHA: CICADIDAE) Michel BOULARD Ecole Pratique des Hautes Etudes et Museum National d'Histoire Naturelle, 45 rue Buffon, F-75005 Paris, e-mail: [email protected] Abstract – Males of the Asian cicada Platylomia operculata Distant, 1913, mysteriously sense the need to absorb some water from rather frequent hot springs in North Thailand (notably those of Jaesorn National Park), and come to sources only at night adding an unusual element to the behaviour of normally diurnal and crepuscular insects. This imper- ative followed in unison by the males of the same population, finds an anthropic and trag- ic end, the cicada in question representing a proteinic manna appreciated by Thais. In the addendum, we give a provisional list of the Jaesorn N.P. cicadofauna, of which two other species take some drinks from mud or humid sand (first records). KEY WORDS: Rhynchota, Cicadomorpha, Cicadidae, Cicadinae, Platylomia, Leptopsaltria, Balinta, ethology, ethnology (entomophagous people), tropical Asia, Thailand. Izvleœek – PLATYLOMIA OPERCULATA DISTANT, 1913, ØKRÆAD, KI PIJE VODO IZ TOPLIH VRELCEV IN POSTANE ÆRTEV LJUDI (RHYNCHOTA: CICADOMORPHA: CICADIDAE) Samci azijskega økræada vrste Platylomia operculata Distant, 1913, skrivnostno zaœutijo potrebo po pitju vode iz precej pogostih toplih vrelcev na severu Tajske (posebno v narodnem parku Jaesorn).
    [Show full text]
  • Lepidoptera: Psychidae)
    Eur. J. Entomol. 111(1): 121–136, 2014 doi: 10.14411/eje.2014.013 ISSN 1210-5759 (print), 1802-8829 (online) Evaluation of criteria for species delimitation of bagworm moths (Lepidoptera: Psychidae) VERONICA CHEVASCO1, JELMER A. ELZINGA1, JOHANNA MAPPES2 and ALESSANDRO GRAPPUTO3 1 Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; e-mails: [email protected]; [email protected] 2 Center of Excellence in Biological Interactions, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; e-mail: [email protected] 3 Department of Biology, University of Padova, Via Ugo Bassi 58/B, I-35121 Padova, Italy; e-mail: [email protected] Key words. Lepidoptera, Psychidae, Dahlica, Siederia, DNA barcoding, COI Abstract. Accurate identification of species is fundamental for biological research and necessary for species conservation. DNA bar- coding is particularly useful when identification using morphological characteristics is laborious and/or unreliable. However, bar- codes for species are dependent on the availability of reference sequences from correctly identified specimens. The traditional use of morphology to delimit the species boundaries of Finnish bagworm moths (Lepidoptera: Psychidae: Naryciinae: Dahliciini) is contro- versial because there is overlap in their morphological characteristics. In addition, there are no suitable molecular markers. We veri- fied the delimitation of seven out of eight previously described taxa, by using the currently standardized COI barcode and phylogenetic inference based on fragments of mitochondrial (COI) and nuclear genes (MDH). Moreover, we compared the results of molecular methods with the outcome of geometric morphometrics. Based on molecular identification, our findings indicate that there are five sexual species (Dahlica and Siederia spp.) and two parthenogenetic species (D.
    [Show full text]
  • Redalyc.New and Interesting Portuguese Lepidoptera Records from 2007 (Insecta: Lepidoptera)
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Corley, M. F. V.; Marabuto, E.; Maravalhas, E.; Pires, P.; Cardoso, J. P. New and interesting Portuguese Lepidoptera records from 2007 (Insecta: Lepidoptera) SHILAP Revista de Lepidopterología, vol. 36, núm. 143, septiembre, 2008, pp. 283-300 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45512164002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 283-300 New and interesting Po 4/9/08 17:37 Página 283 SHILAP Revta. lepid., 36 (143), septiembre 2008: 283-300 CODEN: SRLPEF ISSN:0300-5267 New and interesting Portuguese Lepidoptera records from 2007 (Insecta: Lepidoptera) M. F. V. Corley, E. Marabuto, E. Maravalhas, P. Pires & J. P. Cardoso Abstract 38 species are added to the Portuguese Lepidoptera fauna and two species deleted, mainly as a result of fieldwork undertaken by the authors in the last year. In addition, second and third records for the country and new food-plant data for a number of species are included. A summary of papers published in 2007 affecting the Portuguese fauna is included. KEY WORDS: Insecta, Lepidoptera, geographical distribution, Portugal. Novos e interessantes registos portugueses de Lepidoptera em 2007 (Insecta: Lepidoptera) Resumo Como resultado do trabalho de campo desenvolvido pelos autores principalmente no ano de 2007, são adicionadas 38 espécies de Lepidoptera para a fauna de Portugal e duas são retiradas.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Insects That Feed on Trees and Shrubs
    INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture,
    [Show full text]
  • Phylogeny and Evolution of Lepidoptera
    EN62CH15-Mitter ARI 5 November 2016 12:1 I Review in Advance first posted online V E W E on November 16, 2016. (Changes may R S still occur before final publication online and in print.) I E N C N A D V A Phylogeny and Evolution of Lepidoptera Charles Mitter,1,∗ Donald R. Davis,2 and Michael P. Cummings3 1Department of Entomology, University of Maryland, College Park, Maryland 20742; email: [email protected] 2Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 3Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742 Annu. Rev. Entomol. 2017. 62:265–83 Keywords Annu. Rev. Entomol. 2017.62. Downloaded from www.annualreviews.org The Annual Review of Entomology is online at Hexapoda, insect, systematics, classification, butterfly, moth, molecular ento.annualreviews.org systematics This article’s doi: Access provided by University of Maryland - College Park on 11/20/16. For personal use only. 10.1146/annurev-ento-031616-035125 Abstract Copyright c 2017 by Annual Reviews. Until recently, deep-level phylogeny in Lepidoptera, the largest single ra- All rights reserved diation of plant-feeding insects, was very poorly understood. Over the past ∗ Corresponding author two decades, building on a preceding era of morphological cladistic stud- ies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yield- ing to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution.
    [Show full text]