< Abundances of Planetary Nebula NGC 5315"
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Emission Lines in Planetary Nebulae
The Astrophysical Journal, 840:80 (8pp), 2017 May 10 https://doi.org/10.3847/1538-4357/aa6c28 © 2017. The American Astronomical Society. All rights reserved. ∗ Identification of Near-infrared [Se III] and [Kr VI] Emission Lines in Planetary Nebulae N. C. Sterling1, S. Madonna2,3, K. Butler4, J. García-Rojas2,3, A. L. Mashburn1, C. Morisset5, V. Luridiana2,3, and I. U. Roederer6,7 1 Department of Physics, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118, USA; [email protected], [email protected] 2 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain; [email protected], [email protected], [email protected] 3 Universidad de La Laguna, Dpto. Astrofísica, E-38206 La Laguna, Tenerife, Spain 4 Institut für Astronomie und Astrophysik, Scheinerstr. 1, D-81679 München, Germany; [email protected] 5 Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20164, 04510, Mexico; [email protected] 6 Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109, USA; [email protected] 7 Joint Institute for Nuclear Astrophysics and Center for the Evolution of the Elements (JINA-CEE), USA Received 2017 January 19; accepted 2017 April 4; published 2017 May 9 Abstract We identify [Se III]1.0994 μm in the planetary nebula (PN) NGC5315 and [Kr VI]1.2330 μm in three PNe from spectra obtained with the Folded-Port InfraRed Echellette (FIRE) spectrometer on the 6.5 m Baade Telescope. Se and Kr are the two most widely detected neutron-capture elements in astrophysical nebulae, and can be enriched by s-process nucleosynthesis in PN progenitor stars. -
Near Infrared Photometry of IRAS Sources with Colours Like Planetary Nebulae
University of Groningen Near infrared photometry of IRAS sources with colours like planetary nebulae. III. Garcia-Lario, P.; Manchado, A.; Pych, W.; Pottasch, S. R. Published in: Astronomy & astrophysics supplement series DOI: 10.1051/aas:1997277 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1997 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Garcia-Lario, P., Manchado, A., Pych, W., & Pottasch, S. R. (1997). Near infrared photometry of IRAS sources with colours like planetary nebulae. III. Astronomy & astrophysics supplement series, 126(3), 479- 502. https://doi.org/10.1051/aas:1997277 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. -
NASA's Goddard Space Flight Center Laboratory for Astronomy & Solar
NASA's Goddard Space Flight Center Laboratory for Astronomy & Solar Physics Greenbelt, Maryland, 20771 The following report covers the period from July results from the first year of operations that were truly 2002 through September 2003. stunning. The WMAP measurements constrain models of structure formation, the geometry of the universe, and 1 INTRODUCTION inflation. The results indicate that the universe has a flat The Laboratory for Astronomy & Solar Physics (i.e. Euclidean) geometry. Initial observations of polar- (LASP) is a Division of the Space Sciences Directorate ization were reported, the first detection of reionization, at NASA Goddard Space Flight Center (GSFC). Mem- and accurate values for many cosmological parameters. bers of LASP conduct a broad program of observational Thirteen papers on the results were published in a spe- and theoretical scientific research. Observations are car- cial issue of the Astrophysical Journal. At the same time ried out from space-based observatories, balloons, and the results were announced, all the data from the first ground-based telescopes at wavelengths extending from year were made public in the new Legacy Archive for Mi- the EUV to the sub-millimeter. Research projects cover crowave Background Data Analsyis (LAMBDA). Gary the fields of solar and stellar astrophysics, the interstellar Hinshaw, Ed Wollack, Al Kogut, and Principal Investi- and intergalactic medium, active galactic nuclei, galaxy gator Chuck Bennett are members of the WMAP team formation and evolution, and studies of the cosmic mi- at GSFC. WMAP is still operating well, and we look crowave background radiation. forward to new results in the coming year. Studies of the sun are carried out in the gamma- The Reuven Ramaty High Energy Solar Spectro- ray, x-ray, EUV/UV and visible portions of the spec- scopic Imager (RHESSI), also provided dramatic new trum from space and the ground. -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39 -
Meteor Csillagászati Évkönyv 2015
Ár: 3000 Ft 015 2 csillagászati évkönyv r meteor o e csillagászati évkönyv t e m 2015 ISSN 0866 - 2851 9 7 7 0 8 6 6 2 8 5 0 0 2 METEOR CSILLAGÁSZATI ÉVKÖNYV 2015 METEOR CSILLAGÁSZATI ÉVKÖNYV 2015 MCSE – 2014. SZEPTEMBER–NOVEMBER METEOR CSILLAGÁSZATI ÉVKÖNYV 2015 MCSE – 2014. SZEPTEMBER–NOVEMBER meteor csillagászati évkönyv 2015 Szerkesztette: Benkõ József Mizser Attila Magyar Csillagászati Egyesület www.mcse.hu Budapest, 2014 METEOR CSILLAGÁSZATI ÉVKÖNYV 2015 MCSE – 2014. SZEPTEMBER–NOVEMBER Az évkönyv kalendárium részének összeállításában közremûködött: Bagó Balázs Görgei Zoltán Kaposvári Zoltán Kiss Áron Keve Kovács József Molnár Péter Sárneczky Krisztián Sánta Gábor Szabadi Péter Szabó M. Gyula Szabó Sándor Szöllôsi Attila A kalendárium csillagtérképei az Ursa Minor szoftverrel készültek. www.ursaminor.hu Szakmailag ellenôrizte: Szabados László A kiadvány a Magyar Tudományos Akadémia támogatásával készült. További támogatóink mindazok, akik az SZJA 1%-ával támogatják a Magyar Csillagászati Egyesületet. Adószámunk: 19009162-2-43 Felelôs kiadó: Mizser Attila Nyomdai elôkészítés: Kármán Stúdió, www.karman.hu Nyomtatás, kötészet: OOK-Press Kft., www.ookpress.hu Felelôs vezetô: Szathmáry Attila Terjedelem: 23 ív fekete-fehér + 8 oldal színes melléklet 2014. november ISSN 0866-2851 METEOR CSILLAGÁSZATI ÉVKÖNYV 2015 MCSE – 2014. SZEPTEMBER–NOVEMBER Tartalom Bevezetô ................................................... 7 Kalendárium ............................................... 13 Cikkek Kiss László: A változócsillagászat újdonságai .................... 227 Tóth Imre: Az üstökösök megismerésének mérföldkövei ........... 242 Petrovay Kristóf: Az éghajlatváltozás és a Nap ................... 265 Kovács József: A kozmológiai állandótól a sötét energiáig – 100 éves az általános relativitáselmélet ...................... 280 Szabados László: A jó „öreg” Hubble-ûrtávcsô ................... 296 Kolláth Zoltán: A fényszennyezésrôl a Fény Nemzetközi Évében 311 Beszámolók Mizser Attila: A Magyar Csillagászati Egyesület 2013. -
Physics and Chemistry of Gas in Planetary Nebulae
RIJKSUNIVERSITEIT GRONINGEN Physics and Chemistry of Gas in Planetary Nebulae PROEFSCHRIFT ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op dinsdag 30 september 2003 om 13.15 uur door Jeronimo´ Bernard Salas geboren op 4 september 1975 te Cordoba,´ Spanje Promotor: Prof. dr. A.G.G.M. Tielens Co-promotor: Dr. P.R. Wesselius Beoordelingscommissie: Prof. dr. M.J. Barlow Prof. dr. L.B.F.M. Waters Prof. dr. J.M. van der Hulst ISBN-nummer: 90-367-1896-1 To my parents Cover Image: Planetary Nebula M 57, also known as the Ring Nebula. Image credit: Hubble Heritage Team (AURA/STScI/NASA). Back-cover Image: Planetary Nebula MyCn18, an Hourglass Nebula. Image credit: Raghven- dra Sahai and John Truger (JPL), the WFPC2 science team and NASA. Contents 1 Introduction 1 1.1 Evolution of low and intermediate mass stars : : : : : : : : : : : : : : : : 2 1.1.1 From the cradle to the grave : : : : : : : : : : : : : : : : : : : : : 2 1.1.2 Nucleosynthesis : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.1.3 Mixing episodes during the evolution : : : : : : : : : : : : : : : : 3 1.2 Planetary Nebulae : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 1.2.1 PNe and the chemical enrichment of the ISM : : : : : : : : : : : : 4 1.2.2 Importance of PNe : : : : : : : : : : : : : : : : : : : : : : : : : 5 1.2.3 Neutral material around PNe : : : : : : : : : : : : : : : : : : : : 5 1.2.4 PNe in a general context -
100 Brightest Planetary Nebulae
100 BRIGHTEST PLANETARY NEBULAE 100 BRIGHTEST PLANETARY NEBULAE 1 100 BRIGHTEST PLANETARY NEBULAE Visual Magnitude (brightest to least bright) Name Common Name Visual Magnitude Stellar Magnitude Angular Size Constellation NGC 7293 Helix Nebula 7 13.5 900 Aquarius NGC 6853 Dumbbell Nebula (M27) 7.5 13.9 330 Vulpecula NGC 3918 Blue Planetary 8 ? 16 Centaurus NGC 7009 Saturn Nebula 8 12.8 28 Aquarius NGC 3132 Eight‐Burst Planetary 8.5 10.1 45 Vela NGC 6543 Cat's Eye Nebula 8.5 11.1 20 Draco NGC 246 Skull Nebula 8.5 12 225 Cetus NGC 6572 Blue Raquetball Nebula 8.5 13.6 14 Ophiuchus NGC 6210 Turtle Nebula 9 12.7 16 Hercules NGC 6720 Ring Nebula (M57) 9 15.3 70 Lyra NGC 7027 Magic Carpet Nebula 9 16.3 14 Cygnus NGC 7662 Blue Snowball Nebula 9 13.2 20 Andromeda NGC 1360 Robin's Egg Nebula 9.5 11.4 380 Fornax NGC 1535 Cleopatra's Eye Nebula 9.5 12.2 18 Eridanus NGC 2392 Eskimo/Clown Face Nebula 9.5 10.5 45 Gemini NGC 2867 Royal Aqua Nebula 9.5 16.6 15 Carina NGC 3242 Ghost of Jupiter Nebula 9.5 12.3 40 Hydra NGC 6826 Blinking Planetary Nebula 9.5 10.4 25 Cygnus IC 418 Spirograph Nebula 10 10.2 12 Lepus NGC 5189 Spiral Planetary Nebula 10 14.9 140 Musca NGC 5882 Green Snowball Nebula 10 13.4 14 Lupus NGC 6818 Little Gem Nebula 10 16.9 18 Sagittarius NGC 40 Bow Tie Nebula 10.5 11.6 36 Cepheus NGC 1514 Crystal Ball Nebula 10.5 9.4 120 Taurus NGC 2346 Butterfly Nebula 10.5 11.5 55 Monoceros NGC 2438 Smoke Ring in M46 10.5 17.7 70 Puppis NGC 2440 Peanut Nebula 10.5 17.7 30 Puppis NGC 4361 Raven's Eye Nebula 10.5 13.2 100 Corvus IC 4406 Retina Nebula -
THE CONSTELLATION CIRCINUS, the COMPASS Circinus Is a Small
THE CONSTELLATION CIRCINUS, THE COMPASS Circinus is a small faint constellation in the southern sky, first defined in 1756 by French astronomer Nicolas Louis de Lacaille. Its name is Latin for compass, referring to the drafting tool used for drawing circles (it should not be confused with Pyxis, a constellation that represents a mariner's compass which points north). Its brightest star is Alpha Circini, with an apparent magnitude of 3.19. Slightly variable, it is the brightest rapidly oscillating Ap star in the night sky(peculiar stars showing an abundances of some metals. AX Circini is a Cepheid variable visible with the unaided eye, and BX Circini is a faint star thought to have been formed from the merger of two white dwarfs. Two sun-like stars have planetary systems: HD 134060 has two small planets, and HD 129445 has a Jupiter-like planet. Supernova SN 185 appeared in Circinus in 185 AD and was recorded by Chinese observers. Two novae have been observed more recently, in the 20th century.The Milky Way runs through the constellation, featuring prominent objects such as the open cluster NGC 5823 and the planetary nebula NGC 5315. Circinus hosts one notable spiral galaxy, the Circinus Galaxy, which was discovered in 1977 and is the closest Seyfert galaxy to the Milky Way. Seyfert galaxies are named after Carl Seyfert (1911 - 1960), an American astronomer who The Circinus Galaxy, a first described this class in 1943, and Type II Seyfert galaxy are intensely studied objects in astronomy. They are thought to be powered by the same phenomena that occur in quasars, but unlike quasars, their host galaxies are clearly detectable. -
Arxiv:2001.08266V1 [Astro-Ph.SR] 22 Jan 2020
Astronomy & Astrophysics manuscript no. aanda c ESO 2020 January 24, 2020 Searching for central stars of planetary nebulae in Gaia DR2 N. Chornay and N. A. Walton Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, United Kingdom e-mail: [email protected], e-mail: [email protected] January 24, 2020 ABSTRACT Context. Accurate distance measurements are fundamental to the study of Planetary Nebulae (PNe) but have long been elusive. The most accurate and model-independent distance measurements for galactic PNe come from the trigonometric parallaxes of their central stars, which were only available for a few tens of objects prior to the Gaia mission. Aims. Accurate identification of PN central stars in the Gaia source catalogues is a critical prerequisite for leveraging the unprece- dented scope and precision of the trigonometric parallaxes measured by Gaia. Our aim is to build a complete sample of PN central star detections with minimal contamination. Methods. We develop and apply an automated technique based on the likelihood ratio method to match candidate central stars in Gaia Data Release 2 (DR2) to known PNe in the HASH PN catalogue, taking into account the BP–RP colours of the Gaia sources as well as their positional offsets from the nebula centres. These parameter distributions for both true central stars and background sources are inferred directly from the data. Results. We present a catalogue of over 1000 Gaia sources that our method has automatically identified as likely PN central stars. We demonstrate how the best matches enable us to trace nebula and central star evolution and to validate existing statistical distance scales, and discuss the prospects for further refinement of the matching based on additional data. -
Southern Sky: Telescopic
Southern Sky: Telescopic - Caldwell - Binocular - Planetary Nebulae ID Other Desifnation Type RA Dec Con Size Mag CS B C NGC 104 47 Tucanae Gb 00 24 05.4 -72 04 51.9 Tuc 30.90 4.00 C NGC 121 ESO 50-SC12 Gb 00 26 48.0 -71 32 00.0 Tuc 1.50 10.60 99.90 126 Bet1Tuc * 00 31 32.7 -62 57 29.0 Tuc 4.37 127 Bet2Tuc * 00 31 33.6 -62 57 57.0 Tuc 4.54 NGC 292 SMC, Small Magellanic Cloud, Nubecula Minor Gx 00 52 36.0 -72 48 00.0 Tuc 319.10 2.30 14.00 NGC 330 OC 00 56 18.7 -72 27 45.0 Tuc 2.00 9.60 NGC 346 C+N 00 59 05.0 -72 10 36.0 Tuc 14.00 10.30 B C NGC 362 Gb 01 03 13.9 -70 50 53.9 Tuc 12.90 6.60 NGC 371 ESO 51-SC14 OC 01 03 30.0 -72 03 00.0 Tuc 7.50 13.80 99.90 NGC 419 Gb 01 08 17.3 -72 53 00.0 Tuc 2.60 10.00 B C NGC 1261 Gb 03 12 15.7 -55 12 57.1 Hor 6.90 8.40 NGC 1313 Topsy-Turvy Galaxy, Starburst Galaxy, ESO 82-11 Gx 03 20 05.4 -66 42 08.0 Ret 8.50 9.00 NGC 1549 Gx 04 15 45.0 -55 35 31.2 Dor 3.70 9.90 NGC 1553 Gx 04 16 10.5 -55 46 48.9 Dor 4.10 9.50 NGC 1566 Gx 04 20 00.5 -54 56 16.8 Dor 7.60 9.40 NGC 1763 IC 2115 OC 04 56 48.0 -66 25 00.0 Dor 25.00 99.90 99.90 NGC 1850 OC 05 08 44.9 -68 45 41.7 Dor 3.00 9.30 NGC 1955 C+N 05 26 10.0 -67 29 54.0 Dor 9.00 NGC 1962 C+N 05 26 19.0 -68 50 12.0 Dor 8.00 B C NGC 2070 Tarantula Nebula, Looped Nebula, 30 Doradus, True Lovers' Kn C+N 05 38 42.5 -69 06 03.3 Dor 40.00 8.20 NGC 2074 ESO 57-EN8 OC 05 39 06.0 -69 30 00.0 Dor 8.50 99.90 B C NGC 2516 OC 07 58 04.0 -60 45 12.0 Car 30.00 3.80 NGC 2547 OC 08 10 09.0 -49 12 54.0 Vel 20.00 4.70 B C IC 2391 Cr 191 OC 08 39 36.0 -52 55 00.0 Vel 60.00 2.50 99.90 IC