One Star, Two Star, Red Star, Blue Star: an Updated Planetary Nebula Central Star Distance Catalogue from Gaia EDR3 N

Total Page:16

File Type:pdf, Size:1020Kb

One Star, Two Star, Red Star, Blue Star: an Updated Planetary Nebula Central Star Distance Catalogue from Gaia EDR3 N Astronomy & Astrophysics manuscript no. aanda ©ESO 2021 September 22, 2021 One star, two star, red star, blue star: an updated planetary nebula central star distance catalogue from Gaia EDR3 N. Chornay and N. A. Walton Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, United Kingdom e-mail: [email protected], e-mail: [email protected] September 2021 ABSTRACT Context. Planetary nebulae (PNe) are a brief but important phase of stellar evolution. The study of Galactic PNe has historically been hampered by uncertain distances, but the parallaxes of PN central stars (CSPNe) measured by Gaia are improving the situation. Aims. Gaia’s Early Data Release 3 (EDR3) offers higher astrometric precision and greater completeness compared to previous re- leases. Taking advantage of these improvements requires that the CSPNe in the catalogue be accurately identified. Methods. We applied our automated technique based on the likelihood ratio method to cross-match known PNe with sources in Gaia EDR3, using an empirically derived position and colour distribution to score candidate matches. Results. We present a catalogue of over 2000 sources in Gaia EDR3 that our method has identified as likely CSPNe or compact nebula detections. We show how the more precise parallaxes of these sources compare to previous PN statistical distances and introduce an approach to combining them to produce tighter distance constraints. We also discuss Gaia’s handling of close companions and bright nebulae. Conclusions. Gaia is unlocking new avenues for the study of PNe. The catalogue presented here will remain valid for the upcoming Gaia Data Release 3 (DR3) and thus provide a valuable resource for years to come. Key words. planetary nebulae: general – parallaxes – Methods: statistical 1. Introduction 2. Methods 2.1. Input catalogues Planetary nebulae (PNe) are a brief but enigmatic stage in the evolution of low- and intermediate-mass stars towards the ends Our PN positions come from the Hong Kong/AAO/Strasbourg of their lives. Central stars of PNe (CSPNe) are some of the rarest Hα (HASH) PN catalogue (Parker et al. 2016, as of 5 July 2021), objects observed by Gaia (Gaia Collaboration et al. 2016), a Eu- which now contains 2670 "true" PNe (those with spectroscopic ropean Space Agency (ESA) mission conducting precision as- confirmation; an 8% increase since CW20) and 3800 PNe in total (including likely and possible identifications). We saw in CW20 trometry and photometry for nearly two billion sources in the 00 Milky Way and beyond. Gaia shows great potential for the study that three very extended PNe had CSPNe more than 60 away of PNe: parallaxes inform distance estimates and in turn CSPN from the HASH positions, outside of our search radius. To ad- absolute magnitudes and evolutionary phase; proper motions add dress this we adopt positions for Sh 2-188 from Weidmann & more dimensions to dynamics and relate PNe to their parent stel- Gamen (2011) and for FP J1824-0319 and FP J0905-3033 from lar populations, constraining ages and masses; and repeated pho- Parker et al. (2006). Gaia EDR3 is likewise larger than DR2. tometric observations enable the study of variability and binarity. The longer survey duration (12 more months, for 34 months in total), along with improved calibration, results in higher com- pleteness (7% more sources overall) and greater astrometric pre- Unlocking Gaia’s potential requires a complete and accurate cision. The set of sources in EDR3 is distinct from that of DR2 cross-match of Gaia sources with CSPNe. Chornay & Walton not only in that more sources are present; some may have disap- (2020, hereinafter CW20) used an automated approach to gen- peared or changed identifiers (Torra et al. 2021). Gaia Data Re- erate an extensive catalogue of candidate CSPNe in Gaia Data arXiv:2102.13654v2 [astro-ph.SR] 21 Sep 2021 lease 3 (DR3) will include the same sources as EDR3 but with Release 2 (DR2, Gaia Collaboration et al. 2018). The nature additional data products. of Gaia’s iterative release process necessitates updates to cata- logues based on Gaia data, as the set of sources and their identi- fications changes between releases (Torra et al. 2021). Moreover, 2.2. Cross-matching when the Gaia data is itself used for cross-matching, better data translates into improved accuracy. In this work we present a new We use the same method employed in CW20, and here provide catalogue of candidate CSPNe and compact PNe in Gaia Early a brief review, pointing the reader to that work for a more de- Data Release 3 (EDR3, Gaia Collaboration et al. 2021) based on tailed background. The aim is to automatically match CSPNe the same methodology as CW20. With a completely new Gaia or compact/stellar-like nebulae to Gaia sources. The expectation catalogue not expected for some time, this will provide a valu- is that these sources will be close to the catalogued position of able resource for the study of Galactic PNe for years to come. the PN, but the possibility of non-detections, background inter- Article number, page 1 of 38 A&A proofs: manuscript no. aanda lopers, and positional inaccuracies necessitates a more nuanced approach than simple nearest-neighbour matching. The likelihood ratio method of Sutherland & Saunders (1992) is well-suited to this aim. Given a candidate match at angular separation r, the approach compares the probability of finding a genuine match at r to finding a background object. Our implementation assumes a uniform background density in each field, and a radially symmetric positional distribution of genuine CSPNe parameterised by the radius of the PN (allowing larger PNe to have more offset CSPNe, albeit with lower probability). We also employ the colour distributions of true CSPNe and back- ground sources, parameterised based on the photometric excess factor (Evans et al. 2018), with the effect of down-weighting colours for sources whose colour is potentially contaminated by nearby sources or background. Distributions are derived itera- tively, using sources with secure identifications based on colour to empirically determine the positional distribution of genuine CSPNe, and in turn using the positionally secure sources to up- date the colour distribution. This works because CSPNe are of- Fig. 1: Matching results for "true" PNe. The top left panel shows ten much bluer than typical Gaia sources and therefore can be the reliability of the CW20 Gaia DR2 matches versus the EDR3 selected purely based on colour with relatively high confidence. matches from this work for PNe present in both. Red points are We made a few small changes to the algorithm’s treatment PNe where the location of the best candidate match has changed 00 of the GBP–GRP colours. In deriving the initial and final colour by more than 0:1. All of these points are contained in the his- distributions, we only considered sources with G brighter than togram in the lower left panel, which also includes PNe that were 19, which have relatively precise colours. Then in computing the not in CW20. The upper right panel shows the separation versus likelihood ratios for individual sources we convolved the densi- colour distribution of highest-ranked candidates, colour-coded ties with the photometric uncertainties, after accounting for the by reliability with the non-linear scale shown at the bottom right. smoothing already applied by the kernel density estimation. This Rings around markers indicate PN angular sizes. lessens the impact of faint sources with extreme and likely spu- rious colours. We also adopted the prescription of Riello et al. Table 1: Counts of PNe occupying different regions of the scat- (2021) for describing a locus of photometric excess values of ter plot in the upper left corner of Fig. 1, representing different well-behaved sources. The photometric excess is no longer used changes in reliability relative to the CW20 Gaia DR2 matches. by Gaia as a filter for published photometry, though for large ex- cess values the photometry is still not very discriminative, as it PN status match location region likely dominated by the background. 00 ABCDE We retrieved all Gaia EDR3 sources within a 60 radius of true same 53 105 1238 47 15 the PN positions from HASH. All of these were used in calcu- changed 16 14 10 14 157 lating the background density and colour distribution (the latter other same 36 58 303 7 3 only for G < 19), while only the subset of sources within half changed 3 3 2 4 30 each PN angular size (taken from HASH) plus 200 were consid- ered as candidates. For each PN, the set of candidate likelihood ratios were used to calculate reliabilities (the probability that a given candidate is the correct match). The complete catalogue of the 2117 highest ranked candi- dates with reliability > 0.2 is in Table A.1. The catalogue in- cludes the Gaia source identifier corresponding to the best match 3. Catalogue for each PN, the reliability of that match, and its angular separa- tion from the PN position from HASH. Copied into the catalogue The improved method applied to EDR3 produces a bimodal dis- are relevant data from HASH (name, PN G identifier, PN coor- tribution of top match reliabilities similar to that from CW20 dinates, angular size, and confirmation status) and Gaia EDR3 for Gaia DR2 (Fig 1, lower left; for clarity only "true" PNe are (source coordinates, photometry, and astrometry). We addition- shown). Most sources have reliabilities close to their values from ally include the image parameter determination (IPD, Lindegren CW20; these are near the diagonal (region C) in upper left of et al. 2021b) goodness-of-fit harmonic amplitude from Gaia (see Fig. 1.
Recommended publications
  • Filter Performance Comparisons for Some Common Nebulae
    Filter Performance Comparisons For Some Common Nebulae By Dave Knisely Light Pollution and various “nebula” filters have been around since the late 1970’s, and amateurs have been using them ever since to bring out detail (and even some objects) which were difficult to impossible to see before in modest apertures. When I started using them in the early 1980’s, specific information about which filter might work on a given object (or even whether certain filters were useful at all) was often hard to come by. Even those accounts that were available often had incomplete or inaccurate information. Getting some observational experience with the Lumicon line of filters helped, but there were still some unanswered questions. I wondered how the various filters would rank on- average against each other for a large number of objects, and whether there was a “best overall” filter. In particular, I also wondered if the much-maligned H-Beta filter was useful on more objects than the two or three targets most often mentioned in publications. In the summer of 1999, I decided to begin some more comprehensive observations to try and answer these questions and determine how to best use these filters overall. I formulated a basic survey covering a moderate number of emission and planetary nebulae to obtain some statistics on filter performance to try to address the following questions: 1. How do the various filter types compare as to what (on average) they show on a given nebula? 2. Is there one overall “best” nebula filter which will work on the largest number of objects? 3.
    [Show full text]
  • Planetary Nebulae
    Planetary Nebulae A planetary nebula is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from old red giant stars late in their lives. The term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years. The mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star. Absorbed ultraviolet light energizes the shell of nebulous gas around the central star, appearing as a bright colored planetary nebula at several discrete visible wavelengths. Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances. In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies.
    [Show full text]
  • Ghost Hunt Challenge 2020
    Virtual Ghost Hunt Challenge 10/21 /2020 (Sorry we can meet in person this year or give out awards but try doing this challenge on your own.) Participant’s Name _________________________ Categories for the competition: Manual Telescope Electronically Aided Telescope Binocular Astrophotography (best photo) (if you expect to compete in more than one category please fill-out a sheet for each) ** There are four objects on this list that may be beyond the reach of beginning astronomers or basic telescopes. Therefore, we have marked these objects with an * and provided alternate replacements for you just below the designated entry. We will use the primary objects to break a tie if that’s needed. Page 1 TAS Ghost Hunt Challenge - Page 2 Time # Designation Type Con. RA Dec. Mag. Size Common Name Observed Facing West – 7:30 8:30 p.m. 1 M17 EN Sgr 18h21’ -16˚11’ 6.0 40’x30’ Omega Nebula 2 M16 EN Ser 18h19’ -13˚47 6.0 17’ by 14’ Ghost Puppet Nebula 3 M10 GC Oph 16h58’ -04˚08’ 6.6 20’ 4 M12 GC Oph 16h48’ -01˚59’ 6.7 16’ 5 M51 Gal CVn 13h30’ 47h05’’ 8.0 13.8’x11.8’ Whirlpool Facing West - 8:30 – 9:00 p.m. 6 M101 GAL UMa 14h03’ 54˚15’ 7.9 24x22.9’ 7 NGC 6572 PN Oph 18h12’ 06˚51’ 7.3 16”x13” Emerald Eye 8 NGC 6426 GC Oph 17h46’ 03˚10’ 11.0 4.2’ 9 NGC 6633 OC Oph 18h28’ 06˚31’ 4.6 20’ Tweedledum 10 IC 4756 OC Ser 18h40’ 05˚28” 4.6 39’ Tweedledee 11 M26 OC Sct 18h46’ -09˚22’ 8.0 7.0’ 12 NGC 6712 GC Sct 18h54’ -08˚41’ 8.1 9.8’ 13 M13 GC Her 16h42’ 36˚25’ 5.8 20’ Great Hercules Cluster 14 NGC 6709 OC Aql 18h52’ 10˚21’ 6.7 14’ Flying Unicorn 15 M71 GC Sge 19h55’ 18˚50’ 8.2 7’ 16 M27 PN Vul 20h00’ 22˚43’ 7.3 8’x6’ Dumbbell Nebula 17 M56 GC Lyr 19h17’ 30˚13 8.3 9’ 18 M57 PN Lyr 18h54’ 33˚03’ 8.8 1.4’x1.1’ Ring Nebula 19 M92 GC Her 17h18’ 43˚07’ 6.44 14’ 20 M72 GC Aqr 20h54’ -12˚32’ 9.2 6’ Facing West - 9 – 10 p.m.
    [Show full text]
  • Two Rings but No Fellowship: Lotr 1 and Its Relation to Planetary Nebulae
    Mon. Not. R. Astron. Soc. 000, 1–16 (2013) Printed 17 October 2018 (MN LATEX style file v2.2) Two rings but no fellowship: LoTr 1 and its relation to planetary nebulae possessing barium central stars. A.A. Tyndall1,2⋆, D. Jones2, H.M.J. Boffin2, B. Miszalski3,4, F. Faedi5, M. Lloyd1, J.A. L´opez6, S. Martell7, D. Pollacco5, and M. Santander-Garc´ıa8 1Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL, UK 2European Southern Observatory, Alonso de C´ordova 3107, Casilla 19001, Santiago, Chile 3South African Astronomical Observatory, PO Box 9, Observatory 7935, South Africa 4Southern African Large Telescope. PO Box 9, Observatory 7935, South Africa 5Department of Physics, University of Warwick, CV4 7AL, UK 6Instituto de Astronom´ıa, Universidad Nacional Aut´onoma de M´exico, Ensenada, Baja California, C.P. 22800, Mexico 7Australian Astronomical Observatory, North Ryde, 2109 NSW, Australia 8Observatorio Astron´omico National, Madrid, and Centro de Astrobiolog´ıa, CSIC-INTA, Spain Accepted xxxx xxxxxxxx xx. Received xxxx xxxxxxxx xx; in original form xxxx xxxxxxxx xx ABSTRACT LoTr 1 is a planetary nebula thought to contain an intermediate-period binary central star system ( that is, a system with an orbital period, P, between 100 and, say, 1500 days). The system shows the signature of a K-type, rapidly rotating giant, and most likely constitutes an accretion-induced post-mass transfer system similar to other PNe such as LoTr 5, WeBo 1 and A70. Such systems represent rare opportunities to further the investigation into the formation of barium stars and intermediate period post-AGB systems – a formation process still far from being understood.
    [Show full text]
  • Central Coast Astronomy Virtual Star Party January 16Th 7Pm Pacific
    Central Coast Astronomy Virtual Star Party January 16th 7pm Pacific Welcome to our Virtual Star Gazing session! We’ll be focusing on objects you can see with binoculars or a small telescope, so after our session, you can simply walk outside, look up, and understand what you’re looking at. CCAS President Aurora Lipper and astronomer Kent Wallace will bring you a virtual “tour of the night sky” where you can discover, learn, and ask questions as we go along! All you need is an internet connection. You can use an iPad, laptop, computer or cell phone. When 7pm on Saturday night rolls around, click the link on our website to join our class. CentralCoastAstronomy.org/stargaze Before our session starts: Step 1: Download your free map of the night sky: SkyMaps.com They have it available for Northern and Southern hemispheres. Step 2: Print out this document and use it to take notes during our time on Saturday. This document highlights the objects we will focus on in our session together. Celestial Objects: Moon: The moon is 3 days past new, which is really good for star gazing. Be sure to look at the moon tonight with your naked eyes and/or binoculars! Mercury is rising into the western sky and may be a good target near the end of the month. Mars is up high but is shrinking in size as the weeks progress. *Image credit: all astrophotography images are courtesy of NASA unless otherwise noted. All planetarium images are courtesy of Stellarium. Central Coast Astronomy CentralCoastAstronomy.org Page 1 Main Focus for the Session: 1.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • A Silicate Disk in the Heart of the Ant Which Reprocesses Most of the Stellar Light Emitted in Our Line Table 1
    Astronomy & Astrophysics manuscript no. 8268 c ESO 2021 August 18, 2021 Letter to the Editor A silicate disk in the heart of the Ant O. Chesneau1, F. Lykou2, B. Balick3, E. Lagadec2, M. Matsuura4, N. Smith5, A. Spang1, S. Wolf6, and A.A. Zijlstra2,⋆ 1 Observatoire de la Cˆote d’Azur-CNRS-UMR 6203, Dept Gemini, Avenue Copernic, F-06130 Grasse, France e-mail: [email protected] 2 University of Manchester, School of Physics & Astronomy, P.O. Box 88, Manchester M60 1QD, UK 3 Astronomy Department, Box 351580, University of Washington, Seattle WA 98195 4 National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan 5 Astronomy Department, University of California, 601 Campbell Hall, Berkeley CA 94720 6 Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, D-69117 Heidelberg, Germany Received ;accepted ABSTRACT Aims. We aim at getting high spatial resolution information on the dusty core of bipolar planetary nebulae to directly constrain the shaping process. Methods. We present observations of the dusty core of the extreme bipolar planetary nebula Menzel 3 (Mz 3, Hen 2-154, the Ant) taken with the mid-infrared interferometer MIDI/VLTI and the adaptive optics NACO/VLT. Results. The core of Mz 3 is clearly resolved with MIDI in the interferometric mode, whereas it is unresolved from the Ks to the N bands with single dish 8.2m observations on a scale ranging from 60 to 250mas. A striking dependence of the dust core size with the PA angle of the baselines is observed, that is highly suggestive of an edge-on disk whose major axis is perpendicular to the axis of the bipolar lobes.
    [Show full text]
  • 2012 Annual Progress Report and 2013 Program Plan of the Gemini Observatory
    2012 Annual Progress Report and 2013 Program Plan of the Gemini Observatory Association of Universities for Research in Astronomy, Inc. Table of Contents 0 Executive Summary ....................................................................................... 1 1 Introduction and Overview .............................................................................. 5 2 Science Highlights ........................................................................................... 6 2.1 Highest Resolution Optical Images of Pluto from the Ground ...................... 6 2.2 Dynamical Measurements of Extremely Massive Black Holes ...................... 6 2.3 The Best Standard Candle for Cosmology ...................................................... 7 2.4 Beginning to Solve the Cooling Flow Problem ............................................... 8 2.5 A Disappearing Dusty Disk .............................................................................. 9 2.6 Gas Morphology and Kinematics of Sub-Millimeter Galaxies........................ 9 2.7 No Intermediate-Mass Black Hole at the Center of M71 ............................... 10 3 Operations ...................................................................................................... 11 3.1 Gemini Publications and User Relationships ............................................... 11 3.2 Science Operations ........................................................................................ 12 3.2.1 ITAC Software and Queue Filling Results ..................................................
    [Show full text]
  • Emission Lines in Planetary Nebulae
    The Astrophysical Journal, 840:80 (8pp), 2017 May 10 https://doi.org/10.3847/1538-4357/aa6c28 © 2017. The American Astronomical Society. All rights reserved. ∗ Identification of Near-infrared [Se III] and [Kr VI] Emission Lines in Planetary Nebulae N. C. Sterling1, S. Madonna2,3, K. Butler4, J. García-Rojas2,3, A. L. Mashburn1, C. Morisset5, V. Luridiana2,3, and I. U. Roederer6,7 1 Department of Physics, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118, USA; [email protected], [email protected] 2 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain; [email protected], [email protected], [email protected] 3 Universidad de La Laguna, Dpto. Astrofísica, E-38206 La Laguna, Tenerife, Spain 4 Institut für Astronomie und Astrophysik, Scheinerstr. 1, D-81679 München, Germany; [email protected] 5 Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20164, 04510, Mexico; [email protected] 6 Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109, USA; [email protected] 7 Joint Institute for Nuclear Astrophysics and Center for the Evolution of the Elements (JINA-CEE), USA Received 2017 January 19; accepted 2017 April 4; published 2017 May 9 Abstract We identify [Se III]1.0994 μm in the planetary nebula (PN) NGC5315 and [Kr VI]1.2330 μm in three PNe from spectra obtained with the Folded-Port InfraRed Echellette (FIRE) spectrometer on the 6.5 m Baade Telescope. Se and Kr are the two most widely detected neutron-capture elements in astrophysical nebulae, and can be enriched by s-process nucleosynthesis in PN progenitor stars.
    [Show full text]
  • Near Infrared Photometry of IRAS Sources with Colours Like Planetary Nebulae
    University of Groningen Near infrared photometry of IRAS sources with colours like planetary nebulae. III. Garcia-Lario, P.; Manchado, A.; Pych, W.; Pottasch, S. R. Published in: Astronomy & astrophysics supplement series DOI: 10.1051/aas:1997277 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1997 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Garcia-Lario, P., Manchado, A., Pych, W., & Pottasch, S. R. (1997). Near infrared photometry of IRAS sources with colours like planetary nebulae. III. Astronomy & astrophysics supplement series, 126(3), 479- 502. https://doi.org/10.1051/aas:1997277 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • La Porte Des Étoiles Le Journal Des Astronomes Amateurs Du Nord De La France
    la porte des étoiles le journal des astronomes amateurs du nord de la France Numéro 39 - hiver 2018 39 À la une Les environs de la grande nébuleuse d’Orion Auteur : F. Lefebvre et D. Fayolle Date : 16/10/2017 Lieu : Saint-Véran (05) GROUPEMENT D’ASTRONOMES Matériel : APN Canon 1000D et AMATEURS COURRIEROIS astrographe Boren-Simon 8'' F2.8 Adresse postale GAAC - Simon Lericque Édito 12 lotissement des Flandres 62128 WANCOURT On avait déjà raconté beaucoup de choses sur Saint-Véran et son Internet observatoire... On pensait même avoir tout dit... On ne voulait pas Site : http://www.astrogaac.fr se répéter... Et pourtant, la mission Astroqueyras 2017 du GAAC Facebook : https://www.facebook.com/GAAC62 a encore repoussé les limites... Imaginez, une fine équipe de 20 E-mail : [email protected] astronomes amateurs venus de l’ensemble des Hauts-de-France (et même au-delà) envahissant pour une semaine le plus bel Les auteurs de ce numéro observatoire astronomique ouvert aux amateurs ; parmi eux, des Philippe Nonckelynck - membre du GAAC contemplateurs, des dessinateurs, des photographes. Les résultats, E-mail : [email protected] fort nombreux, de cette mission historique nous ont poussé à nouveau à prendre la plume pour causer de ce coin de paradis, Simon Lericque - membre du GAAC E-mail : [email protected] de son ciel, de son observatoire et de ses instruments, et surtout de l’ambiance extraordinaire d’une semaine à 3000 mètres sous Yann Picco - membre du GAAC les étoiles... La belle histoire entre le GAAC et Saint-Véran se E-mail : [email protected] poursuit donc avec cet épais numéro de la porte des étoiles..
    [Show full text]