Viral Evolution: Accordion Adaptations Go Viral

Total Page:16

File Type:pdf, Size:1020Kb

Viral Evolution: Accordion Adaptations Go Viral RESEARCH HIGHLIGHTS Nature Reviews Microbiology | AOP, published online 10 September 2012; doi:10.1038/nrmicro2883 therefore viral replication. Vaccinia Although a higher gene copy virus, a Poxviridae member, has two number can be beneficial in the short Macmillan antagonists for PKR known as K3L term, in the long term the increased and E3L, which differ in their ability genome size would probably incur a to target PKR variants in different host substantial fitness cost. It is perhaps species. However, as PKR is antago- not a surprise, therefore, that in nized by a wide range of viruses, the viruses passaged ten times, 3–12% of protein undergoes rapid evolution, the sequenced K3L genes contained raising the question of how vaccinia a mutation that resulted in a single virus and its two PKR antagonists can amino acid substitution (His47Arg) keep up despite the low viral mutation which had been identified in a previ- rate. To investigate this problem, Elde ous genetic screen for K3L mutants et al. made use of the fact that K3L is with enhanced activity against a poor antagonist of human PKR; by human PKR. Importantly, in those propagating a strain of vaccinia virus viral genomes that had only a single lacking E3L (ΔE3L) in HeLa cells, they copy of K3L after ten passages, the could place a strong selective pressure frequency of the His47Arg mutation on K3L to adapt. The authors found had increased to 47%, suggesting that the ΔE3L virus initially replicated that there was a strong selective much more slowly than wild-type pressure to ensure that the His47Arg virus in HeLa cells over 48 hours, but allele was maintained in viruses that after six passages the rate of rep- with reduced K3L copy numbers. VIRAL EVOLUTION lication increased tenfold, suggesting Finally, the authors investigated what that the virus had adapted. would happen to the K3L genomic To determine the basis of this expansions if the selective pressure Accordion adaptation, the authors deep- were reduced by propagating the sequenced the viral populations to ΔE3L virus in BHK cells (in which a adaptations go viral ~1,000‑fold genome coverage. Despite single copy of wild-type K3L is suf- finding only two non-synonymous ficient to overcome the PKR variant). Unlike RNA viruses, which couple mutations and one synonymous They observed that after just four high mutation rates with short genera- mutation that occurred at a frequency passages, all of the viral genomes tion times to adapt to host antiviral of more than 1%, they also found contained either a single K3L copy defences, double-stranded (ds) DNA a substantial spike in the sequence or considerably fewer copies than the viruses exhibit low mutation rates, coverage exclusively over the K3L ΔE3L viruses that were replicated in which raises the question of how they gene, indicative of an increase in its HeLa cells. stay abreast in the arms race between copy number in the viral genomes. Thus, gene expansion provides a virus and the host cell defences. Accordingly, using Southern blot- the mutational space in which Writing in Cell, Elde et al. now show ting, the authors observed a highly poxviruses can adapt to overcome that members of one family of large heterogeneous pool of viral genomes an antiviral factor, and this expan- dsDNA viruses, Poxviridae, use a that contained as many as 15 or more sion is followed by gene deletion gene ‘genomic accordion’ in which a viral copies of the K3L gene, with the copy and fixation of the adapted allele. expansion gene encoding an anti-host factor is number directly correlating to the Interestingly, a similar process has provides the amplified, thus buying the virus time increase in viral replication from previously been shown to occur mutational to gain an adaptive mutation. passage to passage. Importantly, the during the appearance of bacterial One of the key ways in which host adapted viruses produced higher resistance to antibiotics, suggesting space in which cells defend themselves against invad- levels of K3L than the parental ΔE3L that such genomic accordions might poxviruses ing viruses is through protein kinase R virus, and knockdown of K3L expres- be a widespread and fundamental can adapt to (PKR; also known as eIF2αK2), which sion using small interfering RNAs mechanism to facilitate adaptation. is activated following detection of viral reduced viral replication levels back Andrew Jermy overcome an dsRNA and leads to the phosphoryla- to those of the ΔE3L parent, indicat- ORIGINAL RESEARCH PAPER Elde, N. C. et al. antiviral factor tion of eukaryotic translation initia- ing that increased K3L copy number Poxviruses deploy genomic accordions to adapt tion factor 2α (eIF2α), resulting in the was necessary and sufficient for the rapidly against host antiviral defences. Cell 150, 831–841 (2012) inhibition of protein synthesis and increased viral replication. NATURE REVIEWS | MICROBIOLOGY VOLUME 10 | OCTOBER 2012 © 2012 Macmillan Publishers Limited. All rights reserved.
Recommended publications
  • Mutational Load Causes Stochastic Evolutionary Outcomes In
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Virus Evolution, 2019, 5(1): vez008 doi: 10.1093/ve/vez008 Research article Mutational load causes stochastic evolutionary outcomes in acute RNA viral infection Downloaded from https://academic.oup.com/ve/article-abstract/5/1/vez008/5476199 by guest on 01 June 2020 Lei Zhao,1,† Ali B. Abbasi,1 and Christopher J. R. Illingworth1,2,*,‡ 1Department of Genetics, University of Cambridge, Cambridge, UK and 2Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK *Corresponding author: E-mail: [email protected] †http://orcid.org/0000-0002-6551-2707 ‡http://orcid.org/0000-0002-0030-2784 Abstract Mutational load is known to be of importance for the evolution of RNA viruses, the combination of a high mutation rate and large population size leading to an accumulation of deleterious mutations. However, while the effects of mutational load on global viral populations have been considered, its quantitative effects at the within-host scale of infection are less well un- derstood. We here show that even on the rapid timescale of acute disease, mutational load has an effect on within-host vi- ral adaptation, reducing the effective selection acting upon beneficial variants by 10 per cent. Furthermore, mutational load induces considerable stochasticity in the pattern of evolution, causing a more than five-fold uncertainty in the effective fitness of a transmitted beneficial variant. Our work aims to bridge the gap between classic models from population genetic theory and the biology of viral infection.
    [Show full text]
  • Changes in Population Dynamics in Mutualistic Versus Pathogenic Viruses
    Viruses 2011, 3, 12-19; doi:10.3390/v3010012 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Commentary Changes in Population Dynamics in Mutualistic versus Pathogenic Viruses Marilyn J. Roossinck Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., P.O. Box 2180, Ardmore, OK 73402, USA; E-Mail: [email protected]; Tel.: +1 580 224 6600; Fax: +1 580 224 6692. Received: 17 December 2010; in revised form: 31 December 2010 / Accepted: 6 January 2011 / Published: 17 January 2011 Abstract: Although generally regarded as pathogens, viruses can also be mutualists. A number of examples of extreme mutualism (i.e., symbiogenesis) have been well studied. Other examples of mutualism are less common, but this is likely because viruses have rarely been thought of as having any beneficial effects on their hosts. The effect of mutualism on the population dynamics of viruses is a topic that has not been addressed experimentally. However, the potential for understanding mutualism and how a virus might become a mutualist may be elucidated by understanding these dynamics. Keywords: beneficial viruses; polymerase fidelity; quasispecies; symbiosis; symbiogenesis 1. Introduction Viruses have been studied predominantly as pathogens, beginning with the first virus ever described, Tobacco mosaic virus [1] that was causing spots on tobacco plants. However, a number of viruses in plants, animals, fungi and bacteria have been described that are not pathogens; many are commensals and some are mutualists. Traditionally, mutualistic symbioses are thought of as long-term stable relationships, but viruses can clearly switch lifestyles depending on conditions. What effect does mutualism have on the population dynamics of a virus? Do the population dynamics of conditional mutualists change depending on their lifestyle? This is the subject of this brief perspective.
    [Show full text]
  • Evolutionary Analysis of the Dynamics of Viral Infectious Disease
    REVIEWS MODELLING Evolutionary analysis of the dynamics of viral infectious disease Oliver G. Pybus* and Andrew Rambaut‡ Abstract | Many organisms that cause infectious diseases, particularly RNA viruses, mutate so rapidly that their evolutionary and ecological behaviours are inextricably linked. Consequently, aspects of the transmission and epidemiology of these pathogens are imprinted on the genetic diversity of their genomes. Large-scale empirical analyses of the evolutionary dynamics of important pathogens are now feasible owing to the increasing availability of pathogen sequence data and the development of new computational and statistical methods of analysis. In this Review, we outline the questions that can be answered using viral evolutionary analysis across a wide range of biological scales. REFS 5–7 Balancing selection Rapidly evolving pathogens are unique in that their key human pathogens (for example, ). Any form of natural selection ecological and evolutionary dynamics occur on the Understandably, most studies have focused on impor- that results in the maintenance same timescale and can therefore potentially interact. tant human RNA viruses such as influenza virus, HIV, of genetic polymorphisms in a For example, the exceptionally high nucleotide mutation dengue virus and hepatitis C virus (HCV); therefore, this population, as opposed to 1 their loss through fixation or rate of a typical RNA virus — a million times greater Review concentrates on these infections. However, the elimination. than that of vertebrates — allows these viruses to gener- range of pathogens and hosts to which phylodynamic ate mutations and adaptations de novo during environ- methods are applied is expanding, and we also discuss mental change, whereas other organisms must rely on infectious diseases of wildlife, crops and livestock.
    [Show full text]
  • Risk Groups: Viruses (C) 1988, American Biological Safety Association
    Rev.: 1.0 Risk Groups: Viruses (c) 1988, American Biological Safety Association BL RG RG RG RG RG LCDC-96 Belgium-97 ID Name Viral group Comments BMBL-93 CDC NIH rDNA-97 EU-96 Australia-95 HP AP (Canada) Annex VIII Flaviviridae/ Flavivirus (Grp 2 Absettarov, TBE 4 4 4 implied 3 3 4 + B Arbovirus) Acute haemorrhagic taxonomy 2, Enterovirus 3 conjunctivitis virus Picornaviridae 2 + different 70 (AHC) Adenovirus 4 Adenoviridae 2 2 (incl animal) 2 2 + (human,all types) 5 Aino X-Arboviruses 6 Akabane X-Arboviruses 7 Alastrim Poxviridae Restricted 4 4, Foot-and- 8 Aphthovirus Picornaviridae 2 mouth disease + viruses 9 Araguari X-Arboviruses (feces of children 10 Astroviridae Astroviridae 2 2 + + and lambs) Avian leukosis virus 11 Viral vector/Animal retrovirus 1 3 (wild strain) + (ALV) 3, (Rous 12 Avian sarcoma virus Viral vector/Animal retrovirus 1 sarcoma virus, + RSV wild strain) 13 Baculovirus Viral vector/Animal virus 1 + Togaviridae/ Alphavirus (Grp 14 Barmah Forest 2 A Arbovirus) 15 Batama X-Arboviruses 16 Batken X-Arboviruses Togaviridae/ Alphavirus (Grp 17 Bebaru virus 2 2 2 2 + A Arbovirus) 18 Bhanja X-Arboviruses 19 Bimbo X-Arboviruses Blood-borne hepatitis 20 viruses not yet Unclassified viruses 2 implied 2 implied 3 (**)D 3 + identified 21 Bluetongue X-Arboviruses 22 Bobaya X-Arboviruses 23 Bobia X-Arboviruses Bovine 24 immunodeficiency Viral vector/Animal retrovirus 3 (wild strain) + virus (BIV) 3, Bovine Bovine leukemia 25 Viral vector/Animal retrovirus 1 lymphosarcoma + virus (BLV) virus wild strain Bovine papilloma Papovavirus/
    [Show full text]
  • Viral Host-Adaptation : Insights from Evolution Experiments with Phages
    This is a repository copy of Viral host-adaptation : insights from evolution experiments with phages. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/77996/ Version: Submitted Version Article: Hall, James Pj, Harrison, Ellie and Brockhurst, Michael A orcid.org/0000-0003-0362-820X (2013) Viral host-adaptation : insights from evolution experiments with phages. Current Opinion in Virology. pp. 572-577. ISSN 1879-6265 https://doi.org/10.1016/j.coviro.2013.07.001 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Viral host-adaptation: insights from evolution experiments with phages 2 James P. J. Hall, Ellie Harrison, Michael A. Brockhurst 3 Department of Biology, University of York, Wentworth Way, York YO10 5DD 4 5 Author for correspondence: 6 Professor Michael A. Brockhurst 7 Postal address: Department of Biology, University of York, Wentworth Way, York YO10 8 5DD 9 Telephone: 00 44 1904 328 576 10 Email: [email protected] 11 12 Abstract 13 Phages, viral parasites of bacteria, share fundamental features of pathogenic animal and 14 plant viruses and represent a highly tractable empirical model system to understand viral 15 evolution and in particular viral host-adaptation.
    [Show full text]
  • 1 Chapter I Overall Issues of Virus and Host Evolution
    CHAPTER I OVERALL ISSUES OF VIRUS AND HOST EVOLUTION tree of life. Yet viruses do have the This book seeks to present the evolution of characteristics of life, can be killed, can become viruses from the perspective of the evolution extinct and adhere to the rules of evolutionary of their host. Since viruses essentially infect biology and Darwinian selection. In addition, all life forms, the book will broadly cover all viruses have enormous impact on the evolution life. Such an organization of the virus of their host. Viruses are ancient life forms, their literature will thus differ considerably from numbers are vast and their role in the fabric of the usual pattern of presenting viruses life is fundamental and unending. They according to either the virus type or the type represent the leading edge of evolution of all of host disease they are associated with. In living entities and they must no longer be left out so doing, it presents the broad patterns of the of the tree of life. evolution of life and evaluates the role of viruses in host evolution as well as the role Definitions. The concept of a virus has old of host in virus evolution. This book also origins, yet our modern understanding or seeks to broadly consider and present the definition of a virus is relatively recent and role of persistent viruses in evolution. directly associated with our unraveling the nature Although we have come to realize that viral of genes and nucleic acids in biological systems. persistence is indeed a common relationship As it will be important to avoid the perpetuation between virus and host, it is usually of some of the vague and sometimes inaccurate considered as a variation of a host infection views of viruses, below we present some pattern and not the basis from which to definitions that apply to modern virology.
    [Show full text]
  • The Poxviridae Comprise a Family of Complex Cytoplasmic Replicating
    The Poxviridae comprise a family of complex cytoplasmic replicating DNA viruses that includes a number of important human and animal pathogens such as Variola virus, the causative agent of smallpox, Monkeypox virus, Cowpox virus and Vaccinia virus. Despite the successfully eradication of smallpox as a human disease by the worldwide vaccination campaigns 30 years ago, there nowadays still remains a considerable fear that Variola virus could be used as a bioweapon. Additionally, the re-emergence of zoonotic poxviruses such as the human Monkeypox virus outbreak that occurred in 2003 in the United States, Cowpox virus outbreaks in Europe and Vaccinia virus outbreaks in Brazil and India in the last years renewed the interest in the search for new anti- poxviral drugs. Besides, there is only one antiviral agent currently approved by FDA (Food and Drug Administration) for use against orthopoxviruses: cidofovir. However there are some concerns about its use, since cidofovir therapy can lead to renal and ocular toxicity, and also because cidofovir-resistant strains of camelpox, cowpox, monkeypox and vaccinia viruses have been isolated. In this context, the two poxvirus proteases, I7 and G1, arise as interesting protein targets for anti-poxvirus drugs development. In fact, it was previously showed that both I7 and G1 proteolysis activity are essential for viral replication and that these proteins have low identity with cellular proteins. These facts highlighted them as attractive antiviral targets. However, much essential knowledge of the molecular mechanisms of both proteases remains unexplored. This project aims to investigate more deeply both the structure and the function of these proteases.
    [Show full text]
  • Inhibitory Effect of CPXV012 Peptide on Enveloped and Non-Enveloped Viruses of Different Families
    Supplementary Materials Table 1 - Inhibitory effect of CPXV012 peptide on enveloped and non-enveloped viruses of different families Virus Family Genome Envelope Inhibition MVA Poxviridae dsDNA yes yes VACV-WR Poxviridae dsDNA yes yes CPXV-BR Poxviridae dsDNA yes yes HSV-1 Herpesviridae dsDNA yes yes HBV Hepadnaviridae dsDNA-RT yes yes HIV-1 Retroviridae ssRNA-RT yes yes RVFV Bunyaviridae ssRNA yes yes Measles Paramyxoviridae ssRNA yes no VSV Rhabdoviridae ssRNA yes no Adenovirus Adenoviridae dsDNA no no CVB3 Picornaviridae ssRNA no no MVA: Modified Vaccinia virus Ankara; VACV-WR: vaccinia virus strain Western Reserve; CPXV-BR: cowpox virus strain Brighton Red; HSV-1: herpes simplex virus-1; HBV: Hepatitis B virus; RVFV: Rift Valley fever virus; VSV: vesicular stomatitis virus; CVB3: coxsackie virus B3. A B 140 0.6 ) l 120 ro t 100 on 0.4 c g f 80 µ / o 60 % NR ( 0.2 1 - 40 T S 20 W 0 0.0 O 5 0 0 0 5 0 0 0 S 2 5 0 0 O 2 5 0 0 1 2 S 1 2 M M D D CPXV012 peptide [ g/mL] CPXV012 peptide [ g/mL] C ) . 30000 U . A ( e u 20000 l b r e t i t 10000 ll e C 0 0 50 100 150 200 CPXV012 peptide [ g/mL] Huh7.5 Vero Figure S1: CPXV012 peptide does not affect cell viability. (A-C) Cells were treated with the indicated concentrations of peptide or DMSO as vehicle control. S.E.M. of three independent experiments is shown. (A) Viability of MJS cells was measured by WST-1 assay or (B) Neutral Red uptake.
    [Show full text]
  • Evolutionary Virology at 40
    | PERSPECTIVES Evolutionary Virology at 40 Jemma L. Geoghegan* and Edward C. Holmes†,‡,§,**,1 *Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia and †Marie Bashir Institute for Infectious Diseases and Biosecurity, ‡Charles Perkins Centre, §School of Life and Environmental Sciences, and **Sydney Medical School, The University of Sydney, New South Wales 2006, Australia ORCID IDs: 0000-0003-0970-0153 (J.L.G.); 0000-0001-9596-3552 (E.C.H.) ABSTRACT RNA viruses are diverse, abundant, and rapidly evolving. Genetic data have been generated from virus populations since the late 1970s and used to understand their evolution, emergence, and spread, culminating in the generation and analysis of many thousands of viral genome sequences. Despite this wealth of data, evolutionary genetics has played a surprisingly small role in our understanding of virus evolution. Instead, studies of RNA virus evolution have been dominated by two very different perspectives, the experimental and the comparative, that have largely been conducted independently and sometimes antagonistically. Here, we review the insights that these two approaches have provided over the last 40 years. We show that experimental approaches using in vitro and in vivo laboratory models are largely focused on short-term intrahost evolutionary mechanisms, and may not always be relevant to natural systems. In contrast, the comparative approach relies on the phylogenetic analysis of natural virus populations, usually considering data collected over multiple cycles of virus–host transmission, but is divorced from the causative evolutionary processes. To truly understand RNA virus evolution it is necessary to meld experimental and comparative approaches within a single evolutionary genetic framework, and to link viral evolution at the intrahost scale with that which occurs over both epidemiological and geological timescales.
    [Show full text]
  • Here, There, and Everywhere: the Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses
    viruses Review Here, There, and Everywhere: The Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses Natalia Ingrid Oliveira Silva, Jaqueline Silva de Oliveira, Erna Geessien Kroon , Giliane de Souza Trindade and Betânia Paiva Drumond * Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais: Belo Horizonte, Minas Gerais 31270-901, Brazil; [email protected] (N.I.O.S.); [email protected] (J.S.d.O.); [email protected] (E.G.K.); [email protected] (G.d.S.T.) * Correspondence: [email protected] Abstract: The global emergence of zoonotic viruses, including poxviruses, poses one of the greatest threats to human and animal health. Forty years after the eradication of smallpox, emerging zoonotic orthopoxviruses, such as monkeypox, cowpox, and vaccinia viruses continue to infect humans as well as wild and domestic animals. Currently, the geographical distribution of poxviruses in a broad range of hosts worldwide raises concerns regarding the possibility of outbreaks or viral dissemination to new geographical regions. Here, we review the global host ranges and current epidemiological understanding of zoonotic orthopoxviruses while focusing on orthopoxviruses with epidemic potential, including monkeypox, cowpox, and vaccinia viruses. Keywords: Orthopoxvirus; Poxviridae; zoonosis; Monkeypox virus; Cowpox virus; Vaccinia virus; host range; wild and domestic animals; emergent viruses; outbreak Citation: Silva, N.I.O.; de Oliveira, J.S.; Kroon, E.G.; Trindade, G.d.S.; Drumond, B.P. Here, There, and Everywhere: The Wide Host Range 1. Poxvirus and Emerging Diseases and Geographic Distribution of Zoonotic diseases, defined as diseases or infections that are naturally transmissible Zoonotic Orthopoxviruses. Viruses from vertebrate animals to humans, represent a significant threat to global health [1].
    [Show full text]
  • The Evolution of Life History Trade-Offs in Viruses
    Available online at www.sciencedirect.com ScienceDirect The evolution of life history trade-offs in viruses Daniel H Goldhill and Paul E Turner Viruses can suffer ‘life-history’ trade-offs that prevent of trade-offs due to expected pleiotropy (single genes coding simultaneous improvement in fitness traits, such as improved for multiple proteins) and multifunctional proteins that play intrahost reproduction at the expense of reduced extrahost different roles during the viral lifecycle [7]. Viruses tend to survival. Here we examine reproduction-survival trade-offs and have short generation times, large population sizes and ease other trait compromises, highlighting that experimental of culture, allowing efficient experimental evolution studies evolution can reveal trade-offs and their associated that examine life history trade-offs [7]. Whole-genome se- mechanisms. Whereas ‘curse of the pharaoh’ (high virulence quencing easily permits identification of mutations changing with extreme stability) may generally apply for viruses of life history traits, in genome comparisons between ancestral eukaryotes, we suggest phages are instead likely to suffer and evolved viruses. Last, viral protein changes can reveal virulence/stability trade-offs. We examine how survival/ fundamental constraints and biophysical mechanisms of life reproduction trade-offs in viruses are affected by history trade-offs. environmental stressors, proteins governing viral host range, and organization of the virus genome. Future studies In addition, because viruses are exceedingly common on incorporating comparative biology, experimental evolution, earth and affect other organisms in myriad ways [8], and structural biology, could thoroughly determine how viral studying their life history trade-offs illuminates processes trade-offs evolve, and whether they transiently or permanently of global significance.
    [Show full text]
  • Conventional and Unconventional Mechanisms for Capping Viral Mrna
    REVIEWS Conventional and unconventional mechanisms for capping viral mRNA Etienne Decroly1, François Ferron1, Julien Lescar1,2 and Bruno Canard1 Abstract | In the eukaryotic cell, capping of mRNA 5′ ends is an essential structural modification that allows efficient mRNA translation, directs pre-mRNA splicing and mRNA export from the nucleus, limits mRNA degradation by cellular 5′–3′ exonucleases and allows recognition of foreign RNAs (including viral transcripts) as ‘non-self’. However, viruses have evolved mechanisms to protect their RNA 5′ ends with either a covalently attached peptide or a cap moiety (7‑methyl-Gppp, in which p is a phosphate group) that is indistinguishable from cellular mRNA cap structures. Viral RNA caps can be stolen from cellular mRNAs or synthesized using either a host- or virus-encoded capping apparatus, and these capping assemblies exhibit a wide diversity in organization, structure and mechanism. Here, we review the strategies used by viruses of eukaryotic cells to produce functional mRNA 5′-caps and escape innate immunity. Pre-mRNA splicing The cap structure found at the 5′ end of eukaryotic reactions involved in the viral RNA-capping process, A post-transcriptional mRNAs consists of a 7‑methylguanosine (m7G) moi‑ and the specific cellular factors that trigger a response modification of pre-mRNA, in ety linked to the first nucleotide of the transcript via a from the innate immune system. which introns are excised and 5′–5′ triphosphate bridge1 (FIG. 1a). The cap has several exons are joined in order to form a translationally important biological roles, such as protecting mRNA Capping, decapping and turnover of host RNA functional, mature mRNA.
    [Show full text]