Evolutionary Virology at 40
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prebiological Evolution and the Metabolic Origins of Life
Prebiological Evolution and the Andrew J. Pratt* Metabolic Origins of Life University of Canterbury Keywords Abiogenesis, origin of life, metabolism, hydrothermal, iron Abstract The chemoton model of cells posits three subsystems: metabolism, compartmentalization, and information. A specific model for the prebiological evolution of a reproducing system with rudimentary versions of these three interdependent subsystems is presented. This is based on the initial emergence and reproduction of autocatalytic networks in hydrothermal microcompartments containing iron sulfide. The driving force for life was catalysis of the dissipation of the intrinsic redox gradient of the planet. The codependence of life on iron and phosphate provides chemical constraints on the ordering of prebiological evolution. The initial protometabolism was based on positive feedback loops associated with in situ carbon fixation in which the initial protometabolites modified the catalytic capacity and mobility of metal-based catalysts, especially iron-sulfur centers. A number of selection mechanisms, including catalytic efficiency and specificity, hydrolytic stability, and selective solubilization, are proposed as key determinants for autocatalytic reproduction exploited in protometabolic evolution. This evolutionary process led from autocatalytic networks within preexisting compartments to discrete, reproducing, mobile vesicular protocells with the capacity to use soluble sugar phosphates and hence the opportunity to develop nucleic acids. Fidelity of information transfer in the reproduction of these increasingly complex autocatalytic networks is a key selection pressure in prebiological evolution that eventually leads to the selection of nucleic acids as a digital information subsystem and hence the emergence of fully functional chemotons capable of Darwinian evolution. 1 Introduction: Chemoton Subsystems and Evolutionary Pathways Living cells are autocatalytic entities that harness redox energy via the selective catalysis of biochemical transformations. -
Mutational Load Causes Stochastic Evolutionary Outcomes In
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Virus Evolution, 2019, 5(1): vez008 doi: 10.1093/ve/vez008 Research article Mutational load causes stochastic evolutionary outcomes in acute RNA viral infection Downloaded from https://academic.oup.com/ve/article-abstract/5/1/vez008/5476199 by guest on 01 June 2020 Lei Zhao,1,† Ali B. Abbasi,1 and Christopher J. R. Illingworth1,2,*,‡ 1Department of Genetics, University of Cambridge, Cambridge, UK and 2Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK *Corresponding author: E-mail: [email protected] †http://orcid.org/0000-0002-6551-2707 ‡http://orcid.org/0000-0002-0030-2784 Abstract Mutational load is known to be of importance for the evolution of RNA viruses, the combination of a high mutation rate and large population size leading to an accumulation of deleterious mutations. However, while the effects of mutational load on global viral populations have been considered, its quantitative effects at the within-host scale of infection are less well un- derstood. We here show that even on the rapid timescale of acute disease, mutational load has an effect on within-host vi- ral adaptation, reducing the effective selection acting upon beneficial variants by 10 per cent. Furthermore, mutational load induces considerable stochasticity in the pattern of evolution, causing a more than five-fold uncertainty in the effective fitness of a transmitted beneficial variant. Our work aims to bridge the gap between classic models from population genetic theory and the biology of viral infection. -
Use of Cell Culture in Virology for Developing Countries in the South-East Asia Region © World Health Organization 2017
USE OF CELL C USE OF CELL U LT U RE IN VIROLOGY FOR DE RE IN VIROLOGY V ELOPING C O U NTRIES IN THE NTRIES IN S O U TH- E AST USE OF CELL CULTURE A SIA IN VIROLOGY FOR R EGION ISBN: 978-92-9022-600-0 DEVELOPING COUNTRIES IN THE SOUTH-EAST ASIA REGION World Health House Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110002, India Website: www.searo.who.int USE OF CELL CULTURE IN VIROLOGY FOR DEVELOPING COUNTRIES IN THE SOUTH-EAST ASIA REGION © World Health Organization 2017 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition.” Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. -
Quasispecies Theory in Virology
JOURNAL OF VIROLOGY, Jan. 2002, p. 463–465 Vol. 76, No. 1 0022-538X/02/$04.00ϩ0 DOI: 10.1128/JVI.76.1.463–465.2002 Copyright © 2002, American Society for Microbiology. All Rights Reserved. Quasispecies Theory in Virology Holmes and Moya claim that quasispecies is an unnecessary ular sort. Darwinian principles in connection with quasispecies and misleading description of RNA virus evolution, that virol- have been explicitly invoked by theoreticians and experimen- ogists refer to quasispecies inappropriately, and that there is talists alike (11, 13, 16, 35). little evidence of quasispecies in RNA virus evolution. They What is the evidence of quasispecies dynamics in RNA virus wish to look for other ideas in evolutionary biology and to set populations, and why is quasispecies theory exerting an influ- down an agenda for future research. I argue here that real virus ence in virology? The initial experiment with phage Q which quasispecies often differ from the theoretical quasispecies as provided the first experimental support for a quasispecies dy- initially formulated and that this difference does not invalidate namics in an RNA virus (14, 17) has now been carried out with quasispecies as a suitable theoretical framework to understand biological and molecular clones of representatives of the major viruses at the population level. groups of human, animal, and plant RNA viruses, including In the initial theoretical formulation to describe error-prone immunodeficiency viruses and hepatitis C virus, both in cell replication of simple RNA (or RNA-like) molecules, quasispe- culture and in vivo (11). Support for quasispecies has also cies were defined as stationary (equilibrium) mutant distribu- come from studies on replication of RNA molecules in vitro tions of infinite size, centered around one or several master (4). -
Changes in Population Dynamics in Mutualistic Versus Pathogenic Viruses
Viruses 2011, 3, 12-19; doi:10.3390/v3010012 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Commentary Changes in Population Dynamics in Mutualistic versus Pathogenic Viruses Marilyn J. Roossinck Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., P.O. Box 2180, Ardmore, OK 73402, USA; E-Mail: [email protected]; Tel.: +1 580 224 6600; Fax: +1 580 224 6692. Received: 17 December 2010; in revised form: 31 December 2010 / Accepted: 6 January 2011 / Published: 17 January 2011 Abstract: Although generally regarded as pathogens, viruses can also be mutualists. A number of examples of extreme mutualism (i.e., symbiogenesis) have been well studied. Other examples of mutualism are less common, but this is likely because viruses have rarely been thought of as having any beneficial effects on their hosts. The effect of mutualism on the population dynamics of viruses is a topic that has not been addressed experimentally. However, the potential for understanding mutualism and how a virus might become a mutualist may be elucidated by understanding these dynamics. Keywords: beneficial viruses; polymerase fidelity; quasispecies; symbiosis; symbiogenesis 1. Introduction Viruses have been studied predominantly as pathogens, beginning with the first virus ever described, Tobacco mosaic virus [1] that was causing spots on tobacco plants. However, a number of viruses in plants, animals, fungi and bacteria have been described that are not pathogens; many are commensals and some are mutualists. Traditionally, mutualistic symbioses are thought of as long-term stable relationships, but viruses can clearly switch lifestyles depending on conditions. What effect does mutualism have on the population dynamics of a virus? Do the population dynamics of conditional mutualists change depending on their lifestyle? This is the subject of this brief perspective. -
Dynamics of a Discrete Hypercycle
Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques i Informàtica Universitat de Barcelona Dynamics of a Discrete Hypercycle Autor: Júlia Perona García Directors: Dr. Ernest Fontich, Dr. Josep Sardanyés Realitzat a: Departament de Matemàtiques i Informàtica Barcelona, June 27, 2018 Abstract The concept of the Hypercycle was introduced in 1977 by Manfred Eigen and Peter Schuster within the framework of origins of life and prebiotic evolution. Hypercycle are catalytic sets of macromolecules, where each replicator catalyzes the replication of the next species of the set. This system was proposed as a possible solution to the information crisis in prebiotic evolution. Hypercycles are cooperative systems that allow replicators to increase their information content beyond the error threshold. This project studies the dynamics of a discrete-time model of the hypercycle consider- ing heterocatalytic interactions. To date, hypercycles’ dynamics has been mainly studied using continuous-time dynamical systems. We follow the Hofbauer’s discrete model [13]. First, we introduce some important and necessary mathematical notions. Then, we also review the biological concept of the hypercycle and some criticisms that it has received. We present a complete proof of the fact that the hypercycle is a cooperative system. Also, we present an analytic study of the fixed point in any dimension and its stability. In particular, in dimension three we prove that fixed point is globally asymptotically stable. In dimension four we have obtained a stable invariant curve for all values of the discreteness parameter. 2010 Mathematics Subject Classification. 37C05, 37N25 Acknowledgements I would like to thank my directors, Ernest and Josep, to support me throughout this project. -
The Molecular Underpinnings of Genetic Phenomena
Heredity (2008) 100, 6–12 & 2008 Nature Publishing Group All rights reserved 0018-067X/08 $30.00 www.nature.com/hdy SHORT REVIEW The molecular underpinnings of genetic phenomena N Lehman Department of Chemistry, Portland State University, Portland, OR, USA Epiphenomena are those processes that ostensibly have no whole organisms and populations may have their ultimate precedent at lower levels of scientific organization. In this evolutionary roots in the chemical repertoire of catalytic review, it is argued that many genetic processes, including RNAs. Some of these phenomena will eventually prove to be ploidy, dominance, heritability, pleiotropy, epistasis, muta- not only analogous but homologous to ribozyme activities. tional load and recombination, all are at least analogous to Heredity (2008) 100, 6–12; doi:10.1038/sj.hdy.6801053; biochemical events that were requisite features of the RNA published online 29 August 2007 world. Most, if not all, of these features of contemporary Keywords: RNA; ploidy; pleiotropy; epistasis; heritability; recombination Introduction Below are discussed seven well-known genetic pro- cesses for which a clear molecular basis can be The history of life, if traced with perfect detail, would postulated. By ‘molecular basis’ it is meant that a reveal a long and gradual expansion of networks of chemical property of biopolymers, usually RNA, can be chemical reactions. If viewed in less detail, a series of identified as a direct forbearer of the higher-order plateaus would be seen, each representing a discrete property observed in whole organisms. Again, an advancement in complexity (Fontana and Schuster, 1998; important aspect of this is the idea that many of these Hazen et al., 2007). -
2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A. -
A Persistent Giant Algal Virus, with a Unique Morphology, Encodes An
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A persistent giant algal virus, with a unique morphology, encodes an 2 unprecedented number of genes involved in energy metabolism 3 4 Romain Blanc-Mathieu1,2, Håkon Dahle3, Antje Hofgaard4, David Brandt5, Hiroki 5 Ban1, Jörn Kalinowski5, Hiroyuki Ogata1 and Ruth-Anne Sandaa6* 6 7 1: Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan 8 2: Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, 9 CNRS, INRA, IRIG, Grenoble, France 10 3: Department of Biological Sciences and K.G. Jebsen Center for Deep Sea Research, 11 University of Bergen, Bergen, Norway 12 4: Department of Biosciences, University of Oslo, Norway 13 5: Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany 14 6: Department of Biological Sciences, University of Bergen, Bergen, Norway 15 *Corresponding author: Ruth-Anne Sandaa, +47 55584646, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 Viruses have long been viewed as entities possessing extremely limited metabolic 18 capacities. -
The LUCA and Its Complex Virome in Another Recent Synthesis, We Examined the Origins of the Replication and Structural Mart Krupovic , Valerian V
PERSPECTIVES archaea that form several distinct, seemingly unrelated groups16–18. The LUCA and its complex virome In another recent synthesis, we examined the origins of the replication and structural Mart Krupovic , Valerian V. Dolja and Eugene V. Koonin modules of viruses and posited a ‘chimeric’ scenario of virus evolution19. Under this Abstract | The last universal cellular ancestor (LUCA) is the most recent population model, the replication machineries of each of of organisms from which all cellular life on Earth descends. The reconstruction of the four realms derive from the primordial the genome and phenotype of the LUCA is a major challenge in evolutionary pool of genetic elements, whereas the major biology. Given that all life forms are associated with viruses and/or other mobile virion structural proteins were acquired genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by from cellular hosts at different stages of evolution giving rise to bona fide viruses. projecting back in time using the extant distribution of viruses across the two In this Perspective article, we combine primary domains of life, bacteria and archaea, and tracing the evolutionary this recent work with observations on the histories of some key virus genes, we attempt a reconstruction of the LUCA virome. host ranges of viruses in each of the four Even a conservative version of this reconstruction suggests a remarkably complex realms, along with deeper reconstructions virome that already included the main groups of extant viruses of bacteria and of virus evolution, to tentatively infer archaea. We further present evidence of extensive virus evolution antedating the the composition of the virome of the last universal cellular ancestor (LUCA; also LUCA. -
Technical Glossary
WBVGL 6/28/03 12:00 AM Page 409 Technical Glossary abortive infection: Infection of a cell where there is no net increase in the production of infectious virus. abortive transformation: See transitory (transient or abortive) transformation. acid blob activator: A regulatory protein that acts in trans to alter gene expression and whose activity depends on a region of an amino acid sequence containing acidic or phosphorylated residues. acquired immune deficiency syndrome (AIDS): A disease characterized by loss of cell-mediated and humoral immunity as the result of infection with human immunodeficiency virus (HIV). acute infection: An infection marked by a sudden onset of detectable symptoms usually followed by complete or apparent recovery. adaptive immunity (acquired immunity): See immunity. adjuvant: Something added to a drug to increase the effectiveness of that drug. With respect to the immune system, an adjuvant increases the response of the system to a particular antigen. agnogene: A region of a genome that contains an open reading frame of unknown function; origi- nally used to describe a 67- to 71-amino acid product from the late region of SV40. AIDS: See acquired immune deficiency syndrome. aliquot: One of a number of replicate samples of known size. a-TIF: The alpha trans-inducing factor protein of HSV; a structural (virion) protein that functions as an acid blob transcriptional activator. Its specificity requires interaction with certain host cel- lular proteins (such as Oct1) that bind to immediate-early promoter enhancers. ambisense genome: An RNA genome that contains sequence information in both the positive and negative senses. The S genomic segment of the Arenaviridae and of certain genera of the Bunyaviridae have this characteristic. -
Evolutionary Analysis of the Dynamics of Viral Infectious Disease
REVIEWS MODELLING Evolutionary analysis of the dynamics of viral infectious disease Oliver G. Pybus* and Andrew Rambaut‡ Abstract | Many organisms that cause infectious diseases, particularly RNA viruses, mutate so rapidly that their evolutionary and ecological behaviours are inextricably linked. Consequently, aspects of the transmission and epidemiology of these pathogens are imprinted on the genetic diversity of their genomes. Large-scale empirical analyses of the evolutionary dynamics of important pathogens are now feasible owing to the increasing availability of pathogen sequence data and the development of new computational and statistical methods of analysis. In this Review, we outline the questions that can be answered using viral evolutionary analysis across a wide range of biological scales. REFS 5–7 Balancing selection Rapidly evolving pathogens are unique in that their key human pathogens (for example, ). Any form of natural selection ecological and evolutionary dynamics occur on the Understandably, most studies have focused on impor- that results in the maintenance same timescale and can therefore potentially interact. tant human RNA viruses such as influenza virus, HIV, of genetic polymorphisms in a For example, the exceptionally high nucleotide mutation dengue virus and hepatitis C virus (HCV); therefore, this population, as opposed to 1 their loss through fixation or rate of a typical RNA virus — a million times greater Review concentrates on these infections. However, the elimination. than that of vertebrates — allows these viruses to gener- range of pathogens and hosts to which phylodynamic ate mutations and adaptations de novo during environ- methods are applied is expanding, and we also discuss mental change, whereas other organisms must rely on infectious diseases of wildlife, crops and livestock.