bioRxiv preprint doi: https://doi.org/10.1101/2020.12.09.417121; this version posted December 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. An interactive viral genome evolution network analysis system enabling rapid large-scale molecular tracing of SARS-CoV-2 Yunchao Ling1,*, Ruifang Cao1,*, Jiaqiang Qian1,*, Jiefu Li1,2, Haokui Zhou4, Liyun Yuan1, Zhen Wang1, Guangyong Zheng1, Guoping Zhao1,3, Yixue Li1,2,#, Zefeng Wang1,2,#, Guoqing Zhang1,2,# 1 Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China 2 University of Chinese Academy of Sciences, Beijing, China 3 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China. 4 Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China * These authors contributed equally to this work # Corresponding to:
[email protected];
[email protected];
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.12.09.417121; this version posted December 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Comprehensive analyses of viral genomes can provide a global picture on SARS-CoV-2 transmission and help to predict the oncoming trends of pandemic.