Data Production on Past and Future NASA Missions Lee E. Z. Jasper Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Dr. Pasadena, CA 91109 818-354-3678
[email protected] Peter Xaypraseuth Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Dr. Pasadena, CA 91109 818-393-1601
[email protected] Abstract—Data return is a metric that is commonly publicized 1. INTRODUCTION for all space science missions. In the early days of the Space Program, this figure was small, and could be described in bits The key product for all of NASA’s unmanned missions is or maybe even megabits. But now, missions are capable of data. Data are what drives the science, and are what every returning data volumes two or three orders of magnitude larger. mission must create, store, and eventually return to Earth. For example, Voyager 1 and 2 combined produced a little over The process by which the data is handled is complex and 5 Terabits of data in 39 years of operation. In contrast, the has gone through a number of changes throughout the last Cassini mission, launched two decades after Voyager, produced four decades. However, the main components have remained about one and a half times those data volumes in half the time. unchanged. Telecommunications are required due to the NISAR, an Earth Science Mission currently in implementation, separation between the instruments producing the data and plans to produce over 28 Petabits of raw data in just 3 years. This means that NISAR will produce about as many data in 30 users of the data on Earth.