INDIA JANUARY 2018 – June 2020

Total Page:16

File Type:pdf, Size:1020Kb

INDIA JANUARY 2018 – June 2020 SPACE RESEARCH IN INDIA JANUARY 2018 – June 2020 Presented to 43rd COSPAR Scientific Assembly, Sydney, Australia | Jan 28–Feb 4, 2021 SPACE RESEARCH IN INDIA January 2018 – June 2020 A Report of the Indian National Committee for Space Research (INCOSPAR) Indian National Science Academy (INSA) Indian Space Research Organization (ISRO) For the 43rd COSPAR Scientific Assembly 28 January – 4 Febuary 2021 Sydney, Australia INDIAN SPACE RESEARCH ORGANISATION BENGALURU 2 Compiled and Edited by Mohammad Hasan Space Science Program Office ISRO HQ, Bengalure Enquiries to: Space Science Programme Office ISRO Headquarters Antariksh Bhavan, New BEL Road Bengaluru 560 231. Karnataka, India E-mail: [email protected] Cover Page Images: Upper: Colour composite picture of face-on spiral galaxy M 74 - from UVIT onboard AstroSat. Here blue colour represent image in far ultraviolet and green colour represent image in near ultraviolet.The spiral arms show the young stars that are copious emitters of ultraviolet light. Lower: Sarabhai crater as imaged by Terrain Mapping Camera-2 (TMC-2)onboard Chandrayaan-2 Orbiter.TMC-2 provides images (0.4μm to 0.85μm) at 5m spatial resolution 3 INDEX 4 FOREWORD PREFACE With great pleasure I introduce the report on Space Research in India, prepared for the 43rd COSPAR Scientific Assembly, 28 January – 4 February 2021, Sydney, Australia, by the Indian National Committee for Space Research (INCOSPAR), Indian National Science Academy (INSA), and Indian Space Research Organization (ISRO). The report gives an overview of the important accomplishments, achievements and research activities conducted in India in several areas of near- Earth space, Sun, Planetary science, and Astrophysics for the duration of two and half years (Jan 2018 – June 2020). The report also reflects the major facilities for space research available in India and the important scientific results obtained using these facilities. The report summarizes the contributions from various ISRO centres, national institutes, and the universities. The period spanning 2018–2020 witnessed noteworthy developments on many fronts along with significant growth in research and academic activities and exploration program. This period, specially the year 2020 has been challenging in almost all the strata of human life due to the pandemic situation faced world-wide. This has taught us many lessons and has shown that by working together only we can handle problems of global nature. It has also paved new ways for scientists to interact and conduct meetings and discussion forums connecting remotely. In the area of space science, one of the major milestone during this period is the launch of Indian second Moon mission Chandrayaan-2 on 22 July 2019, and its insertion into the lunar orbit on 20 August 2019. The Chandrayaan-2 mission had three components: Orbiter, Lander and Rover. Though the soft-landing attempt near the south pole of the Moon was unsuccessful, the Orbiter placed in the 100-km polar orbit is providing high-quality observations. The early science results from observations are being published. All the eight experiments aboard Orbiter are working well, and first-set of data has been released to public on 24 December 2020. At present about 1100 worldwide users have registered for publicly available Chandrayaan-2 data. Scientific publications reporting new results from the observations made by the first lunar mission of India Chandrayaan-1 are continuing. The Indian Mars Orbiter mission continues to orbit Mars completing more than six years of operations around Mars. Another major accomplishment in space science is the completion of 5 years of AstroSat in operation on 28 September 2020. AstroSat is India’s first multi- wavelength astronomical mission. From October 2017, the observatory is open to Indian and International astronomy community. Currently AstroSat has a registered user base of around 1500 from 48 countries. Several interesting and important science outcome have emerged from AstroSat. In the first five-years AstroSat has produced more than 150 refereed publications, and more than thousand conference proceedings, GCN circulars, Astronomer’s telegrams and other non-refereed publications. The discovery of Lyman continuum emission from a low mass clumpy galaxy at z = 1.42 in extreme UV by Ultraviolet Imaging Telescope (UVIT) onboard AstroSat is a breakthrough result. This opens up a new window to constrain the shape of the ionizing spectrum. The other notable results from AstroSat during last two and half years are the discovery of extended UV emission in Butterfly nebula, detection of rare triple thermo-nuclear bursts, estimation of mass of a black-hole rotating 6 PREFACE with near to maximal possible speed, detection of X-ray polarization from Crab, resolving the nature of a SU Lyn star using spectroscopic capability of UVIT, and several gamma ray bursts, etc. India joined the elite club of countries, which have discovered planets around stars beyond our solar system, when a sub-Saturn or super-Neptune size planet (mass of about 27 Earth Mass and size of 6 Earth Radii) known as EPIC 211945201b or K2-236b was discovered using the PARAS instrument on the 1.2-m telescope of Physical Research Laboratory at Mt. Abu. In the last two years India has made significant contributions towards the Thirty Meter Telescope (TMT) International Observatory. India TMT has completed the state-of-the art facility for large optics fabrication for polishing of 90 mirror segments of 1.45-m diameter using stress mirror polishing (SMP) technique. Apart from hardware, India TMT continues to provide software modules as part of observatory software suite and contributing to both 1st and 2nd generation instrument development. Towards the expansion of Indian planetary exploration program, ISRO is conducting study for a possible mission to Venus and next mission to Mars in the coming decade. An announcement of opportunity was released by ISRO for participation of international partners for the Venus mission. Indian first solar observatory Aditya-L1 is getting ready and would be launched very soon. During the past two and half years, the Indian space community has been very active in conducting investigations in many diverse areas related to Astronomy and Astrophysics, Solar Physics, Space and Atmospheric Sciences, Planetary Sciences, Geomagnetism and Geosciences. Observations have been made using various tools and in several wavelengths. This report describes highlights of the research from the studies on ionosphere, magnetosphere, solar wind and space weather, lunar and planetary studies, oceanography, atmospheric structure and dynamics; cloud and convective system; aerosols, radiation and trace gases, weather and climate change, Sun and the solar system bodies, stars, galaxies, galactic and extragalactic astronomy and cosmology. Studies in the area of astro-chemistry have been initiated and expanded. I would like to thank all the scientists who have sent the inputs on the space research activities being carried out in their respective Institutes and Departments in time to prepare this report. I would like to acknowledge the hard work put in by Space Science Programme Office, ISRO HQ, Bangalore for compiling and editing the report on behalf of INCOSPAR. Anil Bhardwaj Chairman, INCOSPAR 7 JOINT NATIONAL COMMITTEE FOR COMMITTEE ON SPACE RESEARCH (COSPAR); INTERNATIONAL UNION OF RADIO SCIENCE (URSI) & SCIENTIFIC COMMITTEE ON SOLAR-TERRESTRIAL PHYSICS (SCOSTEP), JANUARY 1, 2020 – DECEMBER 31, 2023 Dr. Anil Bhardwaj Chairperson Dr. Amit Kumar Patra Member Dr. S. Seetha Member Dr. Virupakshi Reddy Member Dr. P.K. Manoharan Member Dr. Devendraa Siingh Member 8 CHAPTER 1 ORGANISATION AND FACILITIES 1. ORGANISATION OF SPACE RESEARCH • INDIAN NATIONAL COMMITTEE FOR SPACE RESEARCH (INCOSPAR) Indian National Committee for Space Research (INCOSPAR) is one of the committees of the Indian National Science Academy (INSA), which is the national adhering organisation to the International Council of Scientific Unions (ICSU), and a member of ICSU Council. Presently, Dr. Anil Bhardwaj is the Chairman of INCOSPAR and Dr. K. Rajeev is the national representative at COSPAR Council. INCOSPAR has the following terms of reference: i. To recommend and promote national activities and international co-operation in space exploration and space research. ii. To provide necessary liaison with the COSPAR of ICSU, and encourage participation in international activities which contribute to the peaceful uses of outer space. • SPACE COMMISSION, DEPARTMENT OF SPACE AND INDIAN SPACE RESEARCH ORGANISATION The Space Commission and the Department of Space (DOS) were established by the Government of India in 1972 to promote development and application of space science and technology for identified national socio-economic objectives. The Space Commission lays down the framework of important space activities and advises the Government on major policies related to India’s space programme. Dr. K. Sivan is the present Chairman of the Space Commission, Secretary to the Government of India in DOS and Chairman of the Indian Space Research Organisation (ISRO). DOS functions directly under the Prime Minister of India. The Indian Space Programme is directed towards the goal of self-reliant use of space science and technology for national development, its main thrusts being: i. Satellite telecommunications, navigation, television and radio broadcasting ii. Satellite remote sensing for resource survey and management, environmental monitoring
Recommended publications
  • Local History of Ethiopia an - Arfits © Bernhard Lindahl (2005)
    Local History of Ethiopia An - Arfits © Bernhard Lindahl (2005) an (Som) I, me; aan (Som) milk; damer, dameer (Som) donkey JDD19 An Damer (area) 08/43 [WO] Ana, name of a group of Oromo known in the 17th century; ana (O) patrikin, relatives on father's side; dadi (O) 1. patience; 2. chances for success; daddi (western O) porcupine, Hystrix cristata JBS56 Ana Dadis (area) 04/43 [WO] anaale: aana eela (O) overseer of a well JEP98 Anaale (waterhole) 13/41 [MS WO] anab (Arabic) grape HEM71 Anaba Behistan 12°28'/39°26' 2700 m 12/39 [Gz] ?? Anabe (Zigba forest in southern Wello) ../.. [20] "In southern Wello, there are still a few areas where indigenous trees survive in pockets of remaining forests. -- A highlight of our trip was a visit to Anabe, one of the few forests of Podocarpus, locally known as Zegba, remaining in southern Wello. -- Professor Bahru notes that Anabe was 'discovered' relatively recently, in 1978, when a forester was looking for a nursery site. In imperial days the area fell under the category of balabbat land before it was converted into a madbet of the Crown Prince. After its 'discovery' it was declared a protected forest. Anabe is some 30 kms to the west of the town of Gerba, which is on the Kombolcha-Bati road. Until recently the rough road from Gerba was completed only up to the market town of Adame, from which it took three hours' walk to the forest. A road built by local people -- with European Union funding now makes the forest accessible in a four-wheel drive vehicle.
    [Show full text]
  • CASTOR: a Wide-Field, UV Space Telescope
    Astro2020 Activities and Projects White Paper CASTOR: A Wide-Field, UV Space Telescope Thematic Areas: Space Missions Ground-Based Activities and Projects Computation Astrophysics Theoretical Astrophysics Laboratory Astrophysics Principal Author: Peter L. Capak Name: Peter L. Capak Institution: Infrared Processing and Analysis Center, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, USA Email: [email protected] Phone: (626) 395-6422 Co-authors: Michael L. Balogh (University of Waterloo), Jessie L. Christiansen (NASA Exo- planet Science Institute, Caltech), Patrick Cotˆ e´ (National Research Council of Canada), Olivier Dore´ (Caltech, JPL), Maria Drout (University of Toronto), Christopher J. Evans (UK Astronomy Technology Centre, Royal Observatory Edinburgh), Andreas L. Faisst (IPAC, Caltech), Sarah C. Gallagher (University of Western Ontario), Carl J. Grillmair (IPAC, Caltech), Paul Harrison (Magellan Aerospace), John B. Hutchings (National Research Council of Canada), JJ Kavelaars (National Research Council of Canada), J.-F. Lavigne (ABB), Janice C. Lee (IPAC, Caltech), Shouleh Nikzad (Jet Propulsion Laboratory, California Institute of Technology), Jason D. Rhodes (Jet Propulsion Laboratory, California Institute of Technology), Jason F. Rowe (Bishop’s Univer- sity), Ruben´ Sanchez-Janssen (UK Astronomy Technology Centre, Royal Observatory Edinburgh), Alan D. Scott (Honeywell Aerospace), Charles Shapiro (Jet Propulsion Laboratory, California In- stitute of Technology), Melanie Simet (University of California Riverside), Harry I. Teplitz (IPAC, Caltech), Kim A. Venn (University of Victoria), Ludovic Van Waerbeke (University of British Columbia) 1 Abstract: CASTOR (The Cosmological Advanced Survey Telescope for Optical and UV Re- search) is a proposed Canadian-led mission that would provide high-resolution imaging and spec- troscopy in the UV/optical (0.15–0.55 µm) spectral region.
    [Show full text]
  • Mech Connect
    MECH @ CONNECT DEPARTMENT OF MECHANICAL ENGINEERING June, June, - 2019 April EDITORIAL BOARD: Student Editor: Faculty Editors- AKSHAT KAPOOR Dr. SHAILENDRA DWIVEDI Segment Editors: ABHINAV RAJ Dr. T. RAVI KIRAN (News around the world) Dr. NEERAJ DUBEY ABHISHEK MOHAN Dr. VIPIN SHARMA (Sports news) LAKSHMI NARAIN COLLEGE DEPARTMENT OF OF TECHNOLOGY, BHOPAL MECHANICAL ENGINEERING VISION: VISION: To be a premier institute where To be recognized in academics and engineering education and research converge to produce engineers as research for producing engineers as responsible citizens. responsible citizen who are innovative, choice of employers and able to do MISSION: further studies & research. • To improve continually in the teaching-learning process by MISSION: strengthening infrastructural • To provide knowledge and skills facilities and faculty credentials. of Mechanical Engineering to the • To undertake interdisciplinary students. research and development by • To impart quality education to make engaging the faculty and students in curricular, co-curricular and industry students competent mechanical collaborated projects towards engineer and responsible citizen. problem solving. • To provide facilities and • To enhance proportion of skilled environment conducive to based courses beyond curriculum to grounding create more employable graduates. scholars for employability, higher • To inculcate human values, ethics, patriotism and responsibility in our studies and research. outgoing engineers by providing • To prepare its students for conducive environment. successful career in engineering. Program Educational Objectives (PEOs) To make the students able of applying knowledge of mathematics, science and subjects of mechanical engineering in dealing with engineering problems. To be able to identify and understand real life problems and suitably design and manufacture, feasible and sustainable mechanical devices and systems.
    [Show full text]
  • Planetary Challenges & Spiritual Evolution
    Planetary Challenges & Spiritual Evolution – Citizen Summary Planetary Challenges & Spiritual Evolution Summary For Citizens of Planet Earth Written by Susan Joy Rennison, B. Sc Hons (Physics & Geophysics), June 2011 (Editorial Revision), Olten, Switzerland Copyright © 2011 Susan Joy Rennison Planetary Challenges & Spiritual Evolution – Citizen Summary Planetary Challenges & Spiritual Evolution Citizen Summary Table of Contents Table of Contents i Illustrations ii Foreword iv Introduction vii Our Sun, A Variable Star 1 The Extraordinary Quiet Solar Minimum of Solar Cycle 23 2 Space Weather & The Delivery of Evolutionary Energies 4 The Precession of the Equinoxes 5 Extreme Space Weather 6 The Gamma & Cosmic Ray Blitz From Across the Galaxy 8 The Global Warming Controversy 9 Atmospheric Change: New Electrical Manifestations 10 Extreme Physics right here on Earth 12 Asteroids, Comets & Meteors? “We’re living in a bowling alley” 13 Heavenly Phenomena: Strange Fireballs 16 The Geological Response 17 Strange Atmospheric Cloud Emissions 19 The ‘Orb’ Phenomena & ‘Diamond’ Rain 20 Earth’s Shadow Biosphere 21 The Planetary ‘Refresh’ 27 i Copyright Susan Joy Rennison Sunday, June 05, 2011 Planetary Challenges & Spiritual Evolution – Citizen Summary The ‘Upgrade’ of the Planetary Grid 31 Space Weather Drives Biological Changes 32 The Choice: Spiritual Evolution or Devolution? 33 Rapid Evolutionary Change 34 Conclusion 38 References 39 Illustrations The White House i Medieval Engraving of Gioacchino da Fiore (Joachim of Fiore) vi Space Weather Turns Into an International Problem vii The Sun −Earth Connection viii Aurora over Southern New Jersey (1989) ix Exploration of Near Earth Objects Workshop Poster x The Eventful Universe Workshop Poster xi Massive Coronal Mass Ejection Proceeding X45 Solar Flare.
    [Show full text]
  • October 2016 OREGON
    OREGON Wine September - October 2016 Pricing is subject to change without notice. Products listed may not be available in all counties. SOUTHERN GLAZER'S WINE AND SPIRITS Oregon Wine Price Book September - October 2016 Index PG SPARKLING - DOMESTIC 1 BARONESS CELLARS 55; 56 CADENCE 56 SPARKLING - IMPORT 3 BARONS DE ROTHSCHILD 3; 62 CALDORA 71 DOMESTIC WINE 12 BAROSSA VALLEY 88 CALINA 94 IMPORT WINE - OLD WORLD 61 BARREL AXE 15 CALLAWAY 19 IMPORT WINE - NEW WORLD 85 BARTLES & JAYMES 108; 109 CAMBRIA WINES 19 DESSERT WINE 99 BATASIOLO 73 CAMERON HUGHS 19 VERMOUTH 102 BAY BRIDGE 15 CAMPO 82 FRUIT WINE 103 BAYONETTE 66 CAMPO VIEJO 11; 83 READY TO DRINK 103 BB CAP 4 CANALI 72 HIGH PROOF 104 BEAU JOIE 4 CANDLE MAGIC 19 BEVERAGE WINE 104 BEAULIEU VINEYARDS 15; 99 CANDONI 9; 72; 75 CIDER 104 BELLA CONCHI 11 CANOE RIDGE 56 SAKE 104 BELLA SERA 71; 80 CANTINA CELLARO 75 SAKE ACCESSORIES 108 BELLE AMBIANCE 15 CANYON ROAD 19 PROGRESSIVE ADULT BEVERAGES 108 BENNETT LANE 15 CAPCANES 83 DOMESTIC BEER 109 BENVOLIO 9; 72 CAPENSIS 98 PANTRY 109 BENZIGER 15 CAPEZZANA 77 DISCONTINUED 109 BERAN 15 CAPTURE 19 ================================================= BERGDORF CELLARS 56 CARDINALE WINE 19 10 SPAN 12 BERGERAC 69 CARLO ROSSI 19; 20 13 CELSIUS 96 BERINGER 1 CARMEL ROAD 20 1865(SAN PEDRO) 94 BERINGER BLUSH 15 CARMEL VINEYARD 70 19 CRIMES 88 BERINGER CALIF COLLECTION 16 CARNAVAL SPARKLING 3 3 HORSE RANCH 51 BERINGER FOUNDERS ESTATE 16 CARNE HUMANA 20 35 SOUTH 94 BERINGER IMPORT OTHER 94 CARNEROS HILLS 20 50 DEGREE 70 BERINGER KNIGHTS VALLEY 16 CARNIVOR 20
    [Show full text]
  • Pecora 21/ISRSE 38 Organized Special Presentation (SP) Sessions When Submitting an Abstract for a Proposed Special Session, Please Include the Session ID (E.G
    Pecora 21/ISRSE 38 Organized Special Presentation (SP) Sessions When submitting an abstract for a proposed special session, please include the session ID (e.g. SP1, SP2) as a Keyword. SP1 Open Data Cube: A new data technology for enhancing the use of satellite data to address sustainable development goals Brian Killough, NASA The Open Data Cube (ODC), created and facilitated by the Committee on Earth Observation Satellites (CEOS), is an open source software architecture that allows analysis-ready satellite data to be packaged in "cubes" to minimize data preparation complexity and take advantage of modern computing for increased value and impact of Earth observation data. This session will summarize the ODC progress, discuss the advancements of country-based implementation and present the status of several new open source ODC applications and their potential to address society and the UN Sustainable Development Goals. SP2 An overview of the current Analysis Ready Data products, tools, applications and impacts Andreia Siqueira, Geoscience Australia Public and private agencies have been committed to address the big data challenge by producing Analysis Ready Data products (ARD) for their users. The ARD products are enabling users to get first hand satellite data that are ready to use for a wide range of applications, including time-series analysis and the way forward to multi-sensor interoperability. The Analysis Ready Data session has as its main objective to present the current state of knowledge on global efforts towards producing Analysis Ready Data (ARD). It is expected that topics across the maturity of ARD products, including validation and calibration, the overall CEOS Analysis Ready Data for Land (CARD4L) framework as well as the Product Family Specifications (PFS) and the Product Alignment Assessment process (PAA) will be presented and discussed.
    [Show full text]
  • Ionospheric Radars Development
    UNT Ionospheric radars development Enrico Zuccheretti, Umberto Sciacca [email protected] - [email protected] Istituto Nazionale di Geofisica e Vulcanologia - Rome, Italy The following slides were presented during the lectures of the course “Desarrollo de radares ionosféricos” held within the post graduate course on “Geofísica espacial” organised by the Universidad Nacional de Tucumán - Facultad de Ciencias Exactas y Tecnología - Departamento de Posgrado in Tucumán on 4 – 7 October 2010. UNT Module 1 Basics of radar theory and design elements Introduction UNT •Amongst the big variety of techniques used to study the geophysical environment, methods using electromagnetic waves occupy a very prominent position. •These techniques exploit radio waves modifications when they interact with the medium they pass through. •The ionosphere is no exception: the most common way to study its behaviour is to emit radio wave pulses into the ionosphere and to study the backscattered echo. •The echo signal contains information about the layers in which it may be refracted, reflected or absorbed. •Also signals coming from satellites (NNSS, GPS) or from terrestrial emitting station (VLF emitters) can be used. They do not exploit the radar technique but their properties are affected by the medium they pass through. Radio Frequencies Bands UNT ELF SLF ULF VLF LF MF HF VHF UHF SHF EHF 3 Hz 30 Hz 300 Hz 3 kHz 30 kHz 300 kHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz 30 Hz 300 Hz 3 kHz 30 kHz 300 kHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz 300 GHz The vertical sounding technique UNT •The measure technique is based on sending pulses of energy at different frequencies towards the ionosphere and in measuring the backscattered echo delay to properly evaluate the position of ionospheric layers.
    [Show full text]
  • Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
    Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S.
    [Show full text]
  • Sources of Maratha History: Indian Sources
    1 SOURCES OF MARATHA HISTORY: INDIAN SOURCES Unit Structure : 1.0 Objectives 1.1 Introduction 1.2 Maratha Sources 1.3 Sanskrit Sources 1.4 Hindi Sources 1.5 Persian Sources 1.6 Summary 1.7 Additional Readings 1.8 Questions 1.0 OBJECTIVES After the completion of study of this unit the student will be able to:- 1. Understand the Marathi sources of the history of Marathas. 2. Explain the matter written in all Bakhars ranging from Sabhasad Bakhar to Tanjore Bakhar. 3. Know Shakavalies as a source of Maratha history. 4. Comprehend official files and diaries as source of Maratha history. 5. Understand the Sanskrit sources of the Maratha history. 6. Explain the Hindi sources of Maratha history. 7. Know the Persian sources of Maratha history. 1.1 INTRODUCTION The history of Marathas can be best studied with the help of first hand source material like Bakhars, State papers, court Histories, Chronicles and accounts of contemporary travelers, who came to India and made observations of Maharashtra during the period of Marathas. The Maratha scholars and historians had worked hard to construct the history of the land and people of Maharashtra. Among such scholars people like Kashinath Sane, Rajwade, Khare and Parasnis were well known luminaries in this field of history writing of Maratha. Kashinath Sane published a mass of original material like Bakhars, Sanads, letters and other state papers in his journal Kavyetihas Samgraha for more eleven years during the nineteenth century. There is much more them contribution of the Bharat Itihas Sanshodhan Mandal, Pune to this regard.
    [Show full text]
  • Department of Space Demand No 94 1
    Department of Space Demand No 94 1. Space Technology (CS) FINANCIAL OUTLAY (Rs OUTPUTS 2020-21 OUTCOME 2020-21 in Cr) Targets Targets 2020-21 Output Indicators Outcome Indicators 2020-21 2020-21 1. Research & 1.1 No. of Earth 05 1. Augmentation of Space 1.1 Introduction of 01 Developmen Observation (EO) Infrastructure for Ocean Colour t, design of spacecrafts ready for providing continuity of Monitor with technologies launch EO Services with 13 spectral and improved capabilities bands realization 1.2 Number of Launches of 05 1.2 Sea surface 01 of space Polar Satellite Launch temperature systems for Vehicle(PSLV) sensor launch 1.3 Number of Launches of 01 1.3 Continuation 01 vehicles and Geosynchronous Satellite of Microwave spacecrafts. Launch Vehicle - GSLV Imaging in C- Mk-III band. 1.4 Number of Launches of 02 2. Ensuring operational 2.1 No. of 05 9761.50 Geosynchronous Satellite launch services for Indigenous Launch Vehicle -GSLV domestic and commercial launches using Operational Flights Satellites. PSLV. 3. Self-sufficiency in 3.1 Operational 01 launching 4 Tone class of launches of communication satellites GSLV Mk III into Geo-synchronous transfer orbit. 4. Self-sufficiency in 4.1 No of 02 launching 2.5 - 3 Tone indigenous class of Communication launches using Satellites into Geo- GSLV. synchronous Transfer Orbit. 2. Space Applications (CS) FINANCIAL OUTLAY (Rs OUTPUTS 2020-21 OUTCOME 2020-21 in Cr) Targets Targets 2020-21 Output Indicators Outcome Indicators 2020-21 2020-21 1. Design & 1.1 No. of EO/ Communication 11 1. Information on optimal 1.1 Availability of 07 Develop Payloads realized management of natural advanced sensors to ment of 1.2 Information support for major 85% resource, natural provide space based Applicati disaster events (as %ge of Total disasters, agricultural information with ons for events occurred) planning, infrastructure improved capability 1810.00 EO, 1.3 No.
    [Show full text]
  • Drafting Committee for the 'Asia‐Pacific
    Drafting Committee for the ‘Asia‐Pacific Plan of Action for Space Applications for Sustainable Development (2018‐2030) Dr Rajeev Jaiswal EOS Programme Office Indian Space Research Organisation (ISRO) India Bangkok, Thailand 31 May ‐ 1 June 2018 India’s Current Space Assets Communication Satellites • 15 Operational (INSAT- 4A, 4B, 4CR and GSAT- 6, 7, 8, 9 (SAS), 10, 12, 14, 15, 16, 17, 18 & 19) • >300 Transponders in C, Ext C & Ku bands Remote sensing Satellites • Three in Geostationary orbit (Kalpana-1, INSAT 3D & 3DR) • 14 in Sun-synchronous orbit (RESOURCESAT- 2 & 2A; CARTOSAT-1/ 2 Series (5); RISAT-2; OCEANSAT 2; MEGHA-TROPIQUES; SARAL, SCATSAT-1) Navigation Satellites : 7 (IRNSS 1A - IG) & GAGAN Payloads in GSAT 8, 10 & 15 Space Science: MOM & ASTROSAT 1 Space Applications Mechanism in India Promoting Space Technology Applications & Tools For Governance and Development NATIONAL MEET “There should not be any space between common man and space technology” . 160 Projects across 58 Ministries . Web & Mobile Applications : 200+ . MoUs with stakeholders : 120+ . Capacity Building : 10,000+ . Space Technology Cells : 21 17 STATE MEETS Haryana, Bihar, Uttarakhand, Mizoram, Nagaland, Rajasthan, Punjab, Jharkhand, Meghalaya, Himachal 20 58 Pradesh, Kerala, Chhattisgarh, Assam, Madhya Ministries Ministries Pradesh, Tamil Nadu, Mizoram & Uttar Pradesh Space Applications Verticals SOCIO ECONOMIC SECURITY SUSTAINABLE DEVELOPMENT Food Impact Assessment Water Bio- Resources Conservation Energy Fragile & Coastal Ecosystem Health Climate Change Induced
    [Show full text]
  • Why NASA Consistently Fails at Congress
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 6-2013 The Wrong Right Stuff: Why NASA Consistently Fails at Congress Andrew Follett College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Political Science Commons Recommended Citation Follett, Andrew, "The Wrong Right Stuff: Why NASA Consistently Fails at Congress" (2013). Undergraduate Honors Theses. Paper 584. https://scholarworks.wm.edu/honorstheses/584 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Wrong Right Stuff: Why NASA Consistently Fails at Congress A thesis submitted in partial fulfillment of the requirement for the degree of Bachelors of Arts in Government from The College of William and Mary by Andrew Follett Accepted for . John Gilmour, Director . Sophia Hart . Rowan Lockwood Williamsburg, VA May 3, 2013 1 Table of Contents: Acknowledgements 3 Part 1: Introduction and Background 4 Pre Soviet Collapse: Early American Failures in Space 13 Pre Soviet Collapse: The Successful Mercury, Gemini, and Apollo Programs 17 Pre Soviet Collapse: The Quasi-Successful Shuttle Program 22 Part 2: The Thin Years, Repeated Failure in NASA in the Post-Soviet Era 27 The Failure of the Space Exploration Initiative 28 The Failed Vision for Space Exploration 30 The Success of Unmanned Space Flight 32 Part 3: Why NASA Fails 37 Part 4: Putting this to the Test 87 Part 5: Changing the Method.
    [Show full text]