Science & Technology

Total Page:16

File Type:pdf, Size:1020Kb

Science & Technology 2 INDEX 1. Space Technology ............................................... 6 1.38 Juno Spacecraft ......................................................... 20 1.1 Types of Orbits ............................................................ 6 1.39 OSIRIS-REx ............................................................... 20 1.2 Types of Satellites ........................................................ 7 1.40 Orion Spacecraft ........................................................ 21 1.3 Launch Vehicles .......................................................... 7 1.41 Voyager 1 & Voyager 2 ............................................. 21 1.42 Dawn Mission ............................................................ 21 Indian Missions ........................................................ 10 1.43 Europa Clipper Mission............................................. 22 1.4 PSLV C-44/Kalamsat ................................................ 10 1.44 Lucy and Psyche ........................................................ 22 1.5 PSLV C-43/HysIS ...................................................... 10 1.45 Magnetospheric Multiscale (MMS) Mission .............. 22 1.6 HySIS ......................................................................... 11 1.46 CubeSat...................................................................... 23 1.7 PSLV C-42................................................................. 11 1.47 NICER ....................................................................... 23 1.8 PSLV C-41/IRNSS-1I................................................. 11 1.48 GOLD & ICON .......................................................... 23 1.9 PSLV-C40/Cartosat-2 ............................................... 11 1.49 IMAP ......................................................................... 23 1.10 Cartosat Series Satellite ............................................ 12 1.50 VISIONS – 2............................................................... 24 1.11 Other Notable missions of PSLV ............................... 12 1.51 Kilopower Project ...................................................... 24 1.12 GSAT – 31 ................................................................. 12 1.52 Asteroid Impact and Deflection Assessment Mission . 24 1.13 GSAT – 11 ................................................................. 12 1.53 TESS .......................................................................... 24 1.14 GSLV MK-III D2 / GSAT 29 ...................................... 13 1.54 TDRS-M ..................................................................... 24 1.15 Other Developmental & Experimental Flights of GSLV MK-III… ................................................................................. 13 1.55 EcAMSat Mission ...................................................... 24 1.16 GSLV F-11/GSAT -7A ............................................... 13 1.56 ICESat-2 and GRACE ................................................ 25 1.17 GSLV-F08/GSAT-6A ................................................. 13 1.57 GRACE FO ................................................................ 25 1.18 GSLV-F09 / GSAT-9.................................................. 13 1.58 OCO-3 Mission .......................................................... 25 1.19 INSAT-3DR ............................................................... 14 1.59 SUBSEA ..................................................................... 25 1.20 ExseedSAT – 1 ........................................................... 14 1.60 Cyclone Global Navigation Satellite System .............. 25 Other Notable Missions ........................................... 14 1.61 Joint Polar Satellite System ....................................... 26 1.21 Gaganyaan ................................................................ 14 1.62 Cassini Space Craft ................................................... 26 1.22 Mission Venus ........................................................... 15 1.63 Rosetta ....................................................................... 26 1.23 Aditya-L1 Mission ..................................................... 15 Other Space Agencies .............................................. 26 1.24 AstroSat ..................................................................... 16 1.64 Gaia mission .............................................................. 26 1.25 Mars Orbiter Mission ................................................ 16 1.65 Belle II ....................................................................... 27 1.26 Chandrayaan ............................................................. 16 1.66 Aeolus Satellite .......................................................... 27 1.27 Chandrayaan-2 ......................................................... 17 1.67 Galileo ....................................................................... 27 1.28 NISAR ........................................................................ 17 1.68 BepiColombo mission ................................................ 27 Global Missions ........................................................ 17 1.69 ExoMars .................................................................... 27 NASA ......................................................................... 17 1.70 SENTINEL-5P ........................................................... 28 1.29 NASA Solar Probe ..................................................... 17 1.71 Tiangong-1 ................................................................ 28 1.30 FOXSI Mission .......................................................... 18 1.72 Queqiao ..................................................................... 28 1.31 Insight Mission .......................................................... 18 1.73 Chang’e 4 .................................................................. 29 1.32 Curiosity .................................................................... 18 1.74 HY-1C satellite .......................................................... 29 1.33 Opportunity Rover ..................................................... 19 1.75 Cargo Spacecraft and Lunar Palace ......................... 29 1.34 ASPIRE ..................................................................... 19 1.76 Quasi-Zenith Satellite System .................................... 29 1.35 MAVEN ..................................................................... 19 1.77 MINERVA-II1 ............................................................ 30 1.36 New Frontiers program ............................................. 19 1.78 Ibuki – 2 ..................................................................... 30 1.37 New Horizons ............................................................ 20 1.79 Kirameki -2 ................................................................ 30 1.80 Hope Mission ............................................................. 30 www.shankariasacademy.com || www.iasparliament.com 3 1.81 Israel Spacecraft ....................................................... 30 3.6 James Webb Telescope .............................................. 42 1.82 Venus Satellite ........................................................... 30 3.7 Kepler Telescope ....................................................... 42 1.83 Remove Debris Mission ............................................. 31 3.8 SPHEREx ................................................................... 42 1.84 Falcon Heavy ............................................................ 31 3.9 Giant Magellan Telescope ......................................... 42 2. Planetary Systems ............................................ 31 3.10 SPARCS telescope ..................................................... 42 2.1 Sun’s Atmosphere ...................................................... 31 3.11 Very Large Telescope ................................................ 43 2.2 Solar Cycles and Sun spots ....................................... 32 3.12 Giant Metrewave Radio Telescope ............................ 43 2.3 Presence of Water in the Moon ................................. 32 3.13 ARIES Telescope ........................................................ 43 2.4 Super Blood Wolf Moon ............................................ 32 3.14 X-Calibur Telescope .................................................. 43 2.5 Super Blood Blue Moon ............................................ 33 3.15 INO Project ............................................................... 43 2.6 Pink Moon ................................................................. 33 2.36 Green Propellants ...................................................... 44 2.7 Longest Lunar Eclipse of the Century ....................... 33 2.37 Indo-UN Small Satellites Programme ........................ 45 2.8 Kordylewski Clouds................................................... 33 3.16 Excitonium ................................................................. 45 2.9 Liquid Water Lake in Mars ....................................... 34 4. Defense .............................................................. 45 2.10 Definition of a Planet ................................................ 34 Artillery .................................................................... 45 2.11 Graveyard Orbits ...................................................... 34 4.1 Pinaka Mark I ............................................................ 45 2.12 Rogue Planet ............................................................. 35 4.2 Dhanush
Recommended publications
  • Orbital Debris Quarterly News 22-1
    National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 22, Issue 1 February 2018 Inside... Two Anomalous Events in GEO Summer 2017 was marred by two apparently platform. Spacecraft dry mass is estimated to be on Space Debris Sensor anomalous events in the geosynchronous orbit the order of 2000 kg. On-board stored energy sources Launches Aboard (GEO) belt. Both incidents have been observed by include fuel and pressurized components, as well as the commercial space situation awareness providers, but as battery subsystem. SpaceX-13 2 of 26 December 2017 no debris from either event have The Indonesian GEO communications spacecraft entered the public catalog. TELKOM-1 (1999-042A, SSN catalog number 25880) SEM Analysis The GEO communications spacecraft AMC-9 experienced an energetic event on or about 25 August Results of (International Designator 2003-024A, U.S. Strategic 2017, after over 18.1 years on-orbit—3 years past Returned ISS Command [USSTRATCOM] Space Surveillance its nominal operational lifetime. An examination of Network [SSN] catalog number 27820), formerly known the Two Line Element data indicates an observable PMA-2 Cover 4 as GE-12, experienced an energetic event estimated to change in spacecraft orbit between 26 and 29 August. have occurred at approximately 07:10 GMT on 17 June At the beginning of this time interval, approximately CubeSat Study 2017, after approximately 14 years on-orbit. Fig. 1 Project Review 6 depicts the orbital evolution of the spacecraft in 2017. continued on page 2 SES, the spacecraft owner- operator, described this AMC‐9 (SSN 27820, 2003‐024A) 360 36300 Space Debris Sensor event as a “serious anomaly.” Installation 8 Following this event, the 36200 spacecraft began a westward 300 Monthly Object Type drift in the GEO belt.
    [Show full text]
  • A Quantitative Human Spacecraft Design Evaluation Model For
    A QUANTITATIVE HUMAN SPACECRAFT DESIGN EVALUATION MODEL FOR ASSESSING CREW ACCOMMODATION AND UTILIZATION by CHRISTINE FANCHIANG B.S., Massachusetts Institute of Technology, 2007 M.S., University of Colorado Boulder, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences 2017 i This thesis entitled: A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization written by Christine Fanchiang has been approved for the Department of Aerospace Engineering Sciences Dr. David M. Klaus Dr. Jessica J. Marquez Dr. Nisar R. Ahmed Dr. Daniel J. Szafir Dr. Jennifer A. Mindock Dr. James A. Nabity Date: 13 March 2017 The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Fanchiang, Christine (Ph.D., Aerospace Engineering Sciences) A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization Thesis directed by Professor David M. Klaus Crew performance, including both accommodation and utilization factors, is an integral part of every human spaceflight mission from commercial space tourism, to the demanding journey to Mars and beyond. Spacecraft were historically built by engineers and technologists trying to adapt the vehicle into cutting edge rocketry with the assumption that the astronauts could be trained and will adapt to the design. By and large, that is still the current state of the art. It is recognized, however, that poor human-machine design integration can lead to catastrophic and deadly mishaps.
    [Show full text]
  • Pecora 21/ISRSE 38 Organized Special Presentation (SP) Sessions When Submitting an Abstract for a Proposed Special Session, Please Include the Session ID (E.G
    Pecora 21/ISRSE 38 Organized Special Presentation (SP) Sessions When submitting an abstract for a proposed special session, please include the session ID (e.g. SP1, SP2) as a Keyword. SP1 Open Data Cube: A new data technology for enhancing the use of satellite data to address sustainable development goals Brian Killough, NASA The Open Data Cube (ODC), created and facilitated by the Committee on Earth Observation Satellites (CEOS), is an open source software architecture that allows analysis-ready satellite data to be packaged in "cubes" to minimize data preparation complexity and take advantage of modern computing for increased value and impact of Earth observation data. This session will summarize the ODC progress, discuss the advancements of country-based implementation and present the status of several new open source ODC applications and their potential to address society and the UN Sustainable Development Goals. SP2 An overview of the current Analysis Ready Data products, tools, applications and impacts Andreia Siqueira, Geoscience Australia Public and private agencies have been committed to address the big data challenge by producing Analysis Ready Data products (ARD) for their users. The ARD products are enabling users to get first hand satellite data that are ready to use for a wide range of applications, including time-series analysis and the way forward to multi-sensor interoperability. The Analysis Ready Data session has as its main objective to present the current state of knowledge on global efforts towards producing Analysis Ready Data (ARD). It is expected that topics across the maturity of ARD products, including validation and calibration, the overall CEOS Analysis Ready Data for Land (CARD4L) framework as well as the Product Family Specifications (PFS) and the Product Alignment Assessment process (PAA) will be presented and discussed.
    [Show full text]
  • View Conducted by Its Standing Review Board (SRB)
    Science Committee Report Dr. Wes Huntress, Chair 1 Science Committee Members Wes Huntress, Chair Byron Tapley, (Vice Chair) University of Texas-Austin, Chair of Earth Science Alan Boss, Carnegie Institution, Chair of Astrophysics Ron Greeley, Arizona State University, Chair of Planetary Science Gene Levy, Rice University , Chair of Planetary Protection Roy Torbert, University of New Hampshire, Chair of Heliophysics Jack Burns, University of Colorado Noel Hinners, Independent Consultant *Judith Lean, Naval Research Laboratory Michael Turner, University of Chicago Charlie Kennel, Chair of Space Studies Board (ex officio member) * = resigned July 16, 2010 2 Agenda • Science Results • Programmatic Status • Findings & Recommendations 3 Unusual Thermosphere Collapse • Deep drop in Thermospheric (50 – 400 km) density • Deeper than expected from solar cycle & CO2 4 Aeronomy of Ice in the Mesosphere (AIM) unlocking the secrets of Noctilucent Clouds (NLCs) Form 50 miles above surface in polar summer vs ~ 6 miles for “norm79al” clouds. NLCs getting brighter; occurring more often. Why? Linked to global change? AIM NLC Image June 27, 2009 - AIM measured the relationship between cloud properties and temperature - Quantified for the first time, the dramatic response to small changes, 10 deg C, in temperature - T sensitivity critical for study of global change effects on mesosphere Response to Gulf Oil Spill UAVSAR 23 June 2010 MODIS 31 May 2010 ASTER 24 May 2010 Visible Visible/IR false color Satellite instruments: continually monitoring the extent of
    [Show full text]
  • Space Diplomacy in Asian Orbit
    Space Diplomacy in Asian Orbit EDA INSIGHT RESEARCH & ANALYSIS OCTOBER 2018 Space Diplomacy in Asian Orbit Dr N. Janardhan Disclaimer: The views expressed in this publication are solely those of the author and do not necessarily reflect the views of the Emirates Diplomatic Academy, an autonomous federal entity, or the UAE Government. Copyright: Emirates Diplomatic Academy 2018. Cover Photo: Mohammed Bin Rashid Space Centre - http://www.khalifasat-thejourney.com Space Diplomacy in Asian Orbit Dr N. Janardhan Senior Research Fellow, Emirates Diplomatic Academy Dr N. Janardhan is Senior Research Fellow, Gulf-Asia Programme, Emirates Diplomatic Academy. His academic publications include – A New Gulf Security Architecture: Prospects and Challenges for an Asian Role (ed., 2014); India and the Gulf: What Next? (ed., 2013); and Boom amid Gloom: Spirit of Possibility in 21st Century Gulf (2011). Dr Janardhan is also Managing Assistant Editor, Journal of Arabian Studies. Executive Summary ◊ In international relations, expanding institutionalised ◊ As balance of power equations get reconfigured, channels of consultation is seen as enhancing there is evidence that international political- cooperation. Pursuing this, it is estimated that more security competition in space may supersede other than 80 countries (and many more private enterprises) considerations in the future. For now, however, there are are presently using space, either on their own or ample notable space-related developments in Asia that in partnership with others, to further individual or fall within the realm of soft power, which this Insight collective interests. explores. ◊ The West used the Cold War to further diplomatic ◊ It also suggests the following policy options for the influence and create ‘satellite’ states based on UAE to consider: geopolitical ideology.
    [Show full text]
  • Drafting Committee for the 'Asia‐Pacific
    Drafting Committee for the ‘Asia‐Pacific Plan of Action for Space Applications for Sustainable Development (2018‐2030) Dr Rajeev Jaiswal EOS Programme Office Indian Space Research Organisation (ISRO) India Bangkok, Thailand 31 May ‐ 1 June 2018 India’s Current Space Assets Communication Satellites • 15 Operational (INSAT- 4A, 4B, 4CR and GSAT- 6, 7, 8, 9 (SAS), 10, 12, 14, 15, 16, 17, 18 & 19) • >300 Transponders in C, Ext C & Ku bands Remote sensing Satellites • Three in Geostationary orbit (Kalpana-1, INSAT 3D & 3DR) • 14 in Sun-synchronous orbit (RESOURCESAT- 2 & 2A; CARTOSAT-1/ 2 Series (5); RISAT-2; OCEANSAT 2; MEGHA-TROPIQUES; SARAL, SCATSAT-1) Navigation Satellites : 7 (IRNSS 1A - IG) & GAGAN Payloads in GSAT 8, 10 & 15 Space Science: MOM & ASTROSAT 1 Space Applications Mechanism in India Promoting Space Technology Applications & Tools For Governance and Development NATIONAL MEET “There should not be any space between common man and space technology” . 160 Projects across 58 Ministries . Web & Mobile Applications : 200+ . MoUs with stakeholders : 120+ . Capacity Building : 10,000+ . Space Technology Cells : 21 17 STATE MEETS Haryana, Bihar, Uttarakhand, Mizoram, Nagaland, Rajasthan, Punjab, Jharkhand, Meghalaya, Himachal 20 58 Pradesh, Kerala, Chhattisgarh, Assam, Madhya Ministries Ministries Pradesh, Tamil Nadu, Mizoram & Uttar Pradesh Space Applications Verticals SOCIO ECONOMIC SECURITY SUSTAINABLE DEVELOPMENT Food Impact Assessment Water Bio- Resources Conservation Energy Fragile & Coastal Ecosystem Health Climate Change Induced
    [Show full text]
  • LUH Clears 6 Kms Altitude Flight
    www.aeromag.in n January - February 2019 | Vol 13 | Issue 1 LUH Clears 6 KMs Altitude Flight World’s Largest Importer, in association with Yet Indian Armed Forces Society of Indian Aerospace Technologies & Industries Need to be Better Equipped - Page 14 Official Media Partner Feb 20 - 24, 2019. Yelahanka Air Force Station, Bangalore Advertise with AEROMAG Show Dailies 1 Total Air and Missile Defense Sky Capture BARAK 8 - Naval-based BARAK 8 - Land-based ARROW 2 - Anti-Ballistic ARROW 3 - Anti-Ballistic Air & Missile Defense Air & Missile Defense Missile Defense Missile Defense Full Spectrum of Integrated, Networked Meet us at AERO INDIA 2019 Air and Missile Defense Solutions to Defeat Hall B: B2.1, B2.2 Threats at Any Range and Altitude IAI offers a comprehensive range of Air and Missile Defense Systems for land and naval applications. From VSHORAD to long-range, to theater and exo-atmospheric systems against ballistic missiles. Our unique solutions, based on lessons derived from vast operational experience, incorporate state-of-the-art technology and full networking for the most effective System of Systems. The result: IAI’s solutions. www.iai.co.il • [email protected] 2 Total Air and Missile Defense Advertise with Official Show Dailies of AEROMAG AEROMAG OFFICIAL MEDIA PARTNER Sky Capture BARAK 8 - Naval-based BARAK 8 - Land-based ARROW 2 - Anti-Ballistic ARROW 3 - Anti-Ballistic Air & Missile Defense Air & Missile Defense Missile Defense Missile Defense Full Spectrum of Integrated, Networked Meet us at AERO INDIA 2019 AERO INDIA 2019 Air and Missile Defense Solutions to Defeat Hall B: B2.1, B2.2 Threats at Any Range and Altitude 20-24 FEBRUARY, BENGALURU IAI offers a comprehensive range of Air and Missile Defense Systems for land and naval applications.
    [Show full text]
  • समाचार पत्र से चियत अंश Newspapers Clippings
    July 2020 समाचार पत्र से चियत अंश Newspapers Clippings A Daily service to keep DRDO Fraternity abreast with DRDO Technologies, Defence Technologies, Defence Policies, International Relations and Science & Technology Volume: 45 Issue: 1 July 2020 64 15 रक्षा िवज्ञान पुतकालय Defenceरक्षा िवज्ञान Science पुतकालय Library रक्षाDefence वैज्ञािनक सScienceूचना एवं प्रल Libraryेखन क द्र Defence Scientific Information & Documentation Centre रक्षा वैज्ञािनक सूचना एव ं प्रलेखन क द्र Defence Scientificमेटकॉफ Informationहाउस, िदली -& 110 Documentation 054 Centre Metcalfe House, Delhi - 110 054 मेटकॉफ हाउस, िदली - 110 054 Metcalfe House, Delhi- 110 054 CONTENT S. No. TITLE Page No. DRDO News 1-6 COVID-19: DRDO’s Contribution 1-2 1. DRDO develops software tool for tracking Covid patients in quarantine 1 2. DRDO develops software tool for enforcement of quarantine during Covid-19 2 3. Beds to spare at Covid-19 centres as cases decline in Delhi 3 DRDO Technology News 4-6 4. 15 HAL LCH deal by year end….? 4 5. Indian forces to acquire Heron drones, Spike anti-tank guided missiles from Israel 5 6. Army to place repeat order for Spike missiles from Israel 6 Defence News 7-25 Defence Strategic National/International 7-25 7. New ballistic helmets for the Army 7 8. Here's why India's Rafale fighter jet is a better choice for dogfight than Pakistan's 8 US-made F-16 9. Know the Indian Army | Army Air Defence: The 'Sentinel of the Sky' protect air 10 space from low flying enemy aerial attacks 10.
    [Show full text]
  • List of Missions Using SPICE (PDF)
    1/7/20 Data Restorations Selected Past Users Current/Pending Users Examples of Possible Future Users Apollo 15, 16 [L] Magellan [L] Cassini Orbiter NASA Discovery Program Mariner 2 [L] Clementine (NRL) Mars Odyssey NASA New Frontiers Program Mariner 9 [L] Mars 96 (RSA) Mars Exploration Rover Lunar IceCube (Moorehead State) Mariner 10 [L] Mars Pathfinder Mars Reconnaissance Orbiter LunaH-Map (Arizona State) Viking Orbiters [L] NEAR Mars Science Laboratory Luna-Glob (RSA) Viking Landers [L] Deep Space 1 Juno Aditya-L1 (ISRO) Pioneer 10/11/12 [L] Galileo MAVEN Examples of Users not Requesting NAIF Help Haley armada [L] Genesis SMAP (Earth Science) GOLD (LASP, UCF) (Earth Science) [L] Phobos 2 [L] (RSA) Deep Impact OSIRIS REx Hera (ESA) Ulysses [L] Huygens Probe (ESA) [L] InSight ExoMars RSP (ESA, RSA) Voyagers [L] Stardust/NExT Mars 2020 Emmirates Mars Mission (UAE via LASP) Lunar Orbiter [L] Mars Global Surveyor Europa Clipper Hayabusa-2 (JAXA) Helios 1,2 [L] Phoenix NISAR (NASA and ISRO) Proba-3 (ESA) EPOXI Psyche Parker Solar Probe GRAIL Lucy EUMETSAT GEO satellites [L] DAWN Lunar Reconnaissance Orbiter MOM (ISRO) Messenger Mars Express (ESA) Chandrayan-2 (ISRO) Phobos Sample Return (RSA) ExoMars 2016 (ESA, RSA) Solar Orbiter (ESA) Venus Express (ESA) Akatsuki (JAXA) STEREO [L] Rosetta (ESA) Korean Pathfinder Lunar Orbiter (KARI) Spitzer Space Telescope [L] [L] = limited use Chandrayaan-1 (ISRO) New Horizons Kepler [L] [S] = special services Hayabusa (JAXA) JUICE (ESA) Hubble Space Telescope [S][L] Kaguya (JAXA) Bepicolombo (ESA, JAXA) James Webb Space Telescope [S][L] LADEE Altius (Belgian earth science satellite) ISO [S] (ESA) Armadillo (CubeSat, by UT at Austin) Last updated: 1/7/20 Smart-1 (ESA) Deep Space Network Spectrum-RG (RSA) NAIF has or had project-supplied funding to support mission operations, consultation for flight team members, and SPICE data archive preparation.
    [Show full text]
  • The NISAR Mission – Sensors & Mission Perspective Paul a Rosen Jet Propulsion Laboratory, California Institute of Technology
    The NISAR Mission – Sensors & Mission Perspective Paul A Rosen Jet Propulsion Laboratory, California Institute of Technology ISPRS TC V Mid Term Symposium Indian Institute of Remote Sensing, Dehradun, India November 20th, 2018 Copyright 2018 California Institute of Technology. Government sponsorship acknowledged. NISAR – NASA Science Focus Capturing the Earth in Motion NISAR will image Earth’s dynamic surface over time, providing information on changes in ice sheets and glaciers, the evolution of natural and managed ecosystems, earthquake and volcano deformation, subsidence from groundwater and oil pumping, and the human impact of these and many other phenomena. 2 Versatility of SAR for Studying Earth Change Polarimetric SAR Use of polarization to determine surface properties Applications: • Flood extent (w/ & w/o vegetation) • Land loss/gain • Coastal bathymetry • Biomass • Vegetation type, status • Pollution & pollution impact (water, coastal land) • Water flow in some deltaic islands Interferometric SAR Use of phase change to determine surface displacement Applications: • Geophysical modeling • Subsidence due to fluid withdrawal • Inundation (w/vegetation) • Change in flood extent • Water flow through wetlands 3 Earth’s Dynamic Subsurface ”Secular” motion ”Seasonal” motion • Data 18-year time series (881 igrams) + GPS + Hydraulic head from observation wells + geologic structure model • Spatial pattern of seasonal ground deformation near the center of the basin corresponds to a diffusion process with peak deformation occurring at locations with highest groundwater production. • Seasonal ground deformation associated with shallow aquifers used for the majority of groundwater production Quantifying Ground Deformation in the Los Angeles and Santa Ana • Long -term ground deformation over broader areas - Coastal Basins Due to Groundwater Withdrawal, B. Riel et al., Water correlated with delayed compaction of deeper aquifers and Resources Res., 54, doi:10.1029/2017WR021978, 2018.
    [Show full text]
  • Aryabhata to Mangalyaan
    Reaching for the stars, India’s quest for the outer space: Aryabhata to Mangalyaan Pallava Bagla Science Journalist-India India has a rich tradition of using outer space as a tool for national development. The poorest of the poor have always been the beneficiaries of India’s space technologies, from farmers to fisher folk Indian satel- lites touch the lives of almost the entire 1.3 billion population. As India celebrates its seventieth birthday it has already entered the golden era of space technology, sectors like satellite television, banking, smart city development, weather forecasting, smart phones, e- governance, satellite aided navigation are all catering to India’s unend- ing appetite to deploy high technology to ease the life of the common man. India’s quest for space has been pioneered by the Indian Space Re- search Organisation (ISRO) set up in 1969 and today has an annual budget of about $ 1.4 billion. The country has a constellation of 44 satel- lites in orbit and can now on its own launch up to four tons of communi- cation satellites into orbit. This gives India end to end capabilities in space technology from making its own satellites to launching its own rockets and has even sent an Indian made satellite Mangalyaan or the Mars Orbiter Mission all the way to the Mars travelling a distance of over 200 million kilometres. The journey for ISRO began from the humble fishing village of Thumba on the coast of the Arabian Sea where the scientists used the premises of a church to set up the first rocket launch facilities and the first rockets were carried on bicycles and first satellites pulled in on bull- ock carts.
    [Show full text]
  • Draft Space Activities Bill, 2017
    Draft Space Activities Bill, 2017 drishtiias.com/printpdf/draft-space-activities-bill-2017 The Government has invited suggestions from the public or stakeholders regarding the draft Space Activities Bill, 2017. There is an urgent need for a legal environment for orderly performance and growth of space sector not only because of the interest shown by private sector but also because space activities need participation from private sector agencies as well. Objective To promote and regulate the space activities of India by encouraging the participation of non-governmental/private sector agencies under the guidance and authorisation of the government through the Department of Space. Legal Provisions Internationally, the outer space activities are governed by treaties and principles evolved under UN Committee on Peaceful Uses of Outer Space (UNCOPUOS). The Committee on the Peaceful Uses of Outer Space (COPUOS) was set up by the UN General Assembly in 1959 to govern the exploration and use of space for the benefit of all humanity: for peace, security and development. India is also a party to the Outer Space Treaty, 1967. Constitution of India provides for implementation of international treaty obligations, vide Articles 51 and 253. The "space" as a subject is not mentioned in the Union List. However, Parliament retains residuary legislative power in respect of "any matter not enumerated" in any of the three lists. Currently, space activities are regulated by policies like Satellite Communication Policy, 2000 and Remote Sensing Data Policy, 2011. 1/2 Background The lack of independent private participation in space is because of absence of a framework to provide transparency, timelines on licensing, issuance of authorisation and continuous supervision mechanism (in accordance with the Outer Space Treaty), among others.
    [Show full text]