( 12 ) United States Patent

Total Page:16

File Type:pdf, Size:1020Kb

( 12 ) United States Patent US010132144B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 132 , 144 B2 Lawson et al. ( 45 ) Date of Patent : Nov . 20 , 2018 ( 54 ) GEOCHEMICAL METHODS FOR ( 58 ) Field of Classification Search MONITORING AND EVALUATING CPC .. CO9K 8 / 58 ; CO9K 8 /582 ; CO9K 8 / 90 ; E21B MICROBIAL ENHANCED RECOVERY 43 / 16 OPERATIONS See application file for complete search history . (71 ) Applicants :Michael Lawson , Spring , TX (US ) ; Amelia C . Robinson , Houston , TX (56 ) References Cited (US ) ; Daniel A . Stolper , Berkeley , CA U . S . PATENT DOCUMENTS (US ) 4 , 833 , 915 A 5 / 1989 Radd et al . (72 ) Inventors : Michael Lawson , Spring , TX (US ); 4 , 905 ,761 A 3 / 1990 Bryant Amelia C . Robinson , Houston , TX ( Continued ) (US ) ; Daniel A . Stolper, Berkeley, CA (US ) FOREIGN PATENT DOCUMENTS CN 102154453 A 8 / 2011 ( 73) Assignee : ExxonMobil Upstream Research WO WO 2002 /059351 A2 8 / 2002 Company , Spring , TX (US ) ( Continued ) ( * ) Notice : Subject to any disclaimer, the term of this patent is extended or adjusted under 35 OTHER PUBLICATIONS U . S . C . 154 ( b ) by 0 days. Chung et al. ( 1988) " Origin of gaseous hydrocarbons in subsurface (21 ) Appl . No. : 15 /668 , 395 environments : theoretical considerations of carbon isotope distri bution ” , Chemical Geology , vol. 71 , pp . 97 - 103 . (22 ) Filed : Aug. 3 , 2017 (Continued ) (65 ) Prior Publication Data Primary Examiner — Zakiya W Bates US 2018 /0066504 A1 Mar . 8 , 2018 Assistant Examiner — Crystal J Miller (74 ) Attorney, Agent, or Firm — Exxonmobil Upstream Related U . S . Application Data Research Company Law Department ( 60 ) Provisional application No . 62 /382 , 921 , filed on Sep . 2 , 2016 . (57 ) ABSTRACT Described herein are methods and techniques that utilize ( 51 ) Int. Ci. molecular geochemistry and isotopic signatures to monitor E21B 43 / 16 ( 2006 . 01 ) microbial enhanced gas and oil recovery operations. The CO9K 8 /582 ( 2006 .01 ) methods and techniques utilize multiply substituted isoto (Continued ) pologue signatures, clumped isotope signatures , and /or posi (52 ) U . S . CI. tion - specific isotope signatures of one or more byproducts of CPC .. .. .. .. E21B 43 / 16 ( 2013 .01 ) ; C09K 8 /582 the microbial stimulation techniques to determine the effec ( 2013 .01 ) ; C09K 8 / 90 (2013 . 01 ) ; E21B 43/ 25 tiveness of a microbial stimulation technique . ( 2013 . 01 ) ; (Continued ) 18 Claims, 2 Drawing Sheets Collect sample from producing weil to characterizeisotopic the naturalsignature background Slimulate the well using microbial stimulation techniques Collect sample turn the stimulated well to characterize the induced isotopic signature 108 Analyze the clifferences between the induced isotopic signature and the background isotopic signature 110 Optionally , collcct samples for the Stimulated well over a period of time to characterize the induced isotopic www. signanire over time . 112 Optionally , analyze the differences in the induced isotopic signature over tinc 114 Develop or refine stimulation strategy trased on the inducecl isotopic signalLiTV - 116 Produce hydrocarbons US 10 ,132 ,144 B2 Page 2 ( 51) Int . CI. 2015 / 0240633 A1 * 8 / 2015 Akkurt .. .. .. E21B 49 /088 CO9K 8 / 90 175 / 50 ( 2006 .01 ) 2015 /0284810 Al 10 /2015 Knight et al . E21B 43 / 25 ( 2006 .01 ) 2015 /0291992 Al 10 /2015 Al-Moniee et al . GOIN 33 / 28 ( 2006 . 01 ) 2016 / 0018558 A1 * 1 / 2016 Bond GOIV 8 / 02 GOIV 9 /00 ( 2006 . 01) 250 / 255 C12P 1 /00 2016 / 0084045 Al 3 / 2016 Lawson et al. ( 2006 .01 ) 2016 /0084080 A1 3 / 2016 Lawson et al. C12P 39 / 00 (2006 .01 ) 2016 / 0084081 Al 3 / 2016 Lawson et al. U . S . Ci. 2016 / 0084817 A1 3 / 2016 Lawson et al. 2016 /0222781 A18 / 2016 Lawson et al . CPC . .. .. GOIN 33 /2823 (2013 . 01 ) ; GOIV 9 /007 2016 /0222782 A1 * 8 /2016 Lawson . .. .. .. .. .. GOIN 33 / 241 ( 2013. 01 ) ; C12P 1 / 00 ( 2013 .01 ); C12P 39 /00 2016 / 0258922 A1 * 9 / 2016 Formolo . .. .. .. .. .. E21B 49 / 00 (2013 .01 ) 2016 /0272962 AL 9 /2016 Kohr 2016 /0341038 A1 * 11/ 2016 AbuAli .. GOIN 1 / 2294 ( 56 ) References Cited U . S . PATENT DOCUMENTS FOREIGN PATENT DOCUMENTS WO WO 2007 /008932 1 /2007 5 ,388 , 456 A 2 / 1995 Kettel WO WO 2010 / 109173 AL 9 / 2010 5 , 439 , 800 A 8 / 1995 Thompson WO WO 2013 / 148442 A1 10 /2013 6 ,613 ,520 B2 9 / 2003 Ashby 6 ,645 ,769 B2 11/ 2003 Tayebi et al . 7 , 124 ,030 B2 10 / 2006 Ellis OTHER PUBLICATIONS 7 , 174 ,254 B2 2 / 2007 Ellis 7 ,210 , 342 B1 5 / 2007 Sterner et al. Lazar C . S . et al . ( 2011 ) " Distribution of Anaerobic Methane 7 , 249 , 009 B2 7 / 2007 Fermworn et al . Oxidizing and Sulfate -Reducing Communiteis in the G11 Nyegga 7 , 297 ,661 B2 11/ 2007 Beyer et al . Pockmark , Norwegian Sea ” , Antoine van Leeuwenhoek , vol. 100 , 7 , 337 ,660 B2 3 / 2008 Ibrahim et al. pp . 639 -653 . 7 , 395 ,691 B2 7 / 2008 Sterner et al . Mangelsdorf et al. (2011 ) “ Microbial Lipid Markers Within and 7 , 529 ,626 B1 5 / 2009 Ellis Adjacent to Challenger Mound in the Belgica Carbonate Mound 7 ,571 ,644 B2 8 / 2009 Ibrahim et al. 7 , 762 , 131 B2 7 / 2010 Ibrahim et al. Province , Porcupine Basin , Offshore Ireland ( IODP Expedition 7 , 809 , 538 B2 10 / 2010 Thomas 307 ) ” , Marine Geology , vol . 282 , pp . 91 - 101. 8 ,071 , 295 B2 12 / 2011 Ashby Ozgul ( 2002 ) , “ Geochemical Assessment of Gaseous Hydrocar 8 ,316 ,933 B2 11/ 2012 Kohr bons : Mixing of Bacterial and Thermogenic Methane in the Deep 8 ,316 , 934 B2 11/ 2012 Pietrobon Subsurface Petroleum System , Gulf of Mexico Continental Slope ” , 8 , 355 , 872 B2 1/ 2013 Rowan Thesis in partial fulfillment of the requirements for the degree of 8 , 476 , 016 B2 7 / 2013 Ashby Master of Science at Texas A & M University , pp . 1 -167 . 8 , 505 , 375 B2 8 / 2013 Smalley Prinzhofer et al . (2003 ) , “ Gas Isotopes Tracing : An Important Tool RE44 , 728 E 1 / 2014 Pope et al. for Hydrocarbons Exploration " , Oil & Gas Science and Technology , 8 ,695 , 703 B2 4 / 2014 Dinariev et al . Rev . Ifp ., vol . 58 , No . 2 , pp . 299 - 311 . 8 , 714 , 246 B2 5 / 2014 Pop et al . Berner, U . et al. , “ Maturity Related Mixing Model for Methane , 8 , 760 ,657 B2 6 / 2014 Pope et al . Ethane and Propane , Based on Carbon Isotopes, ” Advances in 8 , 950 , 251 B2 2 / 2015 Valentine Organic Geochemistry 13 ( 1 - 3 ) , ( 1987 ) , pp . 67 - 72 . 9 .068 , 107 B2 * 6 / 2015 Larter C09K 8 /582 9 , 146 , 225 B2 9 / 2015 Pottorf et al. Bigeleisen , J . et al. , “ Calculation of Equilibrium Constants for 9 ,594 ,879 B2 3 / 2017 Eiler Isotopic Exchange Reactions, " J . of Chemical Physics , 15 ( 5 ) , (May 9 ,612 ,231 B2 4 / 2017 Pottorf et al . 1947 ) , pp . 261 - 267. 9 ,670 ,395 B2 6 / 2017 McDaniel Bloino , J . et al. , “ General Perturbative Approach for Spectroscopy , 2006 /0154306 A1 7 / 2006 Kotlar et al . Thermodynamics and Kinetics : Methodological Background and 2007 /0251146 A1 * 11/ 2007 Larter . .. .. .. CO9K 8 / 582 Benchmark Studies ,” J. of Chemical Theory and Computation 8 , 48 / 127 . 5 ( 2012 ), pp . 1015 - 1036 . 2008/ 0040086 A1 2 / 2008 Betancourt et al . Burnham , A . K . et al. , " A Chemical Kinetic Model of Vitrinite 2008/ 0147326 A1 6 / 2008 Ellis Maturation and Reflectance ,” Geochimica et Cosmochimica Acta 2009 / 0071239 A 3 / 2009 Rojas et al. 53 , ( 1989 ) , pp . 2649 - 2657 . 2010 /0015612 Al 1 / 2010 Pelham et al. 2010 / 0086180 A1 4 / 2010 Wallace Bryant , R . S . et al ., “ Review of Microbial Technology for Improving 2010 / 0257004 Al 10 / 2010 Perlmutter et al . Oil Recovery , " SPE Reservoir Engineering 4 , (1989 ) , pp . 151- 154 . 2010 / 0279290 AL 11/ 2010 Sleat et al. Chung , H . M ., et al. , “ Use of Stable Carbon Isotope Compositions of 2011 / 0250582 Al 10 / 2011 Gates et al. Pyrolytically Derived Methane as Maturity Indices for Carbona 2011/ 0308790 Al 12 / 2011 Strapoc et al . ceous Materials ,” Geochimica et Cosmochimica Actam 43 , ( 1979 ) , 2012 /0134749 AL 5 / 2012 Darrah pp . 1979 - 1988 . 2012 / 0158306 A16 / 2012 Busche et al. Glasstone, S . et al. , “ The Theory of Rate Processes, ” J. of Chemical 2013 /0091925 A1 * 4 / 2013 Darrah . .. .. .. .. .. GO1V 5 / 06 Education , (May 1942 ) , p . 249 . 73 / 23 . 35 Hassanzadeh , G . et al. , “ Petroleum System Analysis Using Geo 2013 /0103337 A1 4 / 2013 Eiler chemical Studies, Isotope and ID Basin Modeling in Hendijan Oil 2013 /0116126 Al 5 /2013 Ashby et al. Field , SW Iran , ” Int' l. Petroleum Conf. , 14797, (2011 ) , pp . 1 - 11. 2014 /0011692 A1 1/ 2014 Ashby Hohl, D . et al ., “ DCO Energy , Environment and Climate Directorate 2014 / 0138528 A1 5 / 2014 Pope et al . 2014 /0162274 A1 6 / 2014 Kunin et al . White Paper, ” DCO Energy , Environment and Climate Workshop , 2014 /0182840 A1 7 / 2014 Sheehy et al. ( Jul . 21 - 22 , 2010 ) , Houston , TX , pp . 1 - 34 . 2014 /0202684 A1 7 / 2014 Danait et al . James , A . T . , “ Correlation of Reservoired Gases Using the Carbon 2014 / 0250999 Al 9 /2014 Lawson et al . Isotopic Compositions of Wet Gas Components, ” American Ass of 2014 /0288853 AL 9 / 2014 Dreyfus et al. Petroleum Geologists Bulletin 74 ( 9 ) , ( Sep . 1990 ) , pp . 1441 - 1458 . 2014 / 0303895 A1 10 / 2014 Dreyfus et al. Li, G . et al. , “ Microbial Abundance and Community Composition 2014 / 0378319 A1 12/ 2014 Regberg et al. Influence Production Performance in a Low - Temperature Petroleum 2015 /0038348 A1 2 /2015 Ashby et al . Reservoir ," Environmental Science & Technology 48 , ( 2014 ) , pp . 2015 / 0127313 Al 5 / 2015 Lawson et al. 5336 - 5344 . US 10 ,132 ,144 B2 Page 3 References Cited Stolper , D . A . et al ., “ Distinguishing and Understanding Thermogenic ( 56 ) and Biogenic Sources of Methane Using Multiply Substituted OTHER PUBLICATIONS Isotopologues, " Geochimica et Cosmochimica Acta 161, ( 2015 ) , pp . 219 - 247 . Liu , Q . et al ., “ On the Proper Use of the Bigeleisen -Mayer Equation Stolper, D .
Recommended publications
  • The Hydrology of Coalbed Methane Reservoirs and the Interplay of Gas, Water, and Coal in CBM Production
    University of Colorado Law School Colorado Law Scholarly Commons Coalbed Methane Development in the Intermountain West (April 4-5) 2002 4-4-2002 The Hydrology of Coalbed Methane Reservoirs and the Interplay of Gas, Water, and Coal in CBM Production Leslie Nogaret Follow this and additional works at: https://scholar.law.colorado.edu/coalbed-methane-development- intermountain-west Part of the Geotechnical Engineering Commons, Hydraulic Engineering Commons, Hydrology Commons, Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, Science and Technology Law Commons, and the Water Resource Management Commons Citation Information Nogaret, Leslie, "The Hydrology of Coalbed Methane Reservoirs and the Interplay of Gas, Water, and Coal in CBM Production" (2002). Coalbed Methane Development in the Intermountain West (April 4-5). https://scholar.law.colorado.edu/coalbed-methane-development-intermountain-west/9 Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School. Leslie Nogaret, The Hydrology of Coalbed Methane Reservoirs and the Interplay of Gas, Water, and Coal in CBM Production, in COALBED METHANE DEVELOPMENT IN THE INTERMOUNTAIN WEST (Natural Res. Law Ctr., Univ. of Colo. Sch. of Law 2002). Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School. References Lyons, W.S., 2002, Seismic Assists Geologic Interpretation and Development Program in the Ferron Bowles, J., 2001, Phillips’ CBM Outlook, A.G. Edwards, Coalbed Methane Play, presentation to the Rocky March 14, 2001, Coal Bed Methane Energy Mountain Section of SEPM, February 26, 2002.
    [Show full text]
  • T U R G a Y E R T E K I N, B.Sc, M.Sc., Ph.D
    T U R G A Y E R T E K I N, B.Sc, M.Sc., Ph.D. ● P E N N S T A T E U N I V E R S I T Y ● U N I V E R S I T Y P A R K , P A 1 6 8 7 0 ● ● (8 14 ) 8 6 5 - 6 0 8 2 ● Professor Emeritus Petroleum and Natural Gas Engineering E DUC A T I ON Middle East Technical University, Ankara, Turkey, B.Sc., 1969, Petroleum Engineering Middle East Technical University, Ankara, Turkey, M.Sc., 1971, Petroleum Engineering Pennsylvania State University, University Park, USA, Ph.D., 1978, Petroleum and Natural Gas Engineering A C A D E M IC A N D A D M INIST R A T IVE P O S ITION S July 2017 to present Professor Emeritus of Petroleum and Natural Gas Engineering The Pennsylvania State University July 2013 to July 2017 Head, John and Willie Leone Family Department of Energy and Mineral Engineering, the George E. Trimble Chair in Earth and Mineral Sciences, the Pennsylvania State University May 2013 to May 2014 Co-Director, Institute of Natural Gas Research (INGaR), Pennsylvania State University July 2001 to Present Professor of Petroleum and Natural Gas Engineering and George E. Trimble Chair in Earth and Mineral Sciences, Pennsylvania State University July 1998 to June 2001 Associate Head, Department of Energy and Geo-Environmental Engineering July 1987 to Present Professor of Petroleum and Natural Gas Engineering, Pennsylvania State University July 1984 to January 2015 Chairman of Petroleum and Natural Gas Engineering, Pennsylvania State University July 1983 to July 1984 Associate Professor of Petroleum and Natural Gas Engineering, Pennsylvania State University
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,505,620 B2 Zupanick (45) Date of Patent: *Aug
    US00850562OB2 (12) United States Patent (10) Patent No.: US 8,505,620 B2 Zupanick (45) Date of Patent: *Aug. 13, 2013 (54) METHOD AND SYSTEM FOR ACCESSING (58) Field of Classification Search SUBTERRANEAN DEPOSTS FROM THE USPC .............................................. 166/50, 52, 245 SURFACE AND TOOLS THEREFOR See application file for complete search history. (75) Inventor: Joseph A. Zupanick, Beckley, WV (US) (56) References Cited (73) Assignee: Vitruvian Exploration, LLC, Houston, U.S. PATENT DOCUMENTS TX (US) 54,144 A 4, 1866 Hamar 274,740 A 3/1883 Douglass (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS AU 85,49964 A 11, 1986 This patent is Subject to a terminal dis CA 2210866 1, 1998 claimer. (Continued) (21) Appl. No.: 11/982,249 OTHER PUBLICATIONS (22) Filed: Oct. 31, 2007 McCray, Arthur, et al., “Oil Well Drilling Technology.” University of Oklahoma Press, 1959, Title Page, Copyright Page and pp. 315-319 (65) Prior Publication Data (7 pages). US 2008/OO60806A1 Mar. 13, 2008 (Continued) Primary Examiner — John Kreck Related U.S. Application Data (74) Attorney, Agent, or Firm — Fish & Richardson P.C. (60) Continuation of application No. 10/630,345, filed on Jul. 29, 2003, which is a continuation-in-part of (57) ABSTRACT According to one embodiment, a system for accessing a Sub (Continued) terranean Zone from the surface includes a well bore extend ing from the Surface to the Subterranean Zone, and a well bore (51) Int. C. pattern connected to the junction and operable to drain fluid E2IB 43/00 (2006.01) from a region of the Subterranean Zone to the junction.
    [Show full text]
  • Chapter L—Coal-Bed Methane Gas-In-Place Resource Estimates
    Chapter L National Coal Resource Coal-Bed Methane Gas-In-Place Resource Assessment Estimates Using Sorption Isotherms and Burial History Reconstruction: An Example from the Ferron Sandstone Member Click here to return to Disc 1 Volume Table of Contents of the Mancos Shale, Utah By Todd A. Dallegge1 and Charles E. Barker1 Chapter L of Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah Edited by M.A. Kirschbaum, L.N.R. Roberts, and L.R.H. Biewick U.S. Geological Survey Professional Paper 1625–B* 1 U.S. Geological Survey, Denver, Colorado 80225 * This report, although in the USGS Professional Paper series, is available only on CD-ROM and is not available separately U.S. Department of the Interior U.S. Geological Survey Contents Overview ...................................................................................................................................................... L1 What Is Coal-Bed Methane? ...................................................................................................................... 2 Importance of Coal-Bed Methane Production ........................................................................................ 2 How Much Coal-Bed Methane is Available?........................................................................................... 3 How Do Coal Beds Generate and Store Methane? ................................................................................ 4 Details About Coal Cleat....................................................................................................................
    [Show full text]
  • Coal Mine Methane Recovery: a Primer
    Coal Mine Methane Recovery: A Primer U.S. Environmental Protection Agency July 2019 EPA-430-R-09-013 ACKNOWLEDGEMENTS This report was originally prepared under Task Orders No. 13 and 18 of U.S. Environmental Protection Agency (USEPA) Contract EP-W-05-067 by Advanced Resources, Arlington, USA and updated under Contract EP-BPA-18-0010. This report is a technical document meant for information dissemination and is a compilation and update of five reports previously written for the USEPA. DISCLAIMER This report was prepared for the U.S. Environmental Protection Agency (USEPA). USEPA does not: (a) make any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any apparatus, method, or process disclosed in this report may not infringe upon privately owned rights; (b) assume any liability with respect to the use of, or damages resulting from the use of, any information, apparatus, method, or process disclosed in this report; or (c) imply endorsement of any technology supplier, product, or process mentioned in this report. ABSTRACT This Coal Mine Methane (CMM) Recovery Primer is an update of the 2009 CMM Primer, which reviewed the major methods of CMM recovery from gassy mines. [USEPA 1999b, 2000, 2001a,b,c] The intended audiences for this Primer are potential investors in CMM projects and project developers seeking an overview of the basic technical details of CMM drainage methods and projects. The report reviews the main pre-mining and post-mining CMM drainage methods with associated costs, water disposal options and in-mine and surface gas collection systems.
    [Show full text]
  • Methane Hydrate Stability and Anthropogenic Climate Change
    Biogeosciences, 4, 521–544, 2007 www.biogeosciences.net/4/521/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. Methane hydrate stability and anthropogenic climate change D. Archer University of Chicago, Department of the Geophysical Sciences, USA Received: 20 March 2007 – Published in Biogeosciences Discuss.: 3 April 2007 Revised: 14 June 2007 – Accepted: 19 July 2007 – Published: 25 July 2007 Abstract. Methane frozen into hydrate makes up a large 1 Methane in the carbon cycle reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intu- 1.1 Sources of methane itively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir 1.1.1 Juvenile methane is so large that if 10% of the methane were released to the at- Methane, CH , is the most chemically reduced form of car- mosphere within a few years, it would have an impact on the 4 bon. In the atmosphere and in parts of the biosphere con- Earth’s radiation budget equivalent to a factor of 10 increase trolled by the atmosphere, oxidized forms of carbon, such as in atmospheric CO . 2 CO , the carbonate ions in seawater, and CaCO , are most Hydrates are releasing methane to the atmosphere today in 2 3 stable. Methane is therefore a transient species in our at- response to anthropogenic warming, for example along the mosphere; its concentration must be maintained by ongoing Arctic coastline of Siberia. However most of the hydrates release. One source of methane to the atmosphere is the re- are located at depths in soils and ocean sediments where an- duced interior of the Earth, via volcanic gases and hydrother- thropogenic warming and any possible methane release will mal vents.
    [Show full text]
  • Geologic Methane Seeps Along Boundaries of Arc C Permafrost
    Geologic Methane seeps along boundaries of Arc6c permafrost thaws and melng glaciers . Walter Anthony, K.M. , et. al. Nature Geoscience. Vol 5. June 2012. DOI: 10.1038/NGEO1480 Objecves: • This study documents the first evidence of widespread geological methane seepage along boundaries of cryosphere retreat. • The study focused on the release of 14C-depleted methane from abundant gas seeps concentrated along boundaries of permafrost thaw and receding glaciers in Alaska and Greenland. • The authors combined a new method of aerial survey and ground truth to idenfy seep-induced melt-holes in ice covered water bodies in order to quanfy methane seeps in Alaska, to confirm the occurrence of anomalous seeps in Greenland, and to document for the first me the widespread occurrence of 14C- depleted methane seeps along boundaries of permafrost thaw and melng glaciers in the terrestrial Arcc. • Ground surface survey data and in situ measurements (ebullion flux measurements, gas collecon and isotope analyses) were used to map the occurrence of superficial and subcap methane seeps along a north/south transect in Alaska; in West Greenland, seeps were quanfied only by ground survey. • Over 150,000 seeps were mapped in Alaska and Greenland. New Science • Seeps were characterized by anomalously high methane fluxes, and in Alaska by ancient radiocarbon ages and stable isotope values that matched those of coal bed and thermogenic methane accumulaons. • In Greenland, younger seeps were associated with zones of ice-sheet retreat since the Lile Ice Age. • Examinaon of 6,700 lakes across Alaska revealed the occurrence of 77 previously undocumented subcap seep sites containing >150,000 highly ebullient macroseep vents.
    [Show full text]
  • Production Performance Analysis of Coal Bed Methane, Shale Gas, and Tight Gas Reservoirs with Different Well Trajectories and Completion Techniques
    1. PRODUCTION PERFORMANCE ANALYSIS OF COAL BED METHANE, SHALE GAS, AND TIGHT GAS RESERVOIRS WITH DIFFERENT WELL TRAJECTORIES AND COMPLETION TECHNIQUES A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY MEHMET CİHAN ERTÜRK IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN PETROLEUM AND NATURAL GAS ENGINEERING FEBRUARY 2013 1. Approval of the thesis: PRODUCTION PERFORMANCE OF COAL BED METHANE, SHALE GAS AND TIGHT GAS RESERVOIRS WITH DIFFERENT WELL TRAJECTORIES AND COMPLETION TECHNIQUES submitted by MEHMET CİHAN ERTÜRK in partial fulfillment of the requirements for the degree of Master of Science in Petroleum and Natural Gas Engineering Department, Middle East Technical University by, Prof. Dr. Canan Özgen _____________________ Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Mahmut Parlaktuna _____________________ Head of Department, Petroleum and Natural Gas Engineering Asst. Prof. Çağlar Sınayuç _____________________ Supervisor, Petroleum and Natural Gas Engineering Dept., METU Examining Committee Members: Prof. Dr. Mahmut Parlaktuna _____________________ Petroleum and Natural Gas Engineering Dept., METU Asst. Prof. Çağlar Sınayuç _____________________ Petroleum and Natural Gas Engineering Dept., METU Prof. Dr. Mustafa V. Kök _____________________ Petroleum and Natural Gas Engineering Dept., METU Prof. Dr. Nurkan Karahanoğlu _____________________ Geological Engineering Dept., METU Mustafa Yılmaz, M.Sc. _____________________ Deputy Director, Production Department, TPAO Date: _____________________ 1. I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.
    [Show full text]
  • Effective Coalbed Methane (CBM) Recovery Technologies for APEC Developing Economies
    Effective Coalbed Methane (CBM) Recovery Technologies for APEC Developing Economies APEC Energy Working Group July 2018 APEC Project: EWG 17 2016A Produced by LIU Wenge China Coal Information Institute No. 35, Shaoyaoju, Chaoyang District Beijing, China 100029 Tel: (86) 10 84657838 Email: [email protected] For Asia-Pacific Economic Cooperation Secretariat 35 Heng Mui Keng Terrace Singapore 119616 Tel: (65) 68919 600 Fax: (65) 68919 690 Email: [email protected] Website: www.apec.org ©2018 APEC Secretariat APEC#218-RE-01.9 Table of Contents Preface 1 1.1 The Background of the Project ............................................................................. 1 1.2 The Purpose of Project ......................................................................................... 3 1.3 The main research Content ................................................................................... 3 The CBM Resources and Current Development Status 6 2.1 The Coalbed Methane Resources of APEC Economies .................................. 6 2.1.1 Overview .................................................................................................................. 6 2.1.2 Australia.................................................................................................................... 6 2.1.3 Canada .................................................................................................................... 11 2.1.4 People’s Republic of China ...................................................................................
    [Show full text]
  • Stable Isotope Systematics of Coalbed Gas During Desorption and Production
    geosciences Article Stable Isotope Systematics of Coalbed Gas during Desorption and Production Martin Niemann 1,* and Michael J. Whiticar 2 1 Statoil ASA, Martin Linges Vei 33, 1330 Fornebu, Norway 2 School of Earth and Ocean Sciences, University of Victoria, P.O. Box 3050, Victoria, BC V8W 2Y2, Canada; [email protected] * Correspondence: [email protected]; Tel.: +47-9020-4479 Academic Editors: Alexei V. Milkov, Giuseppe Etiope and Jesús Martínez Frías Received: 2 May 2017; Accepted: 10 June 2017; Published: 14 June 2017 Abstract: The stable carbon isotope ratios of coalbed methane (CBM) demonstrate diagnostic changes that systematically vary with production and desorption times. These shifts can provide decisive, predictive information on the behaviour and potential performance of CBM operations. Samples from producing CBM wells show a general depletion in 13C-methane with increasing production times and 13 corresponding shifts in d C-CH4 up to 35.8 . Samples from canister desorption experiments show mostly enrichment in 13C for methane withh increasing desorption time and isotope shifts of up to 43.4 . Also, 13C-depletion was observed in some samples with isotope shifts of up to 32.1 . Overall, the magnitudesh of the observed isotope shifts vary considerably between different sampleh sets, but 13 also within samples from the same source. The d C-CH4 values do not have the anticipated signature of methane generated from coal. This indicates that secondary processes, including desorption and diffusion, can influence the values. It is also challenging to deconvolute these various secondary processes because their molecular and isotope effects can have similar directions and/or magnitudes.
    [Show full text]
  • Prediction of Coalbed Methane Reservoir Performance with Type Curves
    Graduate Theses, Dissertations, and Problem Reports 2005 Prediction of coalbed methane reservoir performance with type curves Amol Bhaskar Bhavsar West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Bhavsar, Amol Bhaskar, "Prediction of coalbed methane reservoir performance with type curves" (2005). Graduate Theses, Dissertations, and Problem Reports. 1622. https://researchrepository.wvu.edu/etd/1622 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. PREDICTION OF COALBED METHANE RESERVOIR PERFORMANCE WITH TYPE CURVES Amol Bhaskar Bhavsar Thesis Submitted to the College of Engineering and Mineral Resources At West Virginia University In partial fulfillments of the requirements For the degree of Master of Science In Petroleum and Natural Gas Engineering Daniel Della-Giustina, Ph.D. Samuel Ameri, M.S. Kashy Aminian, PhD., Chair Department of Petroleum and Natural Gas Engineering Morgantown, West Virginia 2005 Keywords: Petroleum and Natural Gas Engineering, Coalbed Methane, Type Curves, Water Production Prediction.
    [Show full text]
  • Methane Hydrate Stability and Anthropogenic Climate Change D
    Methane hydrate stability and anthropogenic climate change D. Archer To cite this version: D. Archer. Methane hydrate stability and anthropogenic climate change. Biogeosciences Discussions, European Geosciences Union, 2007, 4 (2), pp.993-1057. hal-00297882 HAL Id: hal-00297882 https://hal.archives-ouvertes.fr/hal-00297882 Submitted on 3 Apr 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biogeosciences Discuss., 4, 993–1057, 2007 Biogeosciences www.biogeosciences-discuss.net/4/993/2007/ Discussions BGD © Author(s) 2007. This work is licensed 4, 993–1057, 2007 under a Creative Commons License. Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Methane hydrate stability and anthropogenic climate change D. Archer Title Page Methane hydrate stability and Abstract Introduction anthropogenic climate change Conclusions References D. Archer Tables Figures Department of the Geophysical Sciences, University of Chicago, Chicago, USA ◭ ◮ Received: 20 March 2007 – Accepted: 25 March 2007 – Published: 3 April 2007 ◭ ◮ Correspondence to: D. Archer ([email protected]) Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 993 EGU Abstract BGD Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils.
    [Show full text]