Methane Hydrate Stability and Anthropogenic Climate Change
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Propagation of the Storegga Tsunami Into Ice-Free Lakes Along the Southern Shores of the Barents Sea
Propagation of the Storegga tsunami into ice-free lakes along the southern shores of the Barents Sea Anders Romundset a,* - [email protected] Stein Bondevik a,b – [email protected] a Department of Geology, University of Tromsø, Dramsvegen 201, NO-9037 Tromsø, Norway b Sogn og Fjordane University College, Postboks 133, NO-6851 Sogndal, Norway * Correspondence to: Anders Romundset, Department of Geology, University of Tromsø, Dramsvegen 201, NO-9037 Tromsø, Norway. Telephone: (47) 77 64 62 06, E-mail: [email protected] Abstract There is clear evidence that the Storegga tsunami, triggered by the giant Storegga slide offshore western Norway 8100-8200 years ago, propagated into the Barents Sea. Cores from five coastal lakes along the coast of Finnmark in northern Norway reveal major erosion and deposition from the inundation of the tsunami. The deposits rest on a distinct erosional unconformity and consist of graded sand layers and re-deposited organic remains. Some of the organic remains are rip-up clasts of lake mud, peat and soil and suggest strong erosion of the lake floor and neighbouring land. In this part of the Arctic coastal lakes are usually covered by > 1 m of solid lake ice in the winter season. The significant erosion and deposition of rip-up clasts indicate that the lakes were ice free and that the ground was probably not frozen. We suggest that the Storegga slide and tsunami event happened sometime in the summer season; between April and October. Minimum run-up has been reconstructed to 3-4 m. KEYWORDS: Storegga; Tsunami deposits; Finnmark; Barents Sea; Holocene; 1. -
The Hydrology of Coalbed Methane Reservoirs and the Interplay of Gas, Water, and Coal in CBM Production
University of Colorado Law School Colorado Law Scholarly Commons Coalbed Methane Development in the Intermountain West (April 4-5) 2002 4-4-2002 The Hydrology of Coalbed Methane Reservoirs and the Interplay of Gas, Water, and Coal in CBM Production Leslie Nogaret Follow this and additional works at: https://scholar.law.colorado.edu/coalbed-methane-development- intermountain-west Part of the Geotechnical Engineering Commons, Hydraulic Engineering Commons, Hydrology Commons, Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, Science and Technology Law Commons, and the Water Resource Management Commons Citation Information Nogaret, Leslie, "The Hydrology of Coalbed Methane Reservoirs and the Interplay of Gas, Water, and Coal in CBM Production" (2002). Coalbed Methane Development in the Intermountain West (April 4-5). https://scholar.law.colorado.edu/coalbed-methane-development-intermountain-west/9 Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School. Leslie Nogaret, The Hydrology of Coalbed Methane Reservoirs and the Interplay of Gas, Water, and Coal in CBM Production, in COALBED METHANE DEVELOPMENT IN THE INTERMOUNTAIN WEST (Natural Res. Law Ctr., Univ. of Colo. Sch. of Law 2002). Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School. References Lyons, W.S., 2002, Seismic Assists Geologic Interpretation and Development Program in the Ferron Bowles, J., 2001, Phillips’ CBM Outlook, A.G. Edwards, Coalbed Methane Play, presentation to the Rocky March 14, 2001, Coal Bed Methane Energy Mountain Section of SEPM, February 26, 2002. -
Abrupt Climate Change in the Computer: Is It Real?
Perspective Abrupt climate change in the computer: Is it real? Thomas F. Stocker* and Olivier Marchal Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland Models suggest that dramatic changes in the ocean circulation are responsible for abrupt climate changes during the last ice age and may possibly alter the relative climate stability of the last 10,000 years. mong the archives recording past cli- the air–sea fluxes of heat and freshwater. In freshwater balance of the North Atlantic. By Amate and environmental changes, ice the Pacific there is no such circulation, be- discharging freshwater, the thermohaline cores, marine and lacustrine sediments in cause the surface waters are too fresh: even circulation reduces or collapses completely, anoxic environments, and tree rings have if cooled to the freezing point, they would but the response depends on the location, seasonal to annual resolution. Changes in not acquire enough density to sink down and amplitude and duration of the perturbation dust level (1), snow accumulation (2), sum- establish a large-scale THC. This is caused (11, 12, 14, 15, 17, 18). All three responses mer temperature (3), and indicators of the by a combination of several factors, includ- shown in Fig. 1 can be generated in such productivity of marine life (4) suggest that ing reduced evaporation in the Pacific, models, albeit at different threshold values. some of the climate changes have evolved on fresher surface waters flowing northward, The Younger Dryas cold event (12,700– time scales as short as a few years to decades. -
An Abrupt Climate Change Scenario and Its Implications for United States National Security October 2003
An Abrupt Climate Change Scenario and Its Implications for United States National Security October 2003 By Peter Schwartz and Doug Randall Imagining the Unthinkable The purpose of this report is to imagine the unthinkable – to push the boundaries of current research on climate change so we may better understand the potential implications on United States national security. We have interviewed leading climate change scientists, conducted additional research, and reviewed several iterations of the scenario with these experts. The scientists support this project, but caution that the scenario depicted is extreme in two fundamental ways. First, they suggest the occurrences we outline would most likely happen in a few regions, rather than on globally. Second, they say the magnitude of the event may be considerably smaller. We have created a climate change scenario that although not the most likely, is plausible, and would challenge United States national security in ways that should be considered immediately. Executive Summary There is substantial evidence to indicate that significant global warming will occur during the 21st century. Because changes have been gradual so far, and are projected to be similarly gradual in the future, the effects of global warming have the potential to be manageable for most nations. Recent research, however, suggests that there is a possibility that this gradual global warming could lead to a relatively abrupt slowing of the ocean’s thermohaline conveyor, which could lead to harsher winter weather conditions, sharply reduced soil moisture, and more intense winds in certain regions that currently provide a significant fraction of the world’s food production. -
T U R G a Y E R T E K I N, B.Sc, M.Sc., Ph.D
T U R G A Y E R T E K I N, B.Sc, M.Sc., Ph.D. ● P E N N S T A T E U N I V E R S I T Y ● U N I V E R S I T Y P A R K , P A 1 6 8 7 0 ● ● (8 14 ) 8 6 5 - 6 0 8 2 ● Professor Emeritus Petroleum and Natural Gas Engineering E DUC A T I ON Middle East Technical University, Ankara, Turkey, B.Sc., 1969, Petroleum Engineering Middle East Technical University, Ankara, Turkey, M.Sc., 1971, Petroleum Engineering Pennsylvania State University, University Park, USA, Ph.D., 1978, Petroleum and Natural Gas Engineering A C A D E M IC A N D A D M INIST R A T IVE P O S ITION S July 2017 to present Professor Emeritus of Petroleum and Natural Gas Engineering The Pennsylvania State University July 2013 to July 2017 Head, John and Willie Leone Family Department of Energy and Mineral Engineering, the George E. Trimble Chair in Earth and Mineral Sciences, the Pennsylvania State University May 2013 to May 2014 Co-Director, Institute of Natural Gas Research (INGaR), Pennsylvania State University July 2001 to Present Professor of Petroleum and Natural Gas Engineering and George E. Trimble Chair in Earth and Mineral Sciences, Pennsylvania State University July 1998 to June 2001 Associate Head, Department of Energy and Geo-Environmental Engineering July 1987 to Present Professor of Petroleum and Natural Gas Engineering, Pennsylvania State University July 1984 to January 2015 Chairman of Petroleum and Natural Gas Engineering, Pennsylvania State University July 1983 to July 1984 Associate Professor of Petroleum and Natural Gas Engineering, Pennsylvania State University -
(12) United States Patent (10) Patent No.: US 8,505,620 B2 Zupanick (45) Date of Patent: *Aug
US00850562OB2 (12) United States Patent (10) Patent No.: US 8,505,620 B2 Zupanick (45) Date of Patent: *Aug. 13, 2013 (54) METHOD AND SYSTEM FOR ACCESSING (58) Field of Classification Search SUBTERRANEAN DEPOSTS FROM THE USPC .............................................. 166/50, 52, 245 SURFACE AND TOOLS THEREFOR See application file for complete search history. (75) Inventor: Joseph A. Zupanick, Beckley, WV (US) (56) References Cited (73) Assignee: Vitruvian Exploration, LLC, Houston, U.S. PATENT DOCUMENTS TX (US) 54,144 A 4, 1866 Hamar 274,740 A 3/1883 Douglass (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS AU 85,49964 A 11, 1986 This patent is Subject to a terminal dis CA 2210866 1, 1998 claimer. (Continued) (21) Appl. No.: 11/982,249 OTHER PUBLICATIONS (22) Filed: Oct. 31, 2007 McCray, Arthur, et al., “Oil Well Drilling Technology.” University of Oklahoma Press, 1959, Title Page, Copyright Page and pp. 315-319 (65) Prior Publication Data (7 pages). US 2008/OO60806A1 Mar. 13, 2008 (Continued) Primary Examiner — John Kreck Related U.S. Application Data (74) Attorney, Agent, or Firm — Fish & Richardson P.C. (60) Continuation of application No. 10/630,345, filed on Jul. 29, 2003, which is a continuation-in-part of (57) ABSTRACT According to one embodiment, a system for accessing a Sub (Continued) terranean Zone from the surface includes a well bore extend ing from the Surface to the Subterranean Zone, and a well bore (51) Int. C. pattern connected to the junction and operable to drain fluid E2IB 43/00 (2006.01) from a region of the Subterranean Zone to the junction. -
Landslide Generated Tsunamis : Numerical Modeling
Sektion 2.5: Geodynamische Modellierung, GeoForschungsZentrum Potsdam Landslide generated tsunamis - Numerical modeling and real-time prediction Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) in der Wissenschaftsdisziplin Geophysik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam vorgelegt von Sascha Brune Potsdam, den 29. Januar 2009 This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.en Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2009/3298/ URN urn:nbn:de:kobv:517-opus-32986 [http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-32986] Abstract Submarine landslides can generate local tsunamis posing a hazard to human lives and coastal facilities. Two major related problems are: (i) quantitative estimation of tsunami hazard and (ii) early detection of the most dangerous landslides. This thesis focuses on both those issues by providing numerical modeling of landslide- induced tsunamis and by suggesting and justifying a new method for fast detection of tsunamigenic landslides by means of tiltmeters. Due to the proximity to the Sunda subduction zone, Indonesian coasts are prone to earthquake, but also landslide tsunamis. The aim of the GITEWS-project (German- Indonesian Tsunami Early Warning System) is to provide fast and reliable tsunami warnings, but also to deepen the knowledge about tsunami hazards. New bathymetric data at the Sunda Arc provide the opportunity to evaluate the hazard potential of landslide tsunamis for the adjacent Indonesian islands. -
Abrupt Climate Transitions
City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 9-2019 Abrupt Climate Transitions Christine J. Ramadhin The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/3350 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Abrupt Climate Transitions By Christine Ramadhin A dissertation submitted to the Graduate Faculty in Earth and Environmental Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2019 i © 2019 Christine Ramadhin All Rights Reserved ii Abrupt Climate Transitions by Christine Ramadhin This manuscript has been read and accepted for the Graduate Faculty in Earth and Environmental Sciences in satisfaction of the dissertation requirements for the degree of Doctor of Philosophy. Date Prof. Chuixiang Yi Chair of Examining Committee Date Prof. Monica Varsanyi Executive Officer Supervisory Committee: Prof. George Hendrey Prof. Cecilia McHugh Prof. Gary Hemming Prof. Nir Krakauer THE CITY UNIVERSITY OF NEW YORK iii Abstract Abrupt Climate Transitions By Christine Ramadhin Advisor: Dr. Chuixiang Yi The Earth’s climate system displays a long history of nonlinear abrupt transitions which have resulted in significant ecosystem disruption and are recorded in the geologic data. Today significant anthropogenic changes are occurring in many Earth systems that seem to be pushing these toward critical thresholds. Thus, increasing the possibility of a transition to alternative states which can have unfavorable consequences. -
Abrupt Climate Changeby Richard B
Abrupt Climate ChangeBy Richard B. Alley n the Hollywood disaster thriller Inevitable, too, are the potential chal- The Day after Tomorrow, a climate lenges to humanity. Unexpected warm Winter temperatures catastrophe of ice age proportions spells may make certain regions more catches the world unprepared. Mil- hospitable, but they could magnify swel- plummeting six degrees lions of North Americans fl ee to tering conditions elsewhere. Cold snaps sunny Mexico as wolves stalk the could make winters numbingly harsh Celsius and sudden last few people huddled in freeze- and clog key navigation routes with ice. dried New York City. Tornadoes rav- Severe droughts could render once fertile droughts scorching I age California. Giant hailstones pound land agriculturally barren. These conse- farmland around the Tokyo. quences would be particularly tough to Are overwhelmingly abrupt climate bear because climate changes that oc- globe are not just the changes likely to happen anytime soon, cur suddenly often persist for centuries or did Fox Studios exaggerate wildly? or even thousands of years. Indeed, the stuff of scary movies. The answer to both questions appears collapses of some ancient societies—once to be yes. Most climate experts agree attributed to social, economic and politi- Such striking climate that we need not fear a full-fl edged ice cal forces—are now being blamed largely age in the coming decades. But sudden, on rapid shifts in climate. jumps have happened dramatic climate changes have struck The specter of abrupt climate change many times in the past, and they could has attracted serious scientifi c investiga- before—sometimes happen again. -
Chapter L—Coal-Bed Methane Gas-In-Place Resource Estimates
Chapter L National Coal Resource Coal-Bed Methane Gas-In-Place Resource Assessment Estimates Using Sorption Isotherms and Burial History Reconstruction: An Example from the Ferron Sandstone Member Click here to return to Disc 1 Volume Table of Contents of the Mancos Shale, Utah By Todd A. Dallegge1 and Charles E. Barker1 Chapter L of Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah Edited by M.A. Kirschbaum, L.N.R. Roberts, and L.R.H. Biewick U.S. Geological Survey Professional Paper 1625–B* 1 U.S. Geological Survey, Denver, Colorado 80225 * This report, although in the USGS Professional Paper series, is available only on CD-ROM and is not available separately U.S. Department of the Interior U.S. Geological Survey Contents Overview ...................................................................................................................................................... L1 What Is Coal-Bed Methane? ...................................................................................................................... 2 Importance of Coal-Bed Methane Production ........................................................................................ 2 How Much Coal-Bed Methane is Available?........................................................................................... 3 How Do Coal Beds Generate and Store Methane? ................................................................................ 4 Details About Coal Cleat.................................................................................................................... -
NONLINEARITIES, FEEDBACKS and CRITICAL THRESHOLDS WITHIN the EARTH's CLIMATE SYSTEM 1. Introduction Nonlinear Phenomena Charac
NONLINEARITIES, FEEDBACKS AND CRITICAL THRESHOLDS WITHIN THE EARTH’S CLIMATE SYSTEM JOSÉ A. RIAL 1,ROGERA.PIELKESR.2, MARTIN BENISTON 3, MARTIN CLAUSSEN 4, JOSEP CANADELL 5, PETER COX 6, HERMANN HELD 4, NATHALIE DE NOBLET-DUCOUDRÉ 7, RONALD PRINN 8, JAMES F. REYNOLDS 9 and JOSÉ D. SALAS 10 1Wave Propagation Laboratory, Department of Geological Sciences CB#3315, University of North Carolina, Chapel Hill, NC 27599-3315, U.S.A. E-mail: [email protected] 2Atmospheric Science Dept., Colorado State University, Fort Collins, CO 80523, U.S.A. 3Dept. of Geosciences, Geography, Univ. of Fribourg, Pérolles, Ch-1700 Fribourg, Switzerland 4Potsdam Institute for Climate Impact Research, Telegrafenberg C4, 14473 Potsdam, P.O. Box 601203, Potsdam, Germany 5GCP-IPO, Earth Observation Centre, CSIRO, GPO Box 3023, Canberra, ACT 2601, Australia 6Met Office Hadley Centre, London Road, Bracknell, Berkshire RG12 2SY, U.K. 7DSM/LSCE, Laboratoire des Sciences du Climat et de l’Environnement, Unité mixte de Recherche CEA-CNRS, Bat. 709 Orme des Merisiers, 91191 Gif-sur-Yvette, France 8Dept. of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, U.S.A. 9Department of Biology and Nicholas School of the Environmental and Earth Sciences, Phytotron Bldg., Science Dr., Box 90340, Duke University, Durham, NC 27708, U.S.A. 10Dept. of Civil Engineering, Colorado State University, Fort Collins, CO 80523, U.S.A. Abstract. The Earth’s climate system is highly nonlinear: inputs and outputs are not proportional, change is often episodic and abrupt, rather than slow and gradual, and multiple equilibria are the norm. -
Coal Mine Methane Recovery: a Primer
Coal Mine Methane Recovery: A Primer U.S. Environmental Protection Agency July 2019 EPA-430-R-09-013 ACKNOWLEDGEMENTS This report was originally prepared under Task Orders No. 13 and 18 of U.S. Environmental Protection Agency (USEPA) Contract EP-W-05-067 by Advanced Resources, Arlington, USA and updated under Contract EP-BPA-18-0010. This report is a technical document meant for information dissemination and is a compilation and update of five reports previously written for the USEPA. DISCLAIMER This report was prepared for the U.S. Environmental Protection Agency (USEPA). USEPA does not: (a) make any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any apparatus, method, or process disclosed in this report may not infringe upon privately owned rights; (b) assume any liability with respect to the use of, or damages resulting from the use of, any information, apparatus, method, or process disclosed in this report; or (c) imply endorsement of any technology supplier, product, or process mentioned in this report. ABSTRACT This Coal Mine Methane (CMM) Recovery Primer is an update of the 2009 CMM Primer, which reviewed the major methods of CMM recovery from gassy mines. [USEPA 1999b, 2000, 2001a,b,c] The intended audiences for this Primer are potential investors in CMM projects and project developers seeking an overview of the basic technical details of CMM drainage methods and projects. The report reviews the main pre-mining and post-mining CMM drainage methods with associated costs, water disposal options and in-mine and surface gas collection systems.