Penitrem and Thomitrem Formation by Penicillium Crustosum

Total Page:16

File Type:pdf, Size:1020Kb

Penitrem and Thomitrem Formation by Penicillium Crustosum Mycopathologia 157: 349–357, 2004. 349 © 2004 Kluwer Academic Publishers. Printed in the Netherlands. Penitrem and thomitrem formation by Penicillium crustosum Thomas Rundberget1, Ida Skaar1, Oloff O’Brien2 & Arne Flåøyen1 1National Veterinary Institute, PO Box 8156 Dep., 0033 Oslo, Norway; 2ARC Plant Protection, Research Institute, Private Bag X134, Pretoria 0001, South Africa Received 9 September 2002; accepted in final form 16 July 2003 Abstract The levels of penitrems A, B, C, D, E, F, roquefortine C and thomitrem A and E recovered from extracts of 36 Norwegian, 2 American and one each of Japanese, German, South African, Danish and Fijian isolates of Penicillum crustosum Thom were quantitatively determined using high performance liquid chromatography-mass spectrometry (HPLC-MS). Forty-two of the 44 isolates of penitrem-producing isolates grown on rice, afforded levels of thomitrem A and E comparable to that of penitrem A. Thomitrems A and E were also found, but at lower levels, when cultures were grown on barley. No thomitrems were found when the isolates were grown on liquid media. The effects of time and temperature on mycotoxin formation were studied on rice over a 4 week period at 10, 15 and 25 ◦C, respectively. No mycotoxins could be detected after 1 week at 10 ◦C, but after 2 weeks at 10 ◦C levels were similar to those produced at 15 and 25 ◦C. Higher levels of thomitrems A and E were detected when media were maintained at lower pH. The possibility that thomitrems A and E might be derived by acid promoted conversion of penitrems A and E was explored in stability trials performed at pH 2, 3, 4, 5 and 7 in the presence and absence of media. Thomitrems were formed at pH 2, 3 and 4 but not at pH 5 and 7. Key words: Penicillium crustosum, penitrems, thomitrem, foods, feeds Introduction thomitrems, prompted us to quantatively examine the extracts of 36 Norwegian together with one Danish, We have recently reported the occurrence of two novel one Fijian one Japanese, one Russian, one German, penitrem metabolites, thomitrems A and E, along with two American and one South African isolate of P. penitrems A, B, C, D, E and F from a single Norwe- crustosum available in our laboratory in order to gian Pencillium crustosum isolate 1590P2 grown on a ascertain the generality, or otherwise, of our earlier solid rice medium [1]. The detection of thomitrems findings. Additionally we also wanted to determine A and E, which unlike other known penitrem ana- the effects of solid and liquid media, pH, temperature logues, possess an 18(19)-double bond (Figure 1) is and incubation time on the formation of penitrems of interest in that so far the use of liquid cultures of and thomitrems under the condition utilized in our P. c ru sto su m have been reported to only afford roque- solid culture medium experiments since temperature, fortine C, penitrems A–F [2-3] and derivatives such water activity, medium and incubation time are known as penitremones [4], PC-M4, M5, M5 and M6 [5– to be important factors affecting fungal growth and 6]. Mycotoxins produced by P. c ru sto su m have been mycotoxin production [10]. reported to cause toxicity [7–9] in animals. Whether the thomitrems may contribute to P. c ru sto su m toxicity Materials and methods has not been studied. The unexpected occurrence of the thomitrems A Penicillium strains and E in the extracts of the 1590P2 isolate [1], and our qualitative observation that some other Norwe- Thirty-six Norwegian isolates of P. c ru sto su m from gian P. c ru sto su m isolates also appeared to produce Norwegian food and food waste together with one 350 added to a 50 ml Erlenmeyer flask and 0.1 M HCl was added dropwise to give an initial media pH of 2.5, 4, 5.5 and 7. The media were sterilised by autoclaving for 15 min. All media were point inoculated from malt extract agar [11] cultures incubated for 6 days at 25 ◦C. Incubation All of the P. c ru sto su m isolates were point inoculated and incubated on rice for 2 weeks at 20 ◦C. Four selec- ted penitrem producing Norwegian isolates, 1172F10, 1574F8, 1590P5 and 1592P5 (National Veterinary In- stitute numbers) were point inoculated and incubated on barley and on CDYE for 2 weeks at 20 ◦C. A Nor- wegian strain, 1590P5, and the South African strain, PPRI6859, were point inoculated and incubated on rice for 1, 2, 3 and 4 weeks at 10, 15 and 25 ◦C. There were three replicates of each treatment. Another Norwegian strain, 1564F1, was point inoculated and incubated for 1 week at 25 ◦C on liquid CYA media in which the pH had initially been adjusted to 2.5, 4, 5.5 and 7. PH stability trials Trial 1: The stability of penitrem A in acid was invest- igated by treating an acetonitrile:water (2:1) solution Figure 1. Chemical structure of thomitrem A, E, penitrem A and E. containing 100 ng/ml penitrem A with 0.01 M HCl (pH 2). The acidic penitrem A solution was kept at room temperature (20 ◦C)andanalysedbyhighper- Danish (IBN19484, Denmark Technical University, formance liquid chromatographic-mass spectrometry Copenhagen), one Fijian (CBS 313.48), one Japan- (HPLC-MS) every other hour for 24 h. ese (CBS 340.59), one Russian (CBS 499.73), one Trail 2: A one week old CYA inoculate (10 ml) German (CBS 483.75), two American (CBS 747.74 was diluted with 20 ml acetonitrile and placed in an and CBS 548.77) and one South African isolate ultra sonic bath for 10 min. The sample extract were (PPR15859, ARC Plant Protection Research Institute, filtered and the pH was adjusted to 3, 4 and 5 with Pretoria) were studied. 0.1 M HCl. The levels of penitrems and thomitrems were monitored at 12 h intervals for 72 h. The sample Media extracts was kept at room temperature (20 ◦C) between analysis. Rica and Barley: Twenty g of Uncle Ben’s rice and 60 ml distilled water were added to 500 ml Erlenmeyer Chemicals flasks and 20 g of unhusked barley and 12 ml distilled water were added to 250 ml Erlenmeyer flasks and Methanol, ethyl acetate, acetonitrile, hexane, am- sterilised by autoclaving for 15 min. monium acetate and formic acid were HPLC grade or Liquid media: Twenty ml of Czapek Dox yeast ex- p.a. grade obtained from Ratburn Chemicals (Walker- tract broth (CDYE) [12] without agar were added to a burn, U.K.). The Penicillium toxin standards roque- 100 ml Erlenmeyer flasks. The media were sterilised fortine C, and penitrem A were obtained from Sigma by autoclaving for 15 min. (St. Louis, USA), thomitrems A and E were isolated pH adjusted media: Ten ml of Czapek yeast (auto- at the National Veterinary Institute (Oslo, Norway), lysate) extract broth (CYA) [11] without agar were while penitrems B, C, D, E and F were gifts from 351 AgResearch Ruakura (Hamilton, New Zealand) and scan positive ion mode during the analysis. The ion Imperial College of Science Technology and Medicine injection time was set to 300 ms with a total of 3 (London, UK). micro-scans per second. For APCI a vaporisation tem- perature at 350 ◦C, a sheath gas rate at 25 units Extraction and clean up nitrogen (c 250 ml/min), an auxiliary gas rate at 5 units nitrogen (c 50 ml/min), a corona discharge voltage of Rice and barley cultures 4.5 V and a capillary temperature of 200 ◦Cwereused. The extraction procedure was based on a method de- scribed by Rundberget and Wilkins [13]. Each of the Screening for metabolites rice or barley culture flasks were extracted with 100 ml acetonitrile:water (9:1) for 5 min on an Ultrathurax Quantitative determination of penitrem A, roque- (Janke and Kunkel, Staufen, Germany). After de- fortine C and semi-quantitative determination of fatting with 50 ml of hexane, the extract was filtered penitrems B, C, D, E and F and thomitrems A and 1 E was performed using HPLC-MS. Semi-quantitative (Schleicher & Schuell 520 B 2 folded filters, Dassel, Germany). This extract was filtered further with a analyses were performed using a unit response (peak spin-X centrifuge filter (Costar, Corning, USA) and area) relative to penitrem A. Solid media (rice and then analysed on the described HPLC-MS system barley) results are reported as µg metabolite/g wet without further clean up. weight, while CDYE results are reported as µg meta- bolite/g liquid. CDYE cultures Cultures were extracted by shaking with 50 ml ethyl Results acetate for 10 min. After filtration, 10 ml of the ethyl acetate fraction was evaporated to dryness at 60 ◦C Screening of P. crustosum isolates under a gentle stream of nitrogen. The residue was redissolved in 900 ml acetonitrile and diluted with 100 Except for the Fijian and the Japanese strains, which ml water prior to HPLC-MS analyses. grew slowly, the other stains grew and sporulated vigorously after incubation on rice at 20 ◦C for 14 pH adjusted CYA cultures days. All stains were found to produce penitrems, ex- The CYA inoculate (10 ml) was diluted with 20 ml cept for 2 Norwegian isolates, which did not produce acetonitrile and placed in an ultrasonic bath for 10 penitrems. Among the penitrem producing isolates, min. The extract was filtered with a spin-X centrifuge thomitrems A and E, penitrem A and roquefortine C filter and then analysed on the described HPLC-MS were found to be major metabolites together with 2 system without further clean up.
Recommended publications
  • (BK) Channel Antagonist Penitrem a As a Novel Breast Cancer-Targeted Therapeutic
    marine drugs Article The Maxi-K (BK) Channel Antagonist Penitrem A as a Novel Breast Cancer-Targeted Therapeutic Amira A. Goda 1, Abu Bakar Siddique 1 ID , Mohamed Mohyeldin 1,3, Nehad M. Ayoub 2 ID and Khalid A. El Sayed 1,* ID 1 Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; [email protected] (A.A.G.); [email protected] (A.B.S.); [email protected] (M.M.) 2 Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; [email protected] 3 Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt * Correspondence: [email protected]; Tel.: +1-318-342-1725 Received: 6 April 2018; Accepted: 9 May 2018; Published: 11 May 2018 Abstract: Breast cancer (BC) is a heterogeneous disease with different molecular subtypes. The high conductance calcium-activated potassium channels (BK, Maxi-K channels) play an important role in the survival of some BC phenotypes, via membrane hyperpolarization and regulation of cell cycle. BK channels have been implicated in BC cell proliferation and invasion. Penitrems are indole diterpene alkaloids produced by various terrestrial and marine Penicillium species. Penitrem A (1) is a selective BK channel antagonist with reported antiproliferative and anti-invasive activities against multiple malignancies, including BC. This study reports the high expression of BK channel in different BC subtypes. In silico BK channel binding affinity correlates with the antiproliferative activities of selected penitrem analogs. 1 showed the best binding fitting at multiple BK channel crystal structures, targeting the calcium-sensing aspartic acid moieties at the calcium bowel and calcium binding sites.
    [Show full text]
  • Veterinary Toxicology
    GINTARAS DAUNORAS VETERINARY TOXICOLOGY Lecture notes and classes works Study kit for LUHS Veterinary Faculty Foreign Students LSMU LEIDYBOS NAMAI, KAUNAS 2012 Lietuvos sveikatos moksl ų universitetas Veterinarijos akademija Neužkre čiam ųjų lig ų katedra Gintaras Daunoras VETERINARIN Ė TOKSIKOLOGIJA Paskait ų konspektai ir praktikos darb ų aprašai Mokomoji knyga LSMU Veterinarijos fakulteto užsienio studentams LSMU LEIDYBOS NAMAI, KAUNAS 2012 UDK Dau Apsvarstyta: LSMU VA Veterinarijos fakulteto Neužkre čiam ųjų lig ų katedros pos ėdyje, 2012 m. rugs ėjo 20 d., protokolo Nr. 01 LSMU VA Veterinarijos fakulteto tarybos pos ėdyje, 2012 m. rugs ėjo 28 d., protokolo Nr. 08 Recenzavo: doc. dr. Alius Pockevi čius LSMU VA Užkre čiam ųjų lig ų katedra dr. Aidas Grigonis LSMU VA Neužkre čiam ųjų lig ų katedra CONTENTS Introduction ……………………………………………………………………………………… 7 SECTION I. Lecture notes ………………………………………………………………………. 8 1. GENERAL VETERINARY TOXICOLOGY ……….……………………………………….. 8 1.1. Veterinary toxicology aims and tasks ……………………………………………………... 8 1.2. EC and Lithuanian legal documents for hazardous substances and pollution ……………. 11 1.3. Classification of poisons ……………………………………………………………………. 12 1.4. Chemicals classification and labelling ……………………………………………………… 14 2. Toxicokinetics ………………………………………………………………………...………. 15 2.2. Migration of substances through biological membranes …………………………………… 15 2.3. ADME notion ………………………………………………………………………………. 15 2.4. Possibilities of poisons entering into an animal body and methods of absorption ……… 16 2.5. Poison distribution
    [Show full text]
  • Tremorgenic Mycotoxin Intoxication by Mary M
    Tremorgenic mycotoxin intoxication by Mary M. Schell, DVM Dogs allowed to roam or get into the trash may ingest tremorgenic mycotoxins, which are neorotoxins that produce varying degrees of muscle tremors or seizures that can last for hours or days. Since 1998, the ASPCA Animal Poison Control Center (APCC) has consulted on 25 cases of suspected tremorgenic mycotoxin intoxication in dogs and one in a squirrel. Sources of tremorgenic mycotoxins for household pets have included moldy dairy foods, moldy walnuts or peanuts, stored grains, and moldy spaghetti. 1-7 These toxic secondary metabolites of many fungi vary in quantity and in their ability to produce clinical effects. Toxin production depends on seasonal growing conditions as well as the genus and species of the mold. At least 20 mycotoxins have been identified as tremorgens (compounds capable of inducing serious muscle tremor in one or more vertebrates), although only a few have been shown to have clinical relevance.3,8 Penicillium species are most often incriminated in producing tremorgenic mycotoxins; the most common are penitrem-A and roquefortine C.1,3,6,8 Intoxication with these mycotoxins has been documented in many animals, including dogs, cattle, sheep, rabbits, poultry, and rodents. Several mechanisms of action have been proposed, and the mechanism may vary both between toxins and the individual susceptible species. Penitrem-A inhibits the inhibitory neurotransmitter glycine in mice. Studies in mice have shown that drugs such as mephenesin or nalorphine, which increase glycine
    [Show full text]
  • Penitrem a Peer-Reviewed Journal Articles
    ________________________________________________________________________ ________________________________________________________________________ Penitrem A Peer-Reviewed Journal Articles Literature Review by Lisa Petrison, Ph.D. Neurotoxic Effects: Berntsen H. F., Wigestrand M. B., Bogen I. L., Fonnum F., Walaas S. I., Moldes-Anaya A.. Mechanisms of penitrem-induced cerebellar granule neuron death in vitro: possible involvement of GABAA receptors and oxidative processes. Neurotoxicology. 2013;35:129–136. Moldes-Anaya Angel, Rundberget Thomas, Fæste Christiane K., Eriksen Gunnar S., Bernhoft Aksel. Neurotoxicity of Penicillium crustosum secondary metabolites: tremorgenic activity of orally administered penitrem A and thomitrem A and E in mice. Toxicon. 2012;60:1428–1435. Moldes-Anaya Angel S., Fonnum Frode, Eriksen Gunnar S., Rundberget Thomas, Walaas S. Ivar, Wigestrand Mattis B.. In vitro neuropharmacological evaluation of penitrem-induced tremorgenic syndromes: importance of the GABAergic system. Neurochemistry international. 2011;59:1074–1081. Lu Hai-Xia X., Levis Hannah, Liu Yong, Parker Terry. Organotypic slices culture model for cerebellar ataxia: potential use to study Purkinje cell induction from neural stem cells. Brain research bulletin. 2011;84:169–173. Namiranian Khodadad, Lloyd Eric E., Crossland Randy F., et al. Cerebrovascular responses in mice deficient in the potassium channel, TREK-1. American journal of physiology. Regulatory, integrative and comparative physiology. 2010;299. Ohno Akitoshi, Ohya Susumu, Yamamura Hisao,
    [Show full text]
  • Tremorgenic Mycotoxins: Structure Diversity and Biological Activity
    toxins Review Tremorgenic Mycotoxins: Structure Diversity and Biological Activity Priyanka Reddy 1,2, Kathryn Guthridge 1, Simone Vassiliadis 1 , Joanne Hemsworth 1, Inoka Hettiarachchige 1, German Spangenberg 1,2 and Simone Rochfort 1,2,* 1 Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; [email protected] (P.R.); [email protected] (K.G.); [email protected] (S.V.); [email protected] (J.H.); [email protected] (I.H.); [email protected] (G.S.) 2 School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia * Correspondence: [email protected] Received: 24 April 2019; Accepted: 22 May 2019; Published: 27 May 2019 Abstract: Indole-diterpenes are an important class of chemical compounds which can be unique to different fungal species. The highly complex lolitrem compounds are confined to Epichloë species, whilst penitrem production is confined to Penicillium spp. and Aspergillus spp. These fungal species are often present in association with pasture grasses, and the indole-diterpenes produced may cause toxicity in grazing animals. In this review, we highlight the unique structural variations of indole-diterpenes that are characterised into subgroups, including paspaline, paxilline, shearinines, paspalitrems, terpendoles, penitrems, lolitrems, janthitrems, and sulpinines. A detailed description of the unique biological activities has been documented where even structurally related compounds have displayed unique biological activities. Indole-diterpene production has been reported in two classes of ascomycete fungi, namely Eurotiomycetes (e.g., Aspergillus and Penicillium) and Sordariomycetes (e.g., Claviceps and Epichloë).
    [Show full text]
  • Ketabton.Com (C) Ketabton.Com: the Digital Library
    Ketabton.com (c) ketabton.com: The Digital Library ټوکسيکولوژي اثـــر: Hans Marquardt Siegfried G. Schafer Roger O. McClellan Frank Welsch ژباړن: عبدالکريم توتاخېل ۴۹۳۱ل کال (c) ketabton.com: The Digital Library د کتاب نوم: ټوکسيکولوژي ژباړن: عبدالکريم توتاخېل خـپرونـدی: د افغانستان ملي تحريک، فرهنګي څانګه وېــبپـاڼـه: www.melitahrik.com ډيـزايـنګر: ضياء ساپی پښتۍ ډيزاين: فياض حميد چــاپشمېـر: ۰۱۱۱ ټوکه چــاپـکـــال: ۰۹۳۱ ل کال/ ۵۱۰۲م د تحريک د خپرونو لړ: )۱۰( (c) ketabton.com: The Digital Library فهرست عنوان مخ مخکنۍ خبرې...................................................................................................الف د ژباړن سريزه.........................................................................................................ب لمړی فصل )کیمیاوي او بیولوژيکی عاملین(..............................................1 کیمیاوي عاملین ..............................................................................................1 بیولوژيکي عاملین ......................................................................................۲۶ دويم فصل )طبعي مرکبات(..........................................................................۵۸ پېژندنه ..............................................................................................................۵۸ د حیواناتو زهر)وينوم( او وينوم ..................................................................۵۲ د پروتوزوا او الجیانو توکسینونه...............................................................1۶۱ مايکوتوکسینونه .............................................................................................1۱۱
    [Show full text]
  • Fungal Glossary
    FUNGAL GLOSSARY Absidia Natural Habitat ♦ Soil ♦ Decaying vegetation Suitable Substrates in the ♦ Often found in stored grains Indoor Environment ♦ Other foods Water Activity ♦ Unknown Mode of Dissemination ♦ Air / wind Allergenic Potential ♦ Recognized as an allergen Potential Opportunist ♦ In immunocompromised patients pulmonary invasions, the meninges (brain or or Pathogen spinal chord), and kidney infections can result from Absidia exposure ♦ Absidia may also cause zygomycosis in immunocompromised patients (AIDS) Industrial Uses ♦ Unknown Potential Toxins Produced ♦ Unknown Other Comments ♦ Absidia often causes food spoilage References ♦ Mohammed S, Sahoo TP, Jayshree RS, Bapsy PP, Hema S. Sino-oral zygomycosis due to Absidia corymbifera in a patient with acute leukemia. 2004. Med. Mycol. 42(5): 475-478. www.LATesting.com 1-800-303-0047 FUNGAL GLOSSARY Acremonium Natural Habitat ♦ Found in decaying or dead plant materials ♦ Soils Suitable Substrates in the ♦ Food Indoor Environment ♦ Commonly encountered in wet, cellulose-based building materials Water Activity ♦ Grows well indoors when there is high water content (>0.90 Aw). Mode of Dissemination ♦ Insect/water droplet ♦ Older spores can be dislodged by wind Allergenic Potential ♦ Type I (hay fever, asthma) ♦ Type III (hypersensitivity pneumonitis) Potential Opportunist ♦ Known to cause hyalohyphomycosis, keratitis, mycetoma, and onychomycosis or Pathogen ♦ Also known to cause infections in immunodeficient patients ♦ Causes infections in persons with wound injuries Industrial Uses
    [Show full text]
  • “Role of TRPA1 and TRPV1 in Propofol Induced Vasodilation”
    “Role of TRPA1 and TRPV1 in Propofol Induced Vasodilation” A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Sayantani Sinha November, 2013 Dissertation written by Sayantani Sinha B.S., University Of Calcutta, Kolkata, India, 2000 M.S., University Of Calcutta, Kolkata, India, 2002 M.Phil., Annamalai University, Tamil Nadu, India, 2006 Ph.D., Kent State University, Kent, Ohio, USA 2013 Approved by Chair, Doctoral Dissertation Committee Derek S. Damron, Ph.D. Member, Doctoral Dissertation Commitee Ian N. Bratz, Ph.D. Member, Doctoral Dissertation Committee Charles K. Thodeti, Ph.D. Member, Doctoral Dissertation Committee J. Gary Meszaros, Ph.D Graduate Faculty Representative Mao Hanbin, Ph.D. Accepted by Chair, School of Biomedical Sciences Eric Mintz, Ph.D. Dean, College of Arts and Sciences Janis H. Crowther, Ph.D. ii Table of Contents LIST OF FIGURES…………………………………………………………………………………........iv LIST OF TABLES…………………………………………………………………………....................vii DEDICATION……………………………………………………………………………………………viii ACKNOWLEDGEMENTS………………………………………………………………………............ix CHAPTER1: SPECIFIC AIMS & BACKGROUND….…………………………………………………1 Hypothesis…………………………………………………………………………………………………2 Background………………………………………………………………………………………………..4 CHAPTER 2: AIM 1: To determine the role of TRPA1 and TRPV1 in propofol induced depressor responses in-vivo Background and Rationale……………………………………………………………………………..34 Materials and Methods………………………………………………………………………………....37 Results……………………………………………………………………………………………………41
    [Show full text]
  • Putative Neuromycotoxicoses in an Adult Male Following Ingestion of Moldy Walnuts
    Short research communication Putative neuromycotoxicoses in an adult male following ingestion of moldy walnuts Authors: C. J. Botha1 C. M. Visagie2 M. Sulyok3 Affiliations: 1 Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private bag X04, Onderstepoort, 0110, South Africa 2 Biosystematics Division, Agricultural Research Council – Plant Health and Protection, Private Bag X134, Queenswood, Pretoria, 0121, South Africa 3 Centre for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad Lorenzstr. 20, A-3430, Tulln, Austria CJ Botha [email protected] Tel.: +27 125298023; fax +27 125298304. ORCID CJ Botha 0000 0003 1535 9270 ORCID CM Visagie 0000-0003-2367-5353 ORCID M Sulyok 0000-0002-3302-0732 1 Abstract A tremorgenic syndrome occurs in dogs following ingestion of moldy walnuts and Penicillium crustosum has been implicated as the offending fungus. This is the first report of suspected moldy walnut toxicosis in man. An adult male ingested approximately 8 fungal-infected walnut kernels and after 12 hours experienced tremors, generalized pain, incoordination, confusion, anxiety and diaphoresis. Following symptomatic and supportive treatment at a local hospital the man made an uneventful recovery. A batch of walnuts (approximately 20) were submitted for mycological culturing and identification as well as for mycotoxin analysis. Penicillium crustosum Thom was the most abundant fungus present on walnut samples, often occurring as monocultures on isolation plates. Identifications were confirmed with DNA sequences. The kernels and shells of the moldy walnuts as well as P. crustosum isolates plated on Yeast Extract Sucrose (YES) and Czapek Yeast Autolysate (CYA) agars and incubated in the dark at 25 ºC for 7 days were screened for tremorgenic mycotoxins and known P.
    [Show full text]
  • Fungal Glossary Spore Trap
    Summary List of Fungi Included in this Glossary Report Alternaria sp. Ascospores Aspergillus sp. Basidiospores Chaetomium sp. Cladosporium sp. Curvularia sp. Drechslera, Bipolaris, and Exserohilum group Epicoccum sp. Memnoniella sp. Myxomycetes Penicillium sp. Pithomyces sp. Rusts Smuts Stachybotrys sp. Ulocladium sp. Eurofins EPK Built Environment Testing, LLC EMLab ID: 1014146, Page 1 of 23 Eurofins EMLab P&K 6000 Shoreline Ct, Ste 205, So. San Francisco, CA 94080 (866) 888-6653 Fax (623) 780-7695 www.emlab.com Alternaria sp. Mitosporic fungus. Hyphomycetes. Anamorphic Pleosporaceae. Distribution Ubiquitous; cosmopolitan. Approx. 40-50 species. Where Found Soil, dead organic debris, on food stuffs and textiles. Plant pathogen, most commonly on weakened plants. Mode of Dissemination Dry spore. Wind. Allergen Commonly recognized. Type I allergies (hay fever, asthma). Type III hypersensitivity pneumonitis: Woodworker's lung, Apple store hypersensitivity. May cross react with Ulocladium, Stemphylium, Phoma, others. Potential Opportunist of Pathogen Nasal lesions, subcutaneous lesions, nail infections; the majority of infections reported from persons with underlying disease or in those taking immunosuppressive drugs. Most species of Alternaria do not grow at 37oC. Potential Toxin Production A. alternata produces the antifungal alternariol. Other metabolites include AME (alternariol monomethylether), tenuazonic acid, and altertoxins (mutagenic). Growth Indoors On a variety of substrates. Aw=0.85-0.88 (minimum for various species) Industrial Uses Biocontrol of weeds and other plants. Other Comments One of the most common fungi worldwide. Characteristics: Growth/Culture Grows well on general fungal media. Colonies are dark olive green to brown, floccose to velvety (heavily sporulating). Colonies become pleomorphic over time, and lose the ability to sporulate with subsequent transfer.
    [Show full text]
  • 1 Title: Improved Radium-223 Therapy with Combination Epithelial
    Journal of Nuclear Medicine, published on April 9, 2021 as doi:10.2967/jnumed.121.261977 1 Title: Improved Radium-223 Therapy with Combination Epithelial Sodium Channel Blockade Authors: Diane S. Abou, Ph.D.1,2,3, Amanda Fears, B.S.1, Lucy Summer, B.S.1, Mark Longtine, Ph.D.1, Nadia Benabdallah, Ph.D.1,2, Ryan C. Riddle, Ph.D.4,5, David Ulmert, M.D., Ph.D.6,7, Jeff M. Michalski, M.D., M.B.A., F.A.S.T.R.O.8, Richard L. Wahl, M.D.1, Denise Chesner, B.S.9, Michele Doucet, B.S.10, Nicholas C. Zachos, Ph.D.9, Brian W. Simons, Ph.D.11, Daniel L. J. Thorek, PhD1,2,3,12 Affiliations: 1 Mallinckrodt Institute of Radiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, 63110 2 Program in Quantitative Molecular Therapeutics, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, 63110 3 Cyclotron Facility, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, 63110 4 Department of Orthopaedics, Johns Hopkins University, Baltimore, Maryland, 21205 5 Research and Development Service, Baltimore VA Medical Center, Baltimore, MD 21201 6 Department of Pharmacology, University of California Los Angeles, Los Angeles, California, 90032 7 Department of Clinical Sciences, Lund University, Barngatan 2:1, Lund, S-21185 Sweden 8 Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, 63110 9 Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21225 10 Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21225 11 Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, 77030.
    [Show full text]
  • Improving Public Health Through Mycotoxin Control
    N°. 158 IMPROVING PUBLIC HEALTH THROUGH MYCOTOXIN CONTROL EDITED BY JOHN I. PITT, CHRISTOPHER P. WILD, ROBERT A. BAAN, WENTZEL C.A. GELDERBLOM, J. DAVID MILLER, RONALD T. RILEY, AND FELICIA WU IARC SCIENTIFIC PUBLICATION N°. 158 IMPROVING PUBLIC HEALTH THROUGH MYCOTOXIN CONTROL EDITED BY JOHN I. PITT, CHRISTOPHER P. WILD, ROBERT A. BAAN, WENTZEL C.A. GELDERBLOM, J. DAVID MILLER, RONALD T. RILEY, AND FELICIA WU INTERNATIONAL AGENCY FOR RESEARCH ON CANCER LYON, FRANCE 2012 Published by the International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France ©International Agency for Research on Cancer, 2012 Distributed by WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Health Organization concerning the legal status of any country, territory, city, or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]