Blackwell's Five-Minute Veterinary Consult Clinical Companion

Total Page:16

File Type:pdf, Size:1020Kb

Blackwell's Five-Minute Veterinary Consult Clinical Companion SAMPLER Blackwell’s Five-Minute Veterinary Consult Clinical Companion About the Series Case Study and Answers Table of Contents Chapter 1 Appendix Index About the Series • Features the familiar Five-Minute • Authoritative coverage of: Veterinary Consult framework o Canine and Feline Behavior o Canine and Feline Infectious • Builds on sections of the species- Diseases and Parasitology specific consults, with more detail o Small Animal Emergency and on each topic and additional Critical Care topics included o Small Animal Dermatology o Small Animal Toxicology • Carefully organized with bulleted o Small Animal Dentistry information for quick search and o Small Animal Endocrinology easy reference and Reproduction o Equine Theriogenology • Full-color photographs • Written by subject experts • Companion website (or CD) with client handouts and/or case studies (select titles) Clinical Case Study (available on the companion website) Terrible turn in toxicology You are excited that your first senior rotation is two weeks at a regional animal poison control center. The center provides public services as well as veterinarians professional guidance. You get to answer the phones with a supervising veterinary toxicologist. At 2 am during your first shift a small animal practice veterinarian calls about a 1-year-old rat terrier that she thinks has ingested some sort of toxin. She is driving into town as she calls so the information she relates is from her technician who has reached the clinic and has initiated lab work already. Apparently, two days ago the dog was accidentally trapped in the neighbor’s garage overnight and most of the next day. The owners had been searching for him and when they finally located him in the garage he was vomiting profusely and had diarrhea. They thought he must have gotten into something as he was perfectly fine before that and the neighbor’s garage had every possible piece of junk, food, yard equipment and an assortment of chemicals for his vehicles, lawn, home, etc. The referring vet stated the dog’s initial lab showed a markedly elevated Ca++ and moderately elevated PO4. The technician was horrified that his Ca++/PO4 ratio was exceptionally high! The dog reportedly looked dehydrated but had isosthenuric urine. His BUN and creatinine were elevated and a CBC indicated hemoconcentration and a mild stress leukogram. He was depressed and still vomiting when the technician called you. You had just finished Toxicology 426 so you knew the three top differentials, the tests you would do to confirm your diagnosis and how you would start treatment. 1. Of the following, which would best characterize the toxicosis described and the top 3 differential diagnoses for the “Terrible Turn in Toxicology”? Student Response Value Correct Answer Feedback 1. Nephrotoxin = ethylene glycol, aflatoxin, raisins 2. Hepatotoxin = cholecalciferol, ethylene glycol, aflatoxin 3. Nephrotoxin = cholecalciferol, ethylene glycol, raisins 4. Nephrotoxin = raisins, bromethalin, lilies 5. Nephrotoxin = arsenic, bromethalin, grapes 1 2. For the differential list you selected (Terrible Turn in Toxicology), which combination of tests would most clearly support the correct diagnosis? Student Response Value Correct Answer Feedback 1. azotemia, isosthenuria, leukocytosis 2. azotemia, hypocalcemia, isosthenuria 3. acidosis, hypocalcemia, hyperosmolality 4. acidosis, hypercalcemia, hyposthenuria 5. azotemia, hypercalcemia, isosthenuria 6. azotemia, cholestasis, hyperbilirubinemia 7. azotemia, hyperglycemia, isosthenuria 3. Given the circumstances for our dog in this “Terrible Turn”, select a potential treatment regimen you would recommend for a client with limited financial resources. You may choose 2 options. Student Response Value Correct Feedback Answer 1. Activated charcoal initially This is a good start because it monitors important and again at 12 hours; start parameters, but it doesn’t have a contingency for using a IV saline, furosemide and more powerful drug to reduce calcium. Early therapy corticosteroid; monitor may forestall the need for D3 drug antidote. serum calcium, BUN and UA specific gravity 2. Emesis, cathartic, activated Patient has already been vomiting, and adequate charcoal, IV fluids and start laboratory evaluation has not been done. on salmon calcitonin q6h for 4 days; monitor BUN and UA specific gravity 3. Activated charcoal initially This choice provides excellent upfront detoxification and again at 12 hours; start (charcoal twice) and monitoring with a decision point IV saline, furosemide and that is specific (Ca @ 14 mg/dL); still allows client input corticosteroid; monitor if the decision point comes. serum calcium, BUN and UA specific gravity; start salmon calcitonin if serum Ca > 14 mg/dL 4. Activated charcoal initially This choice provides excellent upfront detoxification and again at 12 hours; start (charcoal twice) and monitoring with a decision point 2 IV saline, furosemide and that is specific (Ca @ 14 mg/dL); still allows client to corticosteroid; monitor decide about pamidronate therapy if conditions worsen. serum calcium, BUN and Remember, the reduced number of doses may keep UA specific gravity; start down total drug use as well as reduce hospital care costs. pamidronate if serum Ca > 14 mg/dL 5. Start pamidronate and IV Overkill without proper evaluation of patient status. fluids, continue until UA is normal 4. If this case had terminated as a fatality without being submitted for antemortem veterinary care, which of the following could you use to confirm toxicosis in a cost-effective manner? SELECT 3. Student Response Value Correct Answer Feedback 1. Radiography of the renal area for increased Option if necropsy is not radiodensity of the kidneys related to desired calcium content 2. Targeted necropsy of heart, GI tract and Allows for confirmation of kidneys with submission for histopathology diagnosis by traditional exam histopathology 3. Chemical analysis of kidney for the toxic Many labs don’t have the metabolite capability to find metabolites 4. Chemical analysis of kidney for calcium Inexpensive and readily content available assay 5. Chemical assay for primary toxicant in liver Expensive and many labs and metabolites in liver and kidney don’t offer both primary toxicant and secondary metabolites 3 Clinical Case Study Answers (available on the companion website) Terrible turn in toxicology You are excited that your first senior rotation is two weeks at a regional animal poison control center. The center provides public services as well as veterinarians professional guidance. You get to answer the phones with a supervising veterinary toxicologist. At 2 am during your first shift a small animal practice veterinarian calls about a 1-year-old rat terrier that she thinks has ingested some sort of toxin. She is driving into town as she calls so the information she relates is from her technician who has reached the clinic and has initiated lab work already. Apparently, two days ago the dog was accidentally trapped in the neighbor’s garage overnight and most of the next day. The owners had been searching for him and when they finally located him in the garage he was vomiting profusely and had diarrhea. They thought he must have gotten into something as he was perfectly fine before that and the neighbor’s garage had every possible piece of junk, food, yard equipment and an assortment of chemicals for his vehicles, lawn, home, etc. The referring vet stated the dog’s initial lab showed a markedly elevated Ca++ and moderately elevated PO4. The technician was horrified that his Ca++/PO4 ratio was exceptionally high! The dog reportedly looked dehydrated but had isosthenuric urine. His BUN and creatinine were elevated and a CBC indicated hemoconcentration and a mild stress leukogram. He was depressed and still vomiting when the technician called you. You had just finished Toxicology 426 so you knew the three top differentials, the tests you would do to confirm your diagnosis and how you would start treatment. 1. Of the following, which would best characterize the toxicosis described and the top 3 differential diagnoses for the “Terrible Turn in Toxicology”? Student Response Value Correct Answer Feedback 1. Nephrotoxin = ethylene glycol, aflatoxin, raisins 2. Hepatotoxin = cholecalciferol, ethylene glycol, aflatoxin 3. Nephrotoxin = cholecalciferol, ethylene glycol, 100% raisins 4. Nephrotoxin = raisins, bromethalin, lilies 5. Nephrotoxin = arsenic, bromethalin, grapes 1 2. For the differential list you selected (Terrible Turn in Toxicology), which combination of tests would most clearly support the correct diagnosis? Student Response Value Correct Answer Feedback 1. azotemia, isosthenuria, leukocytosis 2. azotemia, hypocalcemia, isosthenuria 3. acidosis, hypocalcemia, hyperosmolality 4. acidosis, hypercalcemia, hyposthenuria 5. azotemia, hypercalcemia, isosthenuria 100% 6. azotemia, cholestasis, hyperbilirubinemia 7. azotemia, hyperglycemia, isosthenuria 3. Given the circumstances for our dog in this “Terrible Turn”, select a potential treatment regimen you would recommend for a client with limited financial resources. You may choose 2 options. Student Response Value Correct Feedback Answer 1. Activated charcoal initially 50% This is a good start because it monitors important and again at 12 hours; start parameters, but it doesn't have a contingency for using a IV saline, furosemide and more powerful drug to reduce calcium. Early therapy corticosteroid; monitor may forestall the need for D3 drug antidote. serum calcium,
Recommended publications
  • Evaluation of Fluralaner and Afoxolaner Treatments to Control Flea
    Dryden et al. Parasites & Vectors (2016) 9:365 DOI 10.1186/s13071-016-1654-7 RESEARCH Open Access Evaluation of fluralaner and afoxolaner treatments to control flea populations, reduce pruritus and minimize dermatologic lesions in naturally infested dogs in private residences in west central Florida USA Michael W. Dryden1*, Michael S. Canfield2, Kimberly Kalosy1, Amber Smith1, Lisa Crevoiserat1, Jennifer C. McGrady1, Kaitlin M. Foley1, Kathryn Green2, Chantelle Tebaldi2, Vicki Smith1, Tashina Bennett1, Kathleen Heaney3, Lisa Math3, Christine Royal3 and Fangshi Sun3 Abstract Background: A study was conducted to evaluate and compare the effectiveness of two different oral flea and tick products to control flea infestations, reduce pruritus and minimize dermatologic lesions over a 12 week period on naturally infested dogs in west central FL USA. Methods: Thirty-four dogs with natural flea infestations living in 17 homes were treated once with a fluralaner chew on study day 0. Another 27 dogs living in 17 different homes were treated orally with an afoxolaner chewable on day 0, once between days 28–30 and once again between days 54–60. All products were administered according to label directions by study investigators. Flea populations on pets were assessed using visual area counts and premise flea infestations were assessed using intermittent-light flea traps on days 0, 7, 14, 21, and once between days 28–30, 40–45, 54–60 and 82–86. Dermatologic assessments were conducted on day 0 and once monthly. Pruritus assessments were conducted by owners throughout the study. No concurrent treatments for existing skin disease (antibiotics, anti-inflammatories, anti-fungals) were allowed.
    [Show full text]
  • Penitrem and Thomitrem Formation by Penicillium Crustosum
    Mycopathologia 157: 349–357, 2004. 349 © 2004 Kluwer Academic Publishers. Printed in the Netherlands. Penitrem and thomitrem formation by Penicillium crustosum Thomas Rundberget1, Ida Skaar1, Oloff O’Brien2 & Arne Flåøyen1 1National Veterinary Institute, PO Box 8156 Dep., 0033 Oslo, Norway; 2ARC Plant Protection, Research Institute, Private Bag X134, Pretoria 0001, South Africa Received 9 September 2002; accepted in final form 16 July 2003 Abstract The levels of penitrems A, B, C, D, E, F, roquefortine C and thomitrem A and E recovered from extracts of 36 Norwegian, 2 American and one each of Japanese, German, South African, Danish and Fijian isolates of Penicillum crustosum Thom were quantitatively determined using high performance liquid chromatography-mass spectrometry (HPLC-MS). Forty-two of the 44 isolates of penitrem-producing isolates grown on rice, afforded levels of thomitrem A and E comparable to that of penitrem A. Thomitrems A and E were also found, but at lower levels, when cultures were grown on barley. No thomitrems were found when the isolates were grown on liquid media. The effects of time and temperature on mycotoxin formation were studied on rice over a 4 week period at 10, 15 and 25 ◦C, respectively. No mycotoxins could be detected after 1 week at 10 ◦C, but after 2 weeks at 10 ◦C levels were similar to those produced at 15 and 25 ◦C. Higher levels of thomitrems A and E were detected when media were maintained at lower pH. The possibility that thomitrems A and E might be derived by acid promoted conversion of penitrems A and E was explored in stability trials performed at pH 2, 3, 4, 5 and 7 in the presence and absence of media.
    [Show full text]
  • (BK) Channel Antagonist Penitrem a As a Novel Breast Cancer-Targeted Therapeutic
    marine drugs Article The Maxi-K (BK) Channel Antagonist Penitrem A as a Novel Breast Cancer-Targeted Therapeutic Amira A. Goda 1, Abu Bakar Siddique 1 ID , Mohamed Mohyeldin 1,3, Nehad M. Ayoub 2 ID and Khalid A. El Sayed 1,* ID 1 Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; [email protected] (A.A.G.); [email protected] (A.B.S.); [email protected] (M.M.) 2 Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; [email protected] 3 Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt * Correspondence: [email protected]; Tel.: +1-318-342-1725 Received: 6 April 2018; Accepted: 9 May 2018; Published: 11 May 2018 Abstract: Breast cancer (BC) is a heterogeneous disease with different molecular subtypes. The high conductance calcium-activated potassium channels (BK, Maxi-K channels) play an important role in the survival of some BC phenotypes, via membrane hyperpolarization and regulation of cell cycle. BK channels have been implicated in BC cell proliferation and invasion. Penitrems are indole diterpene alkaloids produced by various terrestrial and marine Penicillium species. Penitrem A (1) is a selective BK channel antagonist with reported antiproliferative and anti-invasive activities against multiple malignancies, including BC. This study reports the high expression of BK channel in different BC subtypes. In silico BK channel binding affinity correlates with the antiproliferative activities of selected penitrem analogs. 1 showed the best binding fitting at multiple BK channel crystal structures, targeting the calcium-sensing aspartic acid moieties at the calcium bowel and calcium binding sites.
    [Show full text]
  • Veterinary Toxicology
    GINTARAS DAUNORAS VETERINARY TOXICOLOGY Lecture notes and classes works Study kit for LUHS Veterinary Faculty Foreign Students LSMU LEIDYBOS NAMAI, KAUNAS 2012 Lietuvos sveikatos moksl ų universitetas Veterinarijos akademija Neužkre čiam ųjų lig ų katedra Gintaras Daunoras VETERINARIN Ė TOKSIKOLOGIJA Paskait ų konspektai ir praktikos darb ų aprašai Mokomoji knyga LSMU Veterinarijos fakulteto užsienio studentams LSMU LEIDYBOS NAMAI, KAUNAS 2012 UDK Dau Apsvarstyta: LSMU VA Veterinarijos fakulteto Neužkre čiam ųjų lig ų katedros pos ėdyje, 2012 m. rugs ėjo 20 d., protokolo Nr. 01 LSMU VA Veterinarijos fakulteto tarybos pos ėdyje, 2012 m. rugs ėjo 28 d., protokolo Nr. 08 Recenzavo: doc. dr. Alius Pockevi čius LSMU VA Užkre čiam ųjų lig ų katedra dr. Aidas Grigonis LSMU VA Neužkre čiam ųjų lig ų katedra CONTENTS Introduction ……………………………………………………………………………………… 7 SECTION I. Lecture notes ………………………………………………………………………. 8 1. GENERAL VETERINARY TOXICOLOGY ……….……………………………………….. 8 1.1. Veterinary toxicology aims and tasks ……………………………………………………... 8 1.2. EC and Lithuanian legal documents for hazardous substances and pollution ……………. 11 1.3. Classification of poisons ……………………………………………………………………. 12 1.4. Chemicals classification and labelling ……………………………………………………… 14 2. Toxicokinetics ………………………………………………………………………...………. 15 2.2. Migration of substances through biological membranes …………………………………… 15 2.3. ADME notion ………………………………………………………………………………. 15 2.4. Possibilities of poisons entering into an animal body and methods of absorption ……… 16 2.5. Poison distribution
    [Show full text]
  • NEXGARD SPECTRA, INN-Afoxolaner-Milbemycin Oxime
    EMA/704200/2014 EMEA/V/C/003842 Nexgard Spectra (afoxolaner/milbemycin oxime) An overview of Nexgard Spectra and why it is authorised in the EU What is Nexgard Spectra and what is it used for? Nexgard Spectra is a veterinary medicine used to treat infestations with fleas, ticks, as well as demodectic and sarcoptic mange (skin infestations caused by two different types of mites) in dogs when prevention of heartworm disease (caused by a worm that infects the heart and blood vessels and is transmitted by mosquitoes), lungworm disease, eye worm and/or treatment of gut worms (hookworms, roundworms and whipworm) is also required. Nexgard Spectra contains the active substances afoxolaner and milbemycin oxime. How is Nexgard Spectra used? Nexgard Spectra is available as chewable tablets in five different strengths for use in dogs of different weights. It can only be obtained with a prescription. The appropriate strength of tablets should be used according to the dog’s weight. Treatment for fleas and ticks should be repeated at monthly intervals during the flea or tick seasons; Nexgard Spectra can be used as part of the seasonal treatment of fleas and ticks in dogs infected with gut worms. A single dose of Nexgard Spectra is given to treat gut worms. After which, further flea and tick treatment should be continued with a monovalent product containing a single active substance. For demodectic mange, treatment should be repeated monthly until the mange is successfully treated (as confirmed by two negative skin scrapings one month apart) whereas for sarcoptic mange treatment is given monthly for two months, or longer based on clinical signs and skin scrapings.
    [Show full text]
  • Acaricide Mode of Action Classification: a Key to Effective Acaricide Resistance Management Insecticide Resistance Action Committee
    Acaricide Mode of Action Classification: A key to effective acaricide resistance management Insecticide Resistance Action Committee www.irac-online.org Introduction Effective IRM strategies: Sequences or alternations of MoA IRAC promotes the use of a Mode of Action (MoA) classification of All effective pesticide resistance management strategies seek to minimise the selection of resistance to any one type of MoA w MoA x MoA y MoA z MoA w MoA x insecticides and acaricides as the basis for effective and sustainable pesticide. In practice, alternations, sequences or rotations of compounds from different MoA groups provide sustainable and resistance management. Acaricides are allocated to specific groups based effective resistance management for acarine pests. This ensures that selection from compounds in the same MoA group is on their target site. Reviewed and re-issued periodically, the IRAC MoA minimised, and resistance is less likely to evolve. Sequence of acaricides through season classification list provides farmers, growers, advisors, extension staff, consultants and crop protection professionals witH a guide to the selection of Applications are often arranged into MoA spray windows or blocks that are defined by the stage of crop development and the biology of the pest species of concern. Local expert advice should acaricides and insecticides in resistance management programs. Effective always be followed witH regard to spray windows and timings. Several sprays may be possible witHin each spray window but it is generally essential to ensure that successive generations of the Resistance management of this type preserves the utility and diversity of pest are not treated witH compounds from the same MoA group.
    [Show full text]
  • Development of an Equine Behavior Chamber and Effects of Amitraz, Detomidine, and Acepromazine on Spontaneous Locomotor Activity
    Reprinted in the IVIS website with the permission of the AAEP Close window to return to IVIS RACING REGULATORY Development of an Equine Behavior Chamber and Effects of Amitraz, Detomidine, and Acepromazine on Spontaneous Locomotor Activity J. Daniel Harkins, DVM, PhD; Thomas Tobin, DVM, PhD; and Antonio Queiroz-Neto, DVM, PhD The locomotor chamber is a sensitive and highly reproducible tool for measuring spontaneous locomotor activity in the horse. It allows investigators to determine an agent’s average time of onset, duration, and intensity of effect on movement. Authors’ addresses: Maxwell H. Gluck Equine Research Center and the Department of Veterinary Science, University of Kentucky, Lexington, KY 40506 (Harkins and Tobin) and Universidade Estadual Paulista, Campus de Jaboticabal, Brazil (Queiroz-Neto). ௠ 1997 AAEP. 1. Introduction dine HCl (0.02, 0.04, and 0.08 mg/kg), amitraz (0.05, Horses in a confined space instinctively move around 0.1, and 0.15 mg/kg), and acepromazine (0.002, 0.006, their environment. This movement is defined as 0.018, and 0.054 mg/kg) were injected to assess the spontaneous locomotor activity.1 Baseline locomo- effect of those agents on locomotor activity. In a tor activity in a large number of horses was mea- separate experiment, yohimbine HCl (0.12 mg/kg) sured in a behavior chamber, which was validated by was administered following an injection of amitraz quantifying behavioral responses to fentanyl and (0.15 mg/kg) to assess the reversal effect of that xylazine. The goal of this project was to develop agent. An analysis of variance with repeated mea- protocols for the measurement of locomotor activity sures was used to compare control and treatment in the freely moving horse.
    [Show full text]
  • Tremorgenic Mycotoxin Intoxication by Mary M
    Tremorgenic mycotoxin intoxication by Mary M. Schell, DVM Dogs allowed to roam or get into the trash may ingest tremorgenic mycotoxins, which are neorotoxins that produce varying degrees of muscle tremors or seizures that can last for hours or days. Since 1998, the ASPCA Animal Poison Control Center (APCC) has consulted on 25 cases of suspected tremorgenic mycotoxin intoxication in dogs and one in a squirrel. Sources of tremorgenic mycotoxins for household pets have included moldy dairy foods, moldy walnuts or peanuts, stored grains, and moldy spaghetti. 1-7 These toxic secondary metabolites of many fungi vary in quantity and in their ability to produce clinical effects. Toxin production depends on seasonal growing conditions as well as the genus and species of the mold. At least 20 mycotoxins have been identified as tremorgens (compounds capable of inducing serious muscle tremor in one or more vertebrates), although only a few have been shown to have clinical relevance.3,8 Penicillium species are most often incriminated in producing tremorgenic mycotoxins; the most common are penitrem-A and roquefortine C.1,3,6,8 Intoxication with these mycotoxins has been documented in many animals, including dogs, cattle, sheep, rabbits, poultry, and rodents. Several mechanisms of action have been proposed, and the mechanism may vary both between toxins and the individual susceptible species. Penitrem-A inhibits the inhibitory neurotransmitter glycine in mice. Studies in mice have shown that drugs such as mephenesin or nalorphine, which increase glycine
    [Show full text]
  • Cover Memo Isoxazolines Inquires
    Name: Isoxazoline inquiries DATE:10/1/2018 This serves as the response to your Freedom of Information Act (FOIA) request for records regarding adverse event reports received for afoxolaner, fluralaner, lotilaner and sarolaner. A search of CVM’s Adverse Drug Event (ADE) database was performed on 10-01-2018. The search parameters were: Active ingredient(s): afoxolaner, fluralaner, lotilaner and sarolaner Reports received: From 09-04-2013 through 07-31-2018 Case type: Spontaneous ADE report Species: All Route of administration: All For each drug (active ingredient), we have provided the ‘CVM ADE Comprehensive Clinical Detail Report Listing’, which is a cumulative listing of adverse experiences in reports submitted to CVM. General Information about CVM’s ADE Database The primary purpose for maintaining the CVM ADE database is to provide an early warning or signaling system to CVM for adverse effects not detected during pre-market testing of FDA- approved animal drugs and for monitoring the performance of drugs not approved for use in animals. Information from these ADE reports is received and coded in an electronic FDA/CVM ADE database. CVM scientists use the ADE database to make decisions about product safety which may include changes to the label or other regulatory action. CVM’s ADE reporting system depends on detection and voluntary reporting of adverse clinical events by veterinarians and animal owners. The Center's ADE review process is complex, and for each report takes into consideration confounding factors such as: Dosage Concomitant drug use The medical and physical condition of animals at the time of treatment Environmental and management information Product defects Name: Isoxazoline inquiries DATE:10/1/2018 Extra-label (off label) uses The specifics of these complex factors cannot be addressed in the CVM ADE Comprehensive Clinical Detail Report Listing.
    [Show full text]
  • Penitrem a Peer-Reviewed Journal Articles
    ________________________________________________________________________ ________________________________________________________________________ Penitrem A Peer-Reviewed Journal Articles Literature Review by Lisa Petrison, Ph.D. Neurotoxic Effects: Berntsen H. F., Wigestrand M. B., Bogen I. L., Fonnum F., Walaas S. I., Moldes-Anaya A.. Mechanisms of penitrem-induced cerebellar granule neuron death in vitro: possible involvement of GABAA receptors and oxidative processes. Neurotoxicology. 2013;35:129–136. Moldes-Anaya Angel, Rundberget Thomas, Fæste Christiane K., Eriksen Gunnar S., Bernhoft Aksel. Neurotoxicity of Penicillium crustosum secondary metabolites: tremorgenic activity of orally administered penitrem A and thomitrem A and E in mice. Toxicon. 2012;60:1428–1435. Moldes-Anaya Angel S., Fonnum Frode, Eriksen Gunnar S., Rundberget Thomas, Walaas S. Ivar, Wigestrand Mattis B.. In vitro neuropharmacological evaluation of penitrem-induced tremorgenic syndromes: importance of the GABAergic system. Neurochemistry international. 2011;59:1074–1081. Lu Hai-Xia X., Levis Hannah, Liu Yong, Parker Terry. Organotypic slices culture model for cerebellar ataxia: potential use to study Purkinje cell induction from neural stem cells. Brain research bulletin. 2011;84:169–173. Namiranian Khodadad, Lloyd Eric E., Crossland Randy F., et al. Cerebrovascular responses in mice deficient in the potassium channel, TREK-1. American journal of physiology. Regulatory, integrative and comparative physiology. 2010;299. Ohno Akitoshi, Ohya Susumu, Yamamura Hisao,
    [Show full text]
  • Nexgard, Afoxolaner
    13 September 2018 EMA/665923/2018 Veterinary Medicines Division CVMP assessment report for a worksharing grouped type II variation for NEXGARD SPECTRA and NexGard (EMEA/V/C/WS1338/G) International non-proprietary name: afoxolaner / milbemycin oxime; afoxolaner Assessment report as adopted by the CVMP with all information of a commercially confidential nature deleted. Rapporteur: Jeremiah Gabriel Beechinor Co-Rapporteur: Peter Hekman 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5545 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Introduction ............................................................................................ 3 1.1. Submission of the variation application ................................................................... 3 1.2. Scope of the variation ........................................................................................... 3 1.3. Changes to the dossier held by the European Medicines Agency ................................. 3 1.4. Scientific advice ................................................................................................... 3 1.5. MUMS/limited market status .................................................................................. 3 2. Scientific Overview .................................................................................
    [Show full text]
  • Doxepin (Dox-E-Pin) Description: Tricyclic Antidepressant; Antihistamine Other Names for This Medication: Sinequan®, Silenor® Common Dosage Forms: Veterinary: None
    Prescription Label Patient Name: Species: Drug Name & Strength: Directions (amount to give how often & for how long): Prescribing Veterinarian's Name & Contact Information: Refills: [Content to be provided by prescribing veterinarian] Doxepin (dox-e-pin) Description: Tricyclic Antidepressant; Antihistamine Other Names for this Medication: Sinequan®, Silenor® Common Dosage Forms: Veterinary: None. Human: 3 mg, 6 mg, 10 mg, 25 mg, 50 mg, 75 mg, 100 mg, & 150 mg capsules; 10 mg/mL oral liquid concentrates. This information sheet does not contain all available information for this medication. It is to help answer commonly asked questions and help you give the medication safely and effectively to your animal. If you have other questions or need more information about this medication, contact your veterinarian or pharmacist. Key Information When used as an antihistamine, doxepin should be used on a regular, ongoing basis in animals that respond to it. This drug works better if used before exposure to an allergen (eg, pollens). When used for behavior modification, it may take several days to weeks to determine if doxepin is effective. May be given with or without food. If your animal vomits or acts sick after receiving the drug on an empty stomach, try giving the next dose with food or a small treat. If vomiting continues, contact your veterinarian. Most common side effects are sleepiness, dry mouth, and constipation. Be sure your animal always has access to plenty of fresh, clean water. Rare side effects that can be serious (contact veterinarian immediately) include abnormal bleeding, lack of an appetite, seizures, collapse, or profound sleepiness.
    [Show full text]