Acaricide Mode of Action Classification: a Key to Effective Acaricide Resistance Management Insecticide Resistance Action Committee
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401 -
Best Management Practices for Brown Dog Ticks
Best Management Practices For Brown Dog Ticks immediately seek shelter in cracks or crevices such as baseboards or furniture, but also commonly move en masse up walls and congregate in the corners of ceilings. These larvae eventually find the dog and receive their first blood meal. The larvae go largely unnoticed because they are about the size of a pencil tip. The larvae then drop off into the surrounding area, molt to the nymphal stage, and again seek the dog for a second blood meal. At this point owners occasionally notice the ticks, but they usually go unnoticed. After they molt to the adult stage, the ticks find the dog for a third and final blood meal. Ticks are noticed at this stage for two reasons: 1) Adult females engorge to the size of a raisin and are often located on or near the dog’s head, or 2) adults are seen Heavy infestation of BDT on the ear of a dog. crawling on floors actively looking for the dog. This “predatory” behavior is somewhat unique to ticks. The brown dog tick (BDT) can be a serious Typically, residents do not notice these ticks until they have pest in homes with pets. These Best Management completed a full generation. Often, overlapping generations of Practices are designed to support cooperation ticks occur in homes, so tick numbers can quickly multiply into the thousands. between homeowners and pest management A factor complicating BDT management is the ability of this professionals in order to prevent and control BDTs. tick to survive without a host for several months during each of At left: The black-legged its three life stages, thereby negating the “wait-it-out” strategy of tick (Ixodes scapularis). -
Sound Management of Pesticides and Diagnosis and Treatment Of
* Revision of the“IPCS - Multilevel Course on the Safe Use of Pesticides and on the Diagnosis and Treatment of Presticide Poisoning, 1994” © World Health Organization 2006 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. CONTENTS Preface Acknowledgement Part I. Overview 1. Introduction 1.1 Background 1.2 Objectives 2. Overview of the resource tool 2.1 Moduledescription 2.2 Training levels 2.3 Visual aids 2.4 Informationsources 3. Using the resource tool 3.1 Introduction 3.2 Training trainers 3.2.1 Organizational aspects 3.2.2 Coordinator’s preparation 3.2.3 Selection of participants 3.2.4 Before training trainers 3.2.5 Specimen module 3.3 Trainers 3.3.1 Trainer preparation 3.3.2 Selection of participants 3.3.3 Organizational aspects 3.3.4 Before a course 4. -
Development of an Equine Behavior Chamber and Effects of Amitraz, Detomidine, and Acepromazine on Spontaneous Locomotor Activity
Reprinted in the IVIS website with the permission of the AAEP Close window to return to IVIS RACING REGULATORY Development of an Equine Behavior Chamber and Effects of Amitraz, Detomidine, and Acepromazine on Spontaneous Locomotor Activity J. Daniel Harkins, DVM, PhD; Thomas Tobin, DVM, PhD; and Antonio Queiroz-Neto, DVM, PhD The locomotor chamber is a sensitive and highly reproducible tool for measuring spontaneous locomotor activity in the horse. It allows investigators to determine an agent’s average time of onset, duration, and intensity of effect on movement. Authors’ addresses: Maxwell H. Gluck Equine Research Center and the Department of Veterinary Science, University of Kentucky, Lexington, KY 40506 (Harkins and Tobin) and Universidade Estadual Paulista, Campus de Jaboticabal, Brazil (Queiroz-Neto). 1997 AAEP. 1. Introduction dine HCl (0.02, 0.04, and 0.08 mg/kg), amitraz (0.05, Horses in a confined space instinctively move around 0.1, and 0.15 mg/kg), and acepromazine (0.002, 0.006, their environment. This movement is defined as 0.018, and 0.054 mg/kg) were injected to assess the spontaneous locomotor activity.1 Baseline locomo- effect of those agents on locomotor activity. In a tor activity in a large number of horses was mea- separate experiment, yohimbine HCl (0.12 mg/kg) sured in a behavior chamber, which was validated by was administered following an injection of amitraz quantifying behavioral responses to fentanyl and (0.15 mg/kg) to assess the reversal effect of that xylazine. The goal of this project was to develop agent. An analysis of variance with repeated mea- protocols for the measurement of locomotor activity sures was used to compare control and treatment in the freely moving horse. -
Physiological Resistance Alters Behavioral Response of Tetranychus Urticae to Acaricides Adekunle W
www.nature.com/scientificreports OPEN Physiological resistance alters behavioral response of Tetranychus urticae to acaricides Adekunle W. Adesanya1,2*, Michael J. Beauchamp1, Mark D. Lavine2, Laura C. Lavine2, Fang Zhu 2,3 & Doug B. Walsh1,2 Multiple acaricide resistance in Tetranychus urticae continues to threaten crop production globally, justifying the need to adequately study resistance for sustainable pest management. Most studies on acaricide resistance have focused on the acute contact toxicity of acaricides with little or no information on the behavioral responses elicited after acaricide exposure. Furthermore, the impact of physiological resistance on these behavioral responses remains unknown in most pest species, including T. urticae. We tested the efect of acaricide resistance on contact toxicity, irritancy and repellency of mitochondrial electron transport inhibitor of complex I (MET-I) and mite growth inhibitor (MGI) acaricides on multiple T. urticae strains. We also tested whether acaricides with similar physiological target site/mode of action also elicit similar behavioral efects on T. urticae strains. MET-I acaricides (fenazaquin, fenpyroximate, and pyrabiden) and MGIs (clofentezine, hexythiazox and etoxazole) elicited a dose-dependent irritant and repellent efect on T. urticae. Selection of strains for physiological resistance to these acaricides afected the behavioral response of T. urticae, especially in MET-I resistant strains, that showed reduced irritancy and repellency to MET-I acaricides. Behavioral response also afected the oviposition of T. urticae, where strains generally showed preferential oviposition away from the acaricides. The outcome of this study highlights negative consequences of acaricide resistance that can potentially afect T. urticae management. In addition to a pesticide’s direct lethality, its sublethal efects can also afect its efcacy1. -
Guide to Ticks and Tick-Borne Diseases
Integrated Pest Management GUIDE TO TICKS AND TICK-BORNE DISEASES Plant Protection Programs College of Agriculture, Food and Natural Resources Published by University of Missouri Extension IPM1032 This publication is part of a series of integrated pest CONTENTS management (IPM) manuals prepared by the Plant Protection Programs of the University of Missouri. Topics INTRODUCTION TO TICKS . 3 covered in the series include an introduction to scouting, Morphology . 4 weed identification and management, plant diseases, and Identification . .6 insects of field and horticultural crops. These IPM manuals Life cycle . .7 are available from MU Extension at the following address: Behavior . 8 Distribution and ecology . 10 Extension Publications MEDICALLY IMPORTANT TICKS . .12 2800 Maguire Blvd. Lone star tick (Amblyomma americanum) . 12 Columbia, MO 65211 American dog tick (Dermacentor variabilis) .13 800-292-0969 Blacklegged tick (Ixodes scapularis) . 13 Brown dog tick (Rhipicephalus sanguineus) . 14 Relapsing fever tick (Ornithodoros turicata) 14 Bat tick (Ornithodoros kelleyi) . .15 Author Richard M. Houseman TICK-BORNE DISEASES . .16 Associate Professor of Entomology Human ehrlichiosis . 16 University of Missouri Extension Rocky Mountain spotted fever . 17 Southern tick-associated rash illness . .17 Lyme disease . 18. On the cover Anaplasmosis . 18 Dorsal view of a female lone star tick, Tick-borne relapsing fever . 19 Amblyomma americanum. Photo credit: James Tularemia . 19. Gathany, CDC INDIVIDUAL PERSONAL PROTECTION . 20 Photo credits Tick bite prevention . .20 Tick checks . 22 All photos were provided by the author, unless Tick removal . 22 otherwise indicated. Self-monitoring and medical treatment . 23 Follow-up . 24 Credits Centers for Disease Control and Prevention INTEGRATED PEST MANAGEMENT (IPM) (CDC) OF TICK POPULATIONS . -
Doxepin (Dox-E-Pin) Description: Tricyclic Antidepressant; Antihistamine Other Names for This Medication: Sinequan®, Silenor® Common Dosage Forms: Veterinary: None
Prescription Label Patient Name: Species: Drug Name & Strength: Directions (amount to give how often & for how long): Prescribing Veterinarian's Name & Contact Information: Refills: [Content to be provided by prescribing veterinarian] Doxepin (dox-e-pin) Description: Tricyclic Antidepressant; Antihistamine Other Names for this Medication: Sinequan®, Silenor® Common Dosage Forms: Veterinary: None. Human: 3 mg, 6 mg, 10 mg, 25 mg, 50 mg, 75 mg, 100 mg, & 150 mg capsules; 10 mg/mL oral liquid concentrates. This information sheet does not contain all available information for this medication. It is to help answer commonly asked questions and help you give the medication safely and effectively to your animal. If you have other questions or need more information about this medication, contact your veterinarian or pharmacist. Key Information When used as an antihistamine, doxepin should be used on a regular, ongoing basis in animals that respond to it. This drug works better if used before exposure to an allergen (eg, pollens). When used for behavior modification, it may take several days to weeks to determine if doxepin is effective. May be given with or without food. If your animal vomits or acts sick after receiving the drug on an empty stomach, try giving the next dose with food or a small treat. If vomiting continues, contact your veterinarian. Most common side effects are sleepiness, dry mouth, and constipation. Be sure your animal always has access to plenty of fresh, clean water. Rare side effects that can be serious (contact veterinarian immediately) include abnormal bleeding, lack of an appetite, seizures, collapse, or profound sleepiness. -
Table S1. List of the 33 Pesticide Residues Analyzed in Grapevine Leaves, Use Type, Chemical Group and Mode of Action. Molecule
Table S1. List of the 33 pesticide residues analyzed in grapevine leaves, use type, chemical group and mode of action. CAS Num‐ Log P Molecule Formula Chemical group Use Type Mode of action ber (KOW) Acetamiprid 135410‐20‐7 C10H11ClN4 0.80 Neonicotinoid Insecticide Systemic Azoxystrobin 131860‐33‐8 C22H17N3O5 2.50 Strobilurin Fungicide Systemic Bifenthrin 82657‐04‐3 C23H22ClF3O2 6.00 Pyrethroid Acaricide, Insecticide Contact Boscalid 188425‐85‐6 C18H12Cl2N2O 2.96 Carboxamide Fungicide Systemic Carbendazim 10605‐21‐7 C9H9N3O2 1.52 Benzimidazole Fungicide Systemic Chlorpyriphos 2921‐88‐2 C9H11Cl3NO3PS 4.96 Organophosphorous Insecticide Contact Cypermethrin 52315‐07‐8 C22H19Cl2NO3 5.55 Pyrethroid Insecticide Contact Cyproconazole 113096‐99‐4 C15H18ClN3O 2.90 Triazole Fungicide Systemic Cyprodinil 121552‐61‐2 C14H15N3 3.59 Anilinopyrimidine Fungicide Systemic Deltamethrin 52918‐63‐5 C22H19Br2NO3 4.60 Pyrethroid Insecticide Contact Diazinon 333‐41‐5 C12H21N2O3PS 3.81 Organophosphorous Acaricide, Insecticide Contact Difenoconazole 119446‐68‐3 C19H17Cl2N3O3 4.40 Triazole Fungicide Systemic Dimethoate 60‐51‐5 C5H12NO3PS2 0.78 Organophosphorous Acaricide, Insecticide Systemic Fenazaquin 120928‐09‐8 C20H22N2O 5.51 Quinazoline Acaricide Contact Fenhexamid 126833‐17‐8 C14H17Cl2NO2 3.51 Hydroxyanilide Acaricide Translaminar Hexaconazole 79983‐71‐4 C14H17Cl2N3O 3.90 Triazole Fungicide Systemic Imazalil 35554‐44‐0 C14H14Cl2N2O 3.82 Imidazole Fungicide Systemic Imidacloprid 138261‐41‐3 C9H10ClN5O2 0.57 Neonicotinoid Insecticide Systemic Indoxacarb 173584‐44‐6 -
Drug and Medication Classification Schedule
KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine -
Amitraz, an Underrecognized Poison: a Systematic Review
Quick Response Code: Systematic Review Indian J Med Res 144, September 2016, pp 348-358 DOI: 10.4103/0971-5916.198723 Amitraz, an underrecognized poison: A systematic review Sahajal Dhooria & Ritesh Agarwal Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India Received June 30, 2014 Background & objectives: Amitraz is a member of formamidine family of pesticides. Poisoning from amitraz is underrecognized even in areas where it is widely available. It is frequently misdiagnosed as organophosphate poisoning. This systematic review provides information on the epidemiology, toxicokinetics, mechanisms of toxicity, clinical features, diagnosis and management of amitraz poisoning. Methods: Medline and Embase databases were searched systematically (since inception to January 2014) for case reports, case series and original articles using the following search terms: ‘amitraz’, ‘poisoning’, ‘toxicity’, ‘intoxication’ and ‘overdose’. Articles published in a language other than English, abstracts and those not providing sufficient clinical information were excluded. Results: The original search yielded 239 articles, of which 52 articles described human cases. After following the inclusion and exclusion criteria, 32 studies describing 310 cases (151 females, 175 children) of human poisoning with amitraz were included in this systematic review. The most commonly reported clinical features of amitraz poisoning were altered sensorium, miosis, hyperglycaemia, bradycardia, vomiting, respiratory failure, hypotension and hypothermia. Amitraz poisoning carried a good prognosis with only six reported deaths (case fatality rate, 1.9%). Nearly 20 and 11.9 per cent of the patients required mechanical ventilation and inotropic support, respectively. The role of decontamination methods, namely, gastric lavage and activated charcoal was unclear. Interpretation & conclusions: Our review shows that amitraz is an important agent for accidental or suicidal poisoning in both adults and children. -
Livestock Pest Management: a Training Manual for Commercial Pesticide Applicators (Category 1D)
Livestock Pest Management: A Training Manual for Commercial Pesticide Applicators (Category 1D) Edward D. Walker Julie A. Stachecki 1 Preface This manual is intended to prepare pesticide Materials from several sources were used to com- applicators in category 1D, livestock pest man- pile this information with input from North Car- agement, for certification under the Act 451, Nat- olina Extension, Key to Insect and Mites; Fly ural Resources and Environmental Protection Act, Control in Confined Livestock and Poultry Pro- Part 83, Pesticide Control, Sections 8301 to 8336. duction, Ciba-Geigy Agricultural Division, Read the introduction to this manual to under- Greensboro, NC; Managing Insect Problems on stand your responsibilities for obtaining the Beef Cattle, Kansas State University, Manhattan, appropriate credentials to apply pesticides and KS; Poultry Pest Management for Pennsylvania how to use this manual. and the Northeast, The Pennsylvania State Uni- versity, Extension Service, College of Agriculture, Acknowledgements University Park, PA; Pest Management Principles for the Commercial Applicator: Animal Pest Con- This manual, “Livestock Pest Management: A trol, University of Wisconsin Extension, Madison, Training Manual for Commercial Pesticide Appli- WI; and External Parasites of Poultry, Purdue cators (Category 1D),” was produced by Michi- University Extension, West Lafayette, IN, pho- gan State University, Pesticide Education tographs from Harlan Ritchie, Michigan State Program in conjunction with the Michigan University, East Lansing, MI, Ned Walker, Michi- Department of Agriculture. The following people gan State University, East Lansing, MI, Vocational are recognized for their reviews, suggestions and Education Publications, California Polytechnic contributions to this manual: State University San Luis Obispo, CA, Ralph Cle- George Atkeson, Ionia county agriculture agent, venger, Santa Rosa, CA, and Lepp and Associates, Michigan State University Extension, Ionia, MI Los Osis, CA. -
Amitraz Poisoning: an Emerging and Yet Underestimated Poison—A Review Sidhant Sachdeva1, Gurinder Mohan2, Parminder Singh3
REVIEW ARTICLE Amitraz Poisoning: An Emerging and yet Underestimated Poison—A Review Sidhant Sachdeva1, Gurinder Mohan2, Parminder Singh3 ABSTRACT Background: Amitraz is a member of the formamidine family of pesticides. Its structure is 1,5 di-(2,4-dimethylphenyl)-3-methyl-1,3,5-triazapenta- 1,4-diene. It is used as an agricultural insecticide for fruit crops and as an acaricide for dogs and livestock. Awareness about amitraz, its toxicity, and its management remains poor among physicians, which is probably the reason for underreporting of amitraz intoxication in remote rural areas. In this systematic review on amitraz intoxication, we focus on demographics, toxicokinetics, mechanisms of toxicity, clinical features, and treatment modalities in amitraz poisoning. Materials and methods: EmBase and Medline databases were searched for the following terms: “amitraz,” “intoxication,” “poisoning,” and “toxicity.” Case reports, case series, and original articles describing human cases of amitraz poisoning were included. Results: A total of 251 articles were retrieved after excluding citations common to the two databases. A total of 63 articles described human cases. The clinical manifestations varied from central nervous system (CNS) depression (drowsiness, coma, and convulsions), miosis or mydriasis, respiratory depression, bradycardia, hypotension, hyperthermia or hypothermia, hyperglycemia, polyuria, vomiting, and reduced gastrointestinal motility. Only six reported deaths have been reported (case fatality rate, 1.9%). The proposed lethal dose of the toxin was reported to be 200 mg/kg. Around 33% of patients developed respiratory failure and 20% of them needed mechanical ventilation. Interpretation and conclusion: Amitraz poisoning occurs in either accidental or suicidal manner and is more common in children than adults.