A Method for the Determination of Halogens in Organic Compounds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Silver Iodate 1
SILVER IODATE 1 Silver Iodate a,c-Biladienes with exocyclic rings have been utilized in silver iodate–zinc acetate mediated cyclization.7,8 The reaction of a,c-biladienes bearing six-membered carbocyclic rings with silver AgIO 3 iodate in dimethylformamide followed by demetalation with 5% sulfuric acid in trifluoroacetic acid affords the isolated porphyrin in [7783-97-3] IO3Ag (MW 282.77) 12% yield (eq 3). The syntheses of petroporphyrin bearing a seven- 9 InChI = 1/Ag.HIO3/c;2-1(3)4/h;(H,2,3,4)/q+1;/p-1/fAg.IO3/ membered exocyclic ring, such as C32 15,17-butanoporphyrin qm;-1 and its 3-methyl homolog,10 have been reported by Lash and John- InChIKey = YSVXTGDPTJIEIX-YIVJLXCRCQ son (eq 4).8 Treatment of a,c-biladiene salts with silver iodate and zinc acetate affords desired petroporphyrins via oxidative cycliza- (reagent used as a versatile oxidative amidation and cyclization tion in good yields under mild conditions.5 However, attempts to component) cyclize a,c-biladienes bearing exocyclic rings under other condi- Physical Data: mp >200 ◦C; d 5.53 g cm−3. tions such as copper(II) chloride in dimethylformamide or cop- Solubility: soluble in aqueous ammonia; practically insoluble in per(II) acetate in pyridine result in only trace amounts of the water (0.3 g L−1 at 10 ◦C). cyclized petroporphyrins due to the geometry enforced on the Form Supplied in: white crystalline powder; commercially avail- tetrapyrrolic intermediate by the carbocyclic ring conformation.11 able. It has been shown that the silver iodate–zinc acetate mediated Handling, Storage, and Precautions: irritant; light sensitive; conditions can increase the stability of the cyclizing tetrapyrroles, causes ignition with reducing agents or combustibles; store in resulting in improvement of the cyclization yield.12 cool and dry conditions in well-sealed containers; handle in fume hood. -
Comparative Study of Disinfectants for Use in Low-Cost Gravity Driven Household Water Purifiers Rajshree A
443 © IWA Publishing 2013 Journal of Water and Health | 11.3 | 2013 Comparative study of disinfectants for use in low-cost gravity driven household water purifiers Rajshree A. Patil, Shankar B. Kausley, Pradeep L. Balkunde and Chetan P. Malhotra ABSTRACT Point-of-use (POU) gravity-driven household water purifiers have been proven to be a simple, low- Rajshree A. Patil Shankar B. Kausley (corresponding author) cost and effective intervention for reducing the impact of waterborne diseases in developing Pradeep L. Balkunde Chetan P. Malhotra countries. The goal of this study was to compare commonly used water disinfectants for their TCS Innovation Labs – TRDDC, fi 54B, Hadapsar Industrial Estate, feasibility of adoption in low-cost POU water puri ers. The potency of each candidate disinfectant Pune - 411013, was evaluated by conducting a batch disinfection study for estimating the concentration of India E-mail: [email protected] disinfectant needed to inactivate a given concentration of the bacterial strain Escherichia coli ATCC 11229. Based on the concentration of disinfectant required, the size, weight and cost of a model purifier employing that disinfectant were estimated. Model purifiers based on different disinfectants were compared and disinfectants which resulted in the most safe, compact and inexpensive purifiers were identified. Purifiers based on bromine, tincture iodine, calcium hypochlorite and sodium dichloroisocyanurate were found to be most efficient, cost effective and compact with replacement parts costing US$3.60–6.00 for every 3,000 L of water purified and are thus expected to present the most attractive value proposition to end users. Key words | disinfectant, drinking water, E. -
Silver Nanoparticle Nanocomposite Filaments Produced by an In-Situ Reduction Reactive Melt Mixing Process
biomimetics Article Three-Dimensional Printed Antimicrobial Objects of Polylactic Acid (PLA)-Silver Nanoparticle Nanocomposite Filaments Produced by an In-Situ Reduction Reactive Melt Mixing Process Nectarios Vidakis 1, Markos Petousis 1,* , Emmanouel Velidakis 1, Marco Liebscher 2 and Lazaros Tzounis 3 1 Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Crete, Greece; [email protected] (N.V.); [email protected] (E.V.) 2 Institute of Construction Materials, Technische Universität Dresden, DE-01062 Dresden, Germany; [email protected] 3 Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-2810-37-9227 Received: 14 August 2020; Accepted: 31 August 2020; Published: 2 September 2020 Abstract: In this study, an industrially scalable method is reported for the fabrication of polylactic acid (PLA)/silver nanoparticle (AgNP) nanocomposite filaments by an in-situ reduction reactive melt mixing method. The PLA/AgNP nanocomposite filaments have been produced initially + reducing silver ions (Ag ) arising from silver nitrate (AgNO3) precursor mixed in the polymer melt to elemental silver (Ag0) nanoparticles, utilizing polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), respectively, as macromolecular blend compound reducing agents. PEG and PVP were added at various concentrations, to the PLA matrix. The PLA/AgNP filaments have been used to manufacture 3D printed antimicrobial (AM) parts by Fused Filament Fabrication (FFF). The 3D printed PLA/AgNP parts exhibited significant AM properties examined by the reduction in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria viability (%) experiments at 30, 60, and 120 min duration of contact (p < 0.05; p-value (p): probability). -
Silver As a Drinking-Water Disinfectant
Silver as a drinking-water disinfectant Silver as a drinking-water disinfectant Alternative drinking-water disinfectants: silver ISBN 978-92-4-151369-2 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Alternative drinking-water disinfectants: bromine, iodine and silver. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. -
Reproducibility of Silver-Silver Halide Electrodes
U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS RESEARCH PAPER RP1183 Part of Journal of Research of the National Bureau of Standards, Volume 22, March 1939 REPRODUCIBILITY OF SILVER.SILVER HALIDE ELECTRODES 1 By John Keenan Taylor and Edgar Reynolds Smith ABSTRACT Tests of the reproducibility in potential of the electrolytic, thermal-electrolytic, and thermal types of silver-silver chloride, silver-silver bromide, and silver-silver iodide electrodes, in both acid and neutral solutions, are reported. All of these silver-silver halide electrodes show an aging effect, such that freshly prepared electrodes behave as cathodes towards electrodes previously aged in the solution. They are not affected in potential by exposure to light, but the presence of oxygen disturbs the potentials of the silver-silver chloride and silver-silver bromide elec trodes in acid solutions, and of the silver-silver iodide electrodes in both acid and neutral solutions. Except in the case of the silver-silver iodide electrodes, of which the thermal-electrolytic type seems more reliable than the electrolytic or the thermal type, the equilibrium potential is independent of the type, within about 0.02 mv. CONTENTS Page I. Introduetion_ __ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ 307 II. Apparatus and materials_ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ ___ _ _ ____ _ _ _ _ ___ _ _ _ _ 308 III. -
Safety Data Sheet Silver Nitrate Agn-25 Document No
Chief Medical Supplies Ltd. 411 – 19 Street, S. E. Calgary, AB., Canada. T2E 6J7 1.866.620.6034 Safety Data Sheet Silver Nitrate AgN-25 Document No. M-D6-009 Section I – Product and Company Identification Synonyms: Lunar caustic; Silver (1+) nitrate; Nitric Company Identification: acid, silver (1+) salt Chief Medical Supplies Ltd. CAS no.: 7761-88-8 411 – 19 Street, S. E. Calgary, AB., Canada. Molecular Weight: 169.87 T2E 6J7 Chemical Formula: AgNO3 1.866.620.6034 Product Codes: AgN-25 For information, call: 1-403-207-6034 Emergency Number: 1-403-207-6034 Section II – Hazards Identification Appearance: White Physical State: Solid Odor: None Hazards of Product: Contact with combustible / organic materials may cause fire. Causes burns by all exposure routes. Harmful by inhalation, in contact with skin and if swallowed. Potential Health Hazards: Very hazardous in case of skin contact (irritant), of ingestion. Hazardous in case of skin contact (permeate), of eye contact (irritant), of inhalation. Slightly hazardous in case of skin contact (corrosive). The amount of tissue damage depends on length of contact. Eye contact can result in corneal damage or blindness. Skin contact can produce inflammation and blistering. Inhalation of dust will produce irritation to gastro-intestinal or respiratory tract, characterized by burning, sneezing and coughing. Severe over- exposure can produce lung damage, choking, unconsciousness or death. Prolonged exposure may result in skin burns and ulcerations. Over-exposure by inhalation may cause respiratory irritation. Carcinogenic Effects: Not available Mutagenic Effects: Not available. Teratogenic Effects: Not available. Developmental Toxicity: The substance is toxic to lungs. -
United States P Patented July 18, 1972
3,677,840 United States P Patented July 18, 1972 iodide of the invention is obtained in a highly active form 3,677,840 ideally suited for nucleating purposes. PYROTECHNICS COMPRISING OXDE OF SILVER The metathesis reaction proceeds substantially accord FOR WEATHERMODIFICATION USE ing to the following equation: Graham C. Shaw, Garland, and Russell Reed, Jr. Brigham City, Utah, assignors to Thiokol Chemical Corporation, Bristol, Pa. No Drawing. Filed Sept. 18, 1969, Ser. No. 859,165 In accordance with the invention, the pyrotechnic com int, C. C06d 3/00 o position comprises, by weight, the cured product produced U.S. C. 149-19 5 Claims by mixing and curing together from about 0.5% to about 10 20% of oxide of silver; from about 2% to about 45% of an alkali iodate present in about a stoichiometric amount ABSTRACT OF THE DISCLOSURE relative to the amount of oxide of silver present in the A pyrotechnic composition which upon combustion composition; from about 25% to about 75% of a solid in produces mixed silver halide nuclei for use in influencing organic oxidizer selected from the perchlorates and the weather comprises a composition made by curing a mix 5 nitrates of ammonium and of Group I-A and Group II-A ture comprising silver oxide, an alkali iodate, an alkali metals of the Periodic Table; and from about 10% to perchlorate and a curable oxygenated or fluorinated or about 20% of a curable, fluid polymer binder for pyro ganic liquid polymer binder. The composition burns technic compositions, especially a combined-halogen-rich smoothly to provide by metathesis a mixture of silver or combined-oxygen-rich polymer binder, preferably a halides as substantially the only solid or condensed phase 20 polyester-urethane terminated with amine or hydroxyl reaction products, and leaves substantially no residue. -
Effects of Some Chemicals on Vase Life of Some Cut Flowers I
J. Plant Production, Mansoura Univ., Vol. 8 (1): 49 - 53, 2017 Effects of Some Chemicals on Vase Life of Some Cut Flowers I. Effect of 8-Hydroxyquinoline Sulfate, Silver Nitrate, Silver Nano Particles and Chitosan on Vase Life and Quality of Cut Rose Flowers (Rosa hybrida. Cv. “Black Magic”) Abdel-Kader, H. H.1; A. M. Hamza1; T. T. Elbaz2 and S. M. Eissa2 1 Veg. and Flor. Dept., Fac. of Agric., Mansoura Unive. 2 Ornam, Plants and Lands. Gard. Res. Dept., Hort. Res. Inst., Agric. Res. Cent., Giza ABSTRACT This investigation was carried out during 2015 and 2016 seasons to determine whether the selected chemical agents could be used to improve the postharvest quality of Rosa hybrida L.cv. “Black Magic” cut flowers. Freshly cut flowers were placed in glass cylinders containing 100 ml of preservative solutions [8-hydroxyquinoline sulfate (8-HQS) at 200 ppm, silver nitrate (AgNO3) at 10 ppm, Chitosan at 50, 75 or 100 ppm silver nano-particles (SN) at 5, 10 or 15 ppm, and distilled water as a control treatment].All preservative solutions and the control treatment included sucrose at 20 g/l. Compared to the control, treatments which contained of (AgNO3) or (SN) improved the quality and vase life of the flowers. They were more effective in promoting water uptake, increasing fresh weight of the flower and water balance so that the vase life of cut flowers were extended to 13.67 and 12 days during the first and second seasons, respectively. The results of bacterial count in the vase solution and the Scanning Electron Microscopy (SEM) pictures of the cut base of the stem indicated that (AgNO3) or (SN) strongly reduced bacterial population in both the vase solution and the cut stem base. -
Silver Nitrate Complexes of Nitrogen-Containing
Silver Nitrate Complexes of Nitrogen-Containing Heterocycles Hubert Schmidbaur*, Angelika Mair, Gerhard Müller*, Joachim Lachmann+, and Siegfried Gamper+ Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstraße 4, D-8046 Garching Z. Naturforsch. 46b, 912-918 (1991); received February 19, 1991 Silver Complexes, Nitrogen Heterocycles, Pyrazole. Triazole, 8 -Amino-quinoline Pyrazole, 1,2,4-triazole, and 8 -amino-quinoline form complexes as neutral ligands with sil ver nitrate in slightly acidic aqueous medium. With pyrazole a 2:1 complex (1) is obtained. The crystal structure determination revealed an ionic structure with independent N 0 3~ anions and centrosymmetrical (pyr) 2Ag+ cations with a linear coordination geometry at the silver atoms. The reactions with 1,2,4-triazole and 8 -amino-quinoline yield dimeric 1:1 complexes (2, 3), in which the silver atoms are bridged by the ligands and have short contacts with nitrate oxygen atoms. The coordination geometry of the metals can thus be described as distorted tetrahedral. A 1 :1 complex with 2,3-diphenyl-1,2,4-triazole (2a) and a 2:1 complex with 8 -hydroxy-quino- line (4) have also been prepared, but not characterized in detail. Introduction prepared and characterized a series of complexes Complex formation of silver(I) cations by am of silver nitrate with pyrazole, (diphenyl)triazole, monia and amines has been well established in an 8 -amino-quinoline, and 8 -hydroxy-quinoline. alytical chemistry and chemical technology of sil ver for more than a century. However, nitrogen- Preparation and Properties of the Complexes containing heterocycles have also been among the early complexing agents. -
Supporting Information for Proteomics DOI 10.1002/Pmic.200500596
Supporting Information for Proteomics DOI 10.1002/pmic.200500596 Li-Tai Jin, Sun-Young Hwang, Gyurng-Soo Yoo and Jung-Kap Choi A mass spectrometry compatible silver staining method for protein incorporating a new silver sensitizer in sodium dodecyl sulfate-polyacrylamide electrophoresis gels ª 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com Supplementary Information A mass spectrometry compatible silver staining method for protein incorporating a new silver sensitizer in sodium dodecyl sulfate- polyacrylamide electrophoresis gels Li-Tai Jin, Sun-Young Hwang, Gyurng-Soo Yoo and Jung-Kap Choi College of Pharmacy, Chonnam National University, Kwangju 500-757, South Korea Correspondence: Prof. Jung-Kap Choi, Lab. of Analytical Biochemistry, College of Pharmacy, Chonnam National University, Yongbong-Dong 300, Buk- Ku, Kwangju 500-757, South Korea (Phone: +8262-530-2930; Fax: +8262-530- 2911; E-mail: [email protected]) Abbreviations used: EBT, eriochrome black T Keywords: Electrophoresis / Eriochrome black T / Mass spectrometry / Protein silver staining 1 1 Supplementary Introduction In life sciences, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is a reliable and widely used analytical technique for the separation and identification of proteins. Given the development of proteomics, the ability to analyze and identify protein in a gel matrix at high sensitivity is becoming more important [1,2]. Various protein staining methods have been developed based on visible organic dyes, fluorescent and silver based systems, and radiolabeling. Of these, organic dyes are easily used but have low sensitivities, with detection limits in the range of 1-50 ng for proteins [2,3]. Fluorescent staining methods are a little more sensitive than dye-based methods but for data reading, special instruments are necessary that involve UV. -
Antibacterial Properties of Silicone Membranes After a Simple Two-Step Immersion Process in Iodine and Silver Nitrate Solutions
Biocontrol Science, 2018, Vol. 23, No. 3, 97-105 Original Antibacterial Properties of Silicone Membranes after a Simple Two-Step Immersion Process in Iodine and Silver Nitrate Solutions SHIHO AOKI, KOHEI YAMAKAWA, KENJI KUBO, JUNPEI TAKESHITA, MIKI TAKEUCHI, * YUKA NOBUOKA, RISEI WADA, MIKIO KIKUCHI, AND JUN SAWAI Faculty of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan Received 6 July, 2017/Accepted 27 January, 2018 Silicone is widely used in packing materials, medical equipment, and separation membranes. Since microbial cells easily adhere to the surface of silicone materials and form biofilms, techniques for incorporating antimicrobial activity into silicone materials are in high demand. This study describes the preparation of silver( Ag)/silicone composite membranes through a simple two-step immersion process, utilizing an iodine solution followed by a silver nitrate solution at room temperature. Scanning electron microscopy( SEM) observations revealed that particles with sizes of several nanometers to several tens of nanometers were present on the silicone membrane surface; these particles were identified as silver iodide using energy-dispersive X-ray spectroscopy( EDS). The Ag/silicone membrane possessed excellent antibacterial efficacy against Escherichia coli and Staphylococcus aureus, and the antibacterial efficacy( R) against both types of bacteria was R > 4, even after stomacher treatment or acidic treatment of pH 2-6 for 24 h. The mechanical strength of the silicone membrane was also maintained after antibacterial treatment, with Young’s modulus values of 7.9±1.2 MPa and 8.3±1.5 MPa for the untreated membrane and Ag/silicone membrane, respectively( p > 0.05). -
The Efficacy of Silver Nitrate (Agno3) As a Coating Agent to Protect Paper Against High Deteriorating Microbes
catalysts Article The Efficacy of Silver Nitrate (AgNO3) as a Coating Agent to Protect Paper against High Deteriorating Microbes Amr Fouda 1,* , Gomaa Abdel-Maksoud 2, Hosam A. Saad 3 , Adil A. Gobouri 3, Zuhair M. Mohammedsaleh 4 and Mohamad Abdel-Haleem El-Sadany 5 1 Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt 2 Conservation Department, Faculty of Archaeology, Cairo University, Giza 12613, Egypt; [email protected] 3 Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected] (H.A.S.); [email protected] (A.A.G.) 4 Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; [email protected] 5 Adminstration of Conservation of Islamic Monuments in Mansoura, Dakahlia Governorate, Ministry of Antiquities, Cairo 26854, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +20-11-1335-1244 Abstract: This study focuses on the efficacy of silver nitrate (AgNO3) as a coating agent used to preserve papers against microbial deterioration. To this end, the in vitro cytotoxicity of AgNO3 was assessed against two normal cell lines, WI-38 and HFB-4, to detect a safe dose that can be used as −1 a coating agent, which was 80 µg mL . Bacillus subtilis B3 and Penicillium chrysogenum F9 were selected as high deteriorating microbes, previously isolated from a historical manuscript dating back Citation: Fouda, A.; Abdel-Maksoud, to 1677 A.-D. The microbial growth inhibition, color change, mechanical properties, and cellulosic G.; Saad, H.A.; Gobouri, A.A.; fibers of untreated/treated papers were evaluated.