Long-Read Assembly of a Great Dane Genome Highlights the Contribution of GC-Rich Sequence 2 and Mobile Elements to Canine Genomes 3 4 Julia V
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment. -
WO 2014/135655 Al 12 September 2014 (12.09.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/135655 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/EP2014/054384 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 6 March 2014 (06.03.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13305253.0 6 March 2013 (06.03.2013) EP (84) Designated States (unless otherwise indicated, for every (71) Applicants: INSTITUT CURIE [FR/FR]; 26 rue d'Ulm, kind of regional protection available): ARIPO (BW, GH, F-75248 Paris cedex 05 (FR). CENTRE NATIONAL DE GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, LA RECHERCHE SCIENTIFIQUE [FR/FR]; 3 rue UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Michel Ange, F-75016 Paris (FR). -
Palmitic Acid Effects on Hypothalamic Neurons
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.03.454666; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Running title: Oleic and palmitic acid effects on hypothalamic neurons Concentration-dependent change in hypothalamic neuronal transcriptome by the dietary fatty acids: oleic and palmitic acids Fabiola Pacheco Valencia1^, Amanda F. Marino1^, Christos Noutsos1, Kinning Poon1* 1Department of Biological Sciences, SUNY Old Westbury, Old Westbury NY, United States ^Authors contributed equally to this work *Corresponding Author: Kinning Poon 223 Store Hill Rd Old Westbury, NY 11568, USA 1-516-876-2735 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.08.03.454666; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Prenatal high-fat diet exposure increases hypothalamic neurogenesis events in embryos and programs offspring to be obesity-prone. The molecular mechanism involved in these dietary effects of neurogenesis are unknown. This study investigated the effects of oleic and palmitic acids, which are abundant in a high-fat diet, on the hypothalamic neuronal transcriptome and how these changes impact neurogenesis events. The results show differential effects of low and high concentrations of oleic or palmitic acid treatment on differential gene transcription. -
Tandem Genomic Arrangement of a G Protein (Gna15) and G Protein-Coupled Receptor (S1p4/Lpc1/Edg6) Gene James J.A
FEBS 26595 FEBS Letters 531 (2002) 99^102 Tandem genomic arrangement of a G protein (Gna15) and G protein-coupled receptor (s1p4/lpC1/Edg6) gene James J.A. Contos, Xiaoqin Ye, Valerie P. Sah, Jerold Chunà Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0636, USA Received 31 May 2002; revised 30 July 2002; accepted 6 September 2002 First published online 18 September 2002 Edited by Edward A. Dennis, Isabel Varela-Nieto and Alicia Alonso Genomic structure analysis of s1p4 could provide insight Abstract A genomic analysis of the s1p4/lpC1/Edg6 mouse sphingosine-1-phosphate (S1P) G protein-coupled receptor into the evolution of the eight lysophospholipid receptor gene revealed it to be located on central chromosome 10 and genes. The coding regions for each of the lpa genes are divided to consist of two exons with an intronless coding region. Sur- between two exons, whereas for the s1p1À3 genes, the coding prisingly, we found the gene encoding the promiscuously cou- region of each gene is within single exon, with only non-cod- pling GK15 protein (Gna15) located in tandem just upstream, an ing exon(s) upstream [8^12]. One would expect the genomic arrangement conserved in the human genome (on chromosome structure of s1p4 to be similar to the other s1p genes. How- 19p13.3). Given that Northern blots demonstrated similar tissue ever, to date, genomic structure information has not been distributions of the mouse s1p and Gna15 transcripts, we pro- 4 reported for s1p4. pose that transcription of the two genes may be under control of Lysophospholipid receptors, as well as all GPCRs, couple the same enhancer elements and that their protein products may to heterotrimeric G proteins, which consist of K, L and Q sub- couple in vivo. -
Cellular Corepressor TLE2 Inhibits Replication-And-Transcription
JOURNAL OF VIROLOGY, Feb. 2010, p. 2047–2062 Vol. 84, No. 4 0022-538X/10/$12.00 doi:10.1128/JVI.01984-09 Copyright © 2010, American Society for Microbiology. All Rights Reserved. Cellular Corepressor TLE2 Inhibits Replication-and-Transcription- Activator-Mediated Transactivation and Lytic Reactivation of Kaposi’s Sarcoma-Associated Herpesvirusᰔ Zhiheng He,1 Yunhua Liu,1 Deguang Liang,1 Zhuo Wang,1 Erle S. Robertson,2 and Ke Lan1* Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200025, The People’s Republic of China,1 and Department of Microbiology and The Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, 2 3201E Johnson Pavilion, 610 Hamilton Walk, Philadelphia, Pennsylvania 19104 Downloaded from Received 18 September 2009/Accepted 18 November 2009 Replication and transcription activator (RTA) encoded by open reading frame 50 (ORF50) of Kaposi’s sarcoma-associated herpesvirus (KSHV) is essential and sufficient to initiate lytic reactivation. RTA activates its target genes through direct binding with high affinity to its responsive elements or by interaction with cellular factors, such as RBP-J, Ap-1, C/EBP-␣, and Oct-1. In this study, we identified jvi.asm.org transducin-like enhancer of split 2 (TLE2) as a novel RTA binding protein by using yeast two-hybrid screening of a human spleen cDNA library. The interaction between TLE2 and RTA was confirmed by glutathione S-transferase (GST) binding and coimmunoprecipitation assays. Immunofluorescence anal- ysis showed that TLE2 and RTA were colocalized in the same nuclear compartment in KSHV-infected at Shanghai Information Center for Life Sciences, CAS on March 25, 2010 cells. -
Integrative Bulk and Single-Cell Profiling of Premanufacture T-Cell Populations Reveals Factors Mediating Long-Term Persistence of CAR T-Cell Therapy
Published OnlineFirst April 5, 2021; DOI: 10.1158/2159-8290.CD-20-1677 RESEARCH ARTICLE Integrative Bulk and Single-Cell Profiling of Premanufacture T-cell Populations Reveals Factors Mediating Long-Term Persistence of CAR T-cell Therapy Gregory M. Chen1, Changya Chen2,3, Rajat K. Das2, Peng Gao2, Chia-Hui Chen2, Shovik Bandyopadhyay4, Yang-Yang Ding2,5, Yasin Uzun2,3, Wenbao Yu2, Qin Zhu1, Regina M. Myers2, Stephan A. Grupp2,5, David M. Barrett2,5, and Kai Tan2,3,5 Downloaded from cancerdiscovery.aacrjournals.org on October 1, 2021. © 2021 American Association for Cancer Research. Published OnlineFirst April 5, 2021; DOI: 10.1158/2159-8290.CD-20-1677 ABSTRACT The adoptive transfer of chimeric antigen receptor (CAR) T cells represents a breakthrough in clinical oncology, yet both between- and within-patient differences in autologously derived T cells are a major contributor to therapy failure. To interrogate the molecular determinants of clinical CAR T-cell persistence, we extensively characterized the premanufacture T cells of 71 patients with B-cell malignancies on trial to receive anti-CD19 CAR T-cell therapy. We performed RNA-sequencing analysis on sorted T-cell subsets from all 71 patients, followed by paired Cellular Indexing of Transcriptomes and Epitopes (CITE) sequencing and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) on T cells from six of these patients. We found that chronic IFN signaling regulated by IRF7 was associated with poor CAR T-cell persistence across T-cell subsets, and that the TCF7 regulon not only associates with the favorable naïve T-cell state, but is maintained in effector T cells among patients with long-term CAR T-cell persistence. -
The Human Genome Project
TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 Contents FOREWORD . 2 THE GENOME PROJECT—WHY THE DOE? . 4 A bold but logical step INTRODUCING THE HUMAN GENOME . 6 The recipe for life Some definitions . 6 A plan of action . 8 EXPLORING THE GENOMIC LANDSCAPE . 10 Mapping the terrain Two giant steps: Chromosomes 16 and 19 . 12 Getting down to details: Sequencing the genome . 16 Shotguns and transposons . 20 How good is good enough? . 26 Sidebar: Tools of the Trade . 17 Sidebar: The Mighty Mouse . 24 BEYOND BIOLOGY . 27 Instrumentation and informatics Smaller is better—And other developments . 27 Dealing with the data . 30 ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS . 32 An essential dimension of genome research Foreword T THE END OF THE ROAD in Little has been rapid, and it is now generally agreed Cottonwood Canyon, near Salt that this international project will produce Lake City, Alta is a place of the complete sequence of the human genome near-mythic renown among by the year 2005. A skiers. In time it may well And what is more important, the value assume similar status among molecular of the project also appears beyond doubt. geneticists. In December 1984, a conference Genome research is revolutionizing biology there, co-sponsored by the U.S. Department and biotechnology, and providing a vital of Energy, pondered a single question: Does thrust to the increasingly broad scope of the modern DNA research offer a way of detect- biological sciences. -
Genetic Associations with Clozapine-Induced Myocarditis in Patients with Schizophrenia Paul Lacaze 1, Kathlyn J
Lacaze et al. Translational Psychiatry (2020) 10:37 https://doi.org/10.1038/s41398-020-0722-0 Translational Psychiatry ARTICLE Open Access Genetic associations with clozapine-induced myocarditis in patients with schizophrenia Paul Lacaze 1, Kathlyn J. Ronaldson 1,EuniceJ.Zhang2,AnaAlfirevic2,HardikShah3,LeahNewman3, Maya Strahl3, Melissa Smith3,ChadBousman4,BenFrancis5, Andrew P. Morris5,6, Trevor Wilson7, Fernando Rossello8, David Powell9, Vivien Vasic7, Robert Sebra3,JohnJ.McNeil1 and Munir Pirmohamed2 Abstract Clozapine is the most effective antipsychotic drug for schizophrenia, yet it can cause life-threatening adverse drug reactions, including myocarditis. The aim of this study was to determine whether schizophrenia patients with clozapine-induced myocarditis have a genetic predisposition compared with clozapine-tolerant controls. We measured different types of genetic variation, including genome-wide single-nucleotide polymorphisms (SNPs), coding variants that alter protein expression, and variable forms of human leucocyte antigen (HLA) genes, alongside traditional clinical risk factors in 42 cases and 67 controls. We calculated a polygenic risk score (PRS) based on variation at 96 different genetic sites, to estimate the genetic liability to clozapine-induced myocarditis. Our genome-wide association analysis identified four SNPs suggestive of increased myocarditis risk (P <1×10−6), with odds ratios ranging 5.5–13.7. The SNP with the lowest P value was rs74675399 (chr19p13.3, P = 1.21 × 10−7;OR= 6.36), located in the GNA15 gene, previously associated with heart failure. The HLA-C*07:01 allele was identified as potentially predisposing to clozapine-induced myocarditis (OR = 2.89, 95% CI: 1.11–7.53), consistent with a previous report of association of the same allele with clozapine-induced agranulocytosis. -
RNA Sequencing of Mesenchymal Stem Cells Reveals a Blocking Of
Lamas et al. Arthritis Research & Therapy (2019) 21:112 https://doi.org/10.1186/s13075-019-1894-y RESEARCH ARTICLE Open Access RNA sequencing of mesenchymal stem cells reveals a blocking of differentiation and immunomodulatory activities under inflammatory conditions in rheumatoid arthritis patients Jose Ramon Lamas1, Benjamin Fernandez-Gutierrez1* , Arkaitz Mucientes1, Fernando Marco2, Yaiza Lopiz2, Juan Angel Jover1, Lydia Abasolo1 and Luis Rodríguez-Rodríguez1 Abstract Introduction: Mesenchymal stem cells (MSCs) have the ability to differentiate into different types of cells of the mesenchymal lineage, such as osteocytes, chondrocytes, and adipocytes. It is also known that under inflammatory stimuli or in the appropriate experimental conditions, they can also act as regulators of inflammation. Thus, in addition to their regenerating potential, their interest has been extended to their possible use in cell therapy strategies for treatment of immune disorders. Objective: To analyze, by RNA-seq analysis, the transcriptome profiling of allogenic MSCs under RA lymphocyte activation. Methods: We identified the differentially expressed genes in bone marrow mesenchymal stem cells after exposure to an inflammatory environment. The transcriptome profiling was evaluated by means of the precise measurement of transcripts provided by the RNA-Seq technology. Results: Our results evidenced the existence of blocking of both regenerative (differentiation) and immunomodulatory phenotypes under inflammatory conditions characterized by an upregulation of genes involved in immune processes and a simultaneous downregulation of genes mainly involved in regenerative or cell differentiation functions. Conclusions: We conclude that the two main functions of MSCs (immunomodulation and differentiation) are blocked, at least while the inflammation is being resolved. Inflammation, at least partially mediated by gamma-interferon, drives MSCs to a cellular distress adopting a defensive state. -
ANLN, TLE2 and MIR31HG Transcripts in Muscle Invasive Bladder Cancer
Aus der Klinik für Urologie und Urochirurgie der Medizinischen Fakultät Mannheim Direktor: Prof. Dr. med. Maurice Stephan Michel ANLN, TLE2 and MIR31HG transcripts in muscle invasive bladder cancer: a functional and clinical analysis based on molecular subtypes Inauguraldissertation zur Erlangung des Doctor scientiarum humanarum der Medizinischen Fakultät Mannheim der Ruprecht-Karls-Universität zu Heidelberg vorgelegt von Sheng Wu aus Anhui, China 2020 Dekan: Prof. Dr. med. Sergij Goerdt Referent: Prof. Dr. med. Philipp Erben Für meine lieben Eltern CONTENTS LIST OF ABRREVIATIONS ............................................................................ 1 1 INTRODUCTION......................................................................................... 3 1.1 Bladder cancer ...................................................................................... 3 1.1.1 Epidemiology .............................................................................. 3 1.1.2 Risk factors and classification ................................................... 4 1.1.3 Diagnostic and therapy .............................................................. 6 1.1.4 Novel biomarkers of BLCA ........................................................ 6 1.2 Long noncoding RNA............................................................................ 8 1.2.1 Characteristics of long non-coding RNA .................................. 8 1.2.2 LncRNA in cancer ....................................................................... 9 1.2.3 LncRNA in BLCA ..................................................................... -
Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors
University of Cincinnati Date: 12/20/2010 I, Arturo R Maldonado , hereby submit this original work as part of the requirements for the degree of Doctor of Philosophy in Developmental Biology. It is entitled: Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors Student's name: Arturo R Maldonado This work and its defense approved by: Committee chair: Jeffrey Whitsett Committee member: Timothy Crombleholme, MD Committee member: Dan Wiginton, PhD Committee member: Rhonda Cardin, PhD Committee member: Tim Cripe 1297 Last Printed:1/11/2011 Document Of Defense Form Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors A dissertation submitted to the Graduate School of the University of Cincinnati College of Medicine in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (PH.D.) in the Division of Molecular & Developmental Biology 2010 By Arturo Rafael Maldonado B.A., University of Miami, Coral Gables, Florida June 1993 M.D., New Jersey Medical School, Newark, New Jersey June 1999 Committee Chair: Jeffrey A. Whitsett, M.D. Advisor: Timothy M. Crombleholme, M.D. Timothy P. Cripe, M.D. Ph.D. Dan Wiginton, Ph.D. Rhonda D. Cardin, Ph.D. ABSTRACT Since 1999, cancer has surpassed heart disease as the number one cause of death in the US for people under the age of 85. Malignant Peripheral Nerve Sheath Tumor (MPNST), a common malignancy in patients with Neurofibromatosis, and colorectal cancer are midkine- producing tumors with high mortality rates. In vitro and preclinical xenograft models of MPNST were utilized in this dissertation to study the role of midkine (MDK), a tumor-specific gene over- expressed in these tumors and to test the efficacy of a MDK-transcriptionally targeted oncolytic HSV-1 (oHSV). -
Prognostic Role of TLE Family in Lung Adenocarcinoma Authors And
Prognostic Role of TLE Family in Lung Adenocarcinoma Qianli Ma China-Japan Friendship Hospital https://orcid.org/0000-0003-2195-8181 Fei Xiao China-Japan Friendship Hospital Huajie Xing China-Japan Friendship Hospital Zhiyi Song China-Japan Friendship Hospital Jin Zhang China-Japan Friendship Hospital Chaozeng Si China-Japan Friendship Hospital Chaoyang Liang ( [email protected] ) China-Japan Friendship Hospital https://orcid.org/0000-0002-1469-6286 Primary research Keywords: lung adenocarcinoma, prognosis, TlE family. Posted Date: September 23rd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-80137/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Tile page Title: Prognostic role of TLE family in Lung adenocarcinoma Authors and affiliations: Qianli Ma1, Fei Xiao1, Huajie Xing1, Zhiyi Song1, Jin Zhang1, Chaozeng Si3*, Chaoyang, Liang1*. Qianli Ma Postal address: Department of Thoracic Surgery, China-Japan Friendship Hospital, No. 2, Yinghua East Road, Chaoyang, Beijing, 100029, China. Phone: +8613681332289 Email: [email protected] Fei Xiao Postal address: Department of Thoracic Surgery, China-Japan Friendship Hospital, No. 2, Yinghua East Road, Chaoyang, Beijing, 100029, China. Email: [email protected] Huajie Xing Postal address: Department of Thoracic Surgery, China-Japan Friendship Hospital, No. 2, Yinghua East Road, Chaoyang, Beijing, 100029, China. Email: [email protected] Zhiyi Song Postal address: Department of Thoracic Surgery, China-Japan Friendship Hospital, No. 2, Yinghua East Road, Chaoyang, Beijing, 100029, China. Email: [email protected] Jin Zhang Postal address: Department of Thoracic Surgery, China-Japan Friendship Hospital, No. 2, Yinghua East Road, Chaoyang, Beijing, 100029, China. 1 Email: [email protected] Chaozeng Si* Postal address: Department of Information management, China-Japan Friendship Hospital, No.