WO 2014/135655 Al 12 September 2014 (12.09.2014) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2014/135655 Al 12 September 2014 (12.09.2014) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/135655 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/EP2014/054384 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 6 March 2014 (06.03.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13305253.0 6 March 2013 (06.03.2013) EP (84) Designated States (unless otherwise indicated, for every (71) Applicants: INSTITUT CURIE [FR/FR]; 26 rue d'Ulm, kind of regional protection available): ARIPO (BW, GH, F-75248 Paris cedex 05 (FR). CENTRE NATIONAL DE GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, LA RECHERCHE SCIENTIFIQUE [FR/FR]; 3 rue UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Michel Ange, F-75016 Paris (FR). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (72) Inventors: RADVANYI, Francois; 36 rue des Potiers, F- MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, 92260 Fontenay Aux Roses (FR). REBOUISSOU, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Sandra; 42 rue des Cordelieres, F-75013 Paris (FR). KM, ML, MR, NE, SN, TD, TG). KAMOUN, Aurelie; 4 1 avenue de Saint Mande, F-75012 Paris (FR). ALLORY, Yves; 40 rue Sedaine, F-7501 1 Par Published: is 69 (FR). DE REYNIES, Aurelien; boulevard Saint- — with international search report (Art. 21(3)) Michel, F-75005 Paris (FR). BERNARD-PIERROT, Isa- belle; 8 rue Francois Rolland, F-94130 Nogent sur Marne — before the expiration of the time limit for amending the (FR). LEBRET, Thierry; 10 chemin des Biloises, F- claims and to be republished in the event of receipt of 78300 Bougival (FR). amendments (Rule 48.2(h)) (74) Agents: PIERRU, Benedicte et al.; Becker & Associes, — with sequence listing part of description (Rule 5.2(a)) 25, rue Louis le Grand, 75002 Paris (FR). (54) Title: COMPOSITIONS AND METHODS FOR TREATING MUSCLE-INVASIVE BLADDER CANCER (57) Abstract: The present invention relates to a method to classify patients suffering from a muscle-invasive bladder cancer for therapeutic intervention, in particular for selecting a patient afflicted with a muscle-invasive bladder cancer for a treatment compris - ing an EGFR kinase inhibitor and/or capecitabine. Compositions and methods for treating muscle-invasive bladder cancer FIELD OF THE INVENTION The present invention relates to the field of medicine, in particular of oncology. It relates to a new method to classify patients suffering from a muscle-invasive bladder cancer for therapeutic intervention. BACKGROUND OF THE INVENTION Bladder carcinoma is one of the most common cancers in North America and Europe, accounting for approximately 200,000 new cases and 65,000 deaths in these regions in 2008. Bladder carcinoma may present as a non-muscle-invasive (70-80% of cases) or muscle-invasive (20-30% of cases) disease, with highly divergent outcomes. Most patients with non-muscle- invasive bladder cancers (NMIBC) suffer multiple recurrences of the disease without developing a muscle-invasive neoplasm. In contrast, muscle-invasive bladder cancer (MIBC) is a major clinical issue, with cancer-related deaths of 40-50% at five years for patients with organ-confined tumors and more than 80% for those with lymph node involvement or distant metastasis. Radical cystectomy is the standard treatment for MIBC. The addition of neoadjuvant and/or adjuvant chemotherapy has very modest benefits for overall survival (Sternberg et al, 2012). Iterative bladder resection and radiotherapy alone are generally considered as palliative treatment options for patient unfit for cystectomy or as part of a multimodal bladder-preserving approach (Bellmunt et al., 2010). Improvements in understanding the molecular mechanisms involved in bladder carcinoma have highlighted several potential molecular treatment targets, but no targeted treatment for MIBC is currently used in clinical practice (Dovedi and Davies, 2009). Clinical trials based on targeted therapies, either alone or in combination with conventional chemotherapy, have been largely unsuccessful (Bellmunt and Petrylak, 2012; Necchi et al, 2012; Pruthi et al, 2010; Wong et al, 2012). In particular, autocrine-mediated EGFR signaling has been shown to play an essential role in normal urothelium repair and its involvement in bladder carcinogenesis has been suggested, as the overexpression of EGFR and its ligands has been associated with advanced tumor grade/stage and poor clinical outcome (Chow et al, 2001; Thogersen et al, 2001). Moreover, preclinical studies in human bladder cancer cell lines have identified a spectrum of sensitivity to EGFR inhibitors (Adam et al., 2009; Black et al., 2008). However, recent phase II clinical trials in neoadjuvant or adjuvant settings have suggested that EGFR inhibitors have limited effects in patients with MIBC (Pruthi et al, 2010; Wong et al, 2012). All clinical trials using EGFR inhibitors have been performed in unselected MIBC patients since up to now, no predictive factors of response have been identified. Several gene expression profiling studies have revealed a high degree of molecular diversity in bladder carcinomas, including MIBC (Blaveri et al, 2005; Dyrskjot et al, 2003; Dyrskjot et al, 2007; Lindgren et al., 2010; Sjodahl et al., 2012), and patients with a particular tumor subtype might benefit from a targeted treatment considered ineffective in an unselected patient population (Baselga, 2008). As MIBC is a highly heterogeneous disease in both molecular and clinical terms, tumor stratification is a key issue in the identification of appropriate targeted treatments. In particular, a stratified approach to anti-EGFR therapy for MIBC may improve treatment efficacy. There is thus a strong need to provide reliable markers that could be used to stratify MIBC and to select patients for successful targeted therapies and in particular anti-EGFR therapy. SUMMARY OF THE INVENTION Towards a stratified approach to bladder cancer therapy, the inventors searched for clinically-relevant molecularly-homogeneous subgroups of MIBC. They identified a subgroup of particularly aggressive MIBC tumors wherein the EGFR pathway was deregulated and they further provided evidence of a relationship between this subgroup of MIBC and sensitivity to anti-EGFR drugs. Accordingly, in a first aspect, the present invention concerns a method for determining whether a muscle-invasive bladder cancer has a basal-like phenotype, wherein the method comprises (i) determining the expression level of KRT5, KRT6A and/or KRT6B and the expression level of nuclear FOXA1 in a cancer sample; and/or (ii) determining the expression level of at least 2 genes selected from the group consisting of PI3, KRT6B, CSTA, DSC2, MT1X, RAB38, SFN, SAMD9, EGFR, CD44, IL1RAP, DSP, PKP1, SERPINB7, CELSR2, DUSP7, TBC1D2, ARL4D, IPPK, MTSS1 and RGS20 genes, and the expression level of at least 2 genes selected from the group consisting of PHCl, THYNl, TACCl, PPAP2B, NRXN3, GNA14, ZFHX3, TLE2, MAML3, EPS8, CACNA1D, RAB15, MAN1C1, SORLl, CHN2, TGFBR3, CAB39L, LIMCH1 and BAMBI genes, in a cancer sample; and/or (iii) determining the expression level of at least one exon selected from the group consisting of the exons of SEQ ID NO: 23 to 41, in a cancer sample; and/or (iv) determining the DNA methylation status of at least 4 CpG islands selected from the group consisting of CpG islands listed in Table 7 in a cancer sample; and/or (v) determining the DNA methylation status of at least 4 GpC sites selected from the group consisting of GpC sites listed in Table 9 in a cancer sample; and/or (vi) determining the expression level of TGM1 gene in a cancer sample, thereby determining whether a muscle-invasive bladder cancer has a basal-like phenotype. Preferably, the method comprises determining the expression level of K T5, K T6A and/or K T6B and the expression level of nuclear FOXAl in a cancer sample, the expression of K T5, K T6A and/or K T6B and the absence of nuclear FOXAl being indicative that the muscle-invasive bladder cancer has a basal-like phenotype. In particular, the expression level of K T5, K T6A and/or K T6B and the expression level of nuclear FOXAl may be assessed by immunohistochemistry. In a particular embodiment, the method comprises determining the expression level of PKP1, IPPK, MAML3 and TGFBR3 genes in a cancer sample, high expression level of PKP1 and IPPK genes and low expression level of MAML3 and TGFBR3 genes, being indicative that the muscle-invasive bladder cancer has a basal-like phenotype. In another particular embodiment, the method comprises determining the expression level of the exon of SEQ ID NO: 24 in a cancer sample, low expression level of said exon being indicative that the muscle-invasive bladder cancer has a basal-like phenotype. In another particular embodiment, the method comprises determining the expression level of the exon of SEQ ID NO: 37 in a cancer sample, high expression level of said exon is indicative that the muscle-invasive bladder cancer has a basal-like phenotype.
Recommended publications
  • (UPCR) Levels in Diabetic Nephropathy Patients
    Journal of Personalized Medicine Article Gender Differences in Genetic Associations of RAB38 with Urinary Protein-to-Creatinine Ratio (UPCR) Levels in Diabetic Nephropathy Patients 1, 2,3,4, 1 1 Zhi-Lei Yu y, Chung-Shun Wong y , Yi Ting Lai , Wan-Hsuan Chou , Imaniar Noor Faridah 1,5, Chih-Chin Kao 6,7 , Yuh-Feng Lin 2,7,8,* and Wei-Chiao Chang 1,9,10,11,* 1 Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; [email protected] (Z.-L.Y.); [email protected] (Y.T.L.); [email protected] (W.-H.C.); [email protected] (I.N.F.) 2 Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; [email protected] 3 Department of Emergency Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235041, Taiwan 4 Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan 5 Faculty of Pharmacy, Ahmad Dahlan University, Yogyakarta 55164, Indonesia 6 Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan; [email protected] 7 Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan 8 Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan 9 Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan 10 Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan 11 Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan * Correspondence: [email protected] (Y.-F.L.); [email protected] (W.-C.C.) Z.-L.Y.
    [Show full text]
  • An Alu Element-Based Model of Human Genome Instability George Wyndham Cook, Jr
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2013 An Alu element-based model of human genome instability George Wyndham Cook, Jr. Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Cook, Jr., George Wyndham, "An Alu element-based model of human genome instability" (2013). LSU Doctoral Dissertations. 2090. https://digitalcommons.lsu.edu/gradschool_dissertations/2090 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. AN ALU ELEMENT-BASED MODEL OF HUMAN GENOME INSTABILITY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by George Wyndham Cook, Jr. B.S., University of Arkansas, 1975 May 2013 TABLE OF CONTENTS LIST OF TABLES ...................................................................................................... iii LIST OF FIGURES .................................................................................................... iv LIST OF ABBREVIATIONS ......................................................................................
    [Show full text]
  • PLATFORM ABSTRACTS Abstract Abstract Numbers Numbers Tuesday, November 6 41
    American Society of Human Genetics 62nd Annual Meeting November 6–10, 2012 San Francisco, California PLATFORM ABSTRACTS Abstract Abstract Numbers Numbers Tuesday, November 6 41. Genes Underlying Neurological Disease Room 134 #196–#204 2. 4:30–6:30pm: Plenary Abstract 42. Cancer Genetics III: Common Presentations Hall D #1–#6 Variants Ballroom 104 #205–#213 43. Genetics of Craniofacial and Wednesday, November 7 Musculoskeletal Disorders Room 124 #214–#222 10:30am–12:45 pm: Concurrent Platform Session A (11–19): 44. Tools for Phenotype Analysis Room 132 #223–#231 11. Genetics of Autism Spectrum 45. Therapy of Genetic Disorders Room 130 #232–#240 Disorders Hall D #7–#15 46. Pharmacogenetics: From Discovery 12. New Methods for Big Data Ballroom 103 #16–#24 to Implementation Room 123 #241–#249 13. Cancer Genetics I: Rare Variants Room 135 #25–#33 14. Quantitation and Measurement of Friday, November 9 Regulatory Oversight by the Cell Room 134 #34–#42 8:00am–10:15am: Concurrent Platform Session D (47–55): 15. New Loci for Obesity, Diabetes, and 47. Structural and Regulatory Genomic Related Traits Ballroom 104 #43–#51 Variation Hall D #250–#258 16. Neuromuscular Disease and 48. Neuropsychiatric Disorders Ballroom 103 #259–#267 Deafness Room 124 #52–#60 49. Common Variants, Rare Variants, 17. Chromosomes and Disease Room 132 #61–#69 and Everything in-Between Room 135 #268–#276 18. Prenatal and Perinatal Genetics Room 130 #70–#78 50. Population Genetics Genome-Wide Room 134 #277–#285 19. Vascular and Congenital Heart 51. Endless Forms Most Beautiful: Disease Room 123 #79–#87 Variant Discovery in Genomic Data Ballroom 104 #286–#294 52.
    [Show full text]
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • A Network of Bhlhzip Transcription Factors in Melanoma: Interactions of MITF, TFEB and TFE3
    A network of bHLHZip transcription factors in melanoma: Interactions of MITF, TFEB and TFE3 Josué A. Ballesteros Álvarez Thesis for the degree of Philosophiae Doctor January 2019 Net bHLHZip umritunarþátta í sortuæxlum: Samstarf milli MITF, TFEB og TFE3 Josué A. Ballesteros Álvarez Ritgerð til doktorsgráðu Leiðbeinandi/leiðbeinendur: Eiríkur Steingrímsson Doktorsnefnd: Margrét H. Ögmundsdóttir Þórarinn Guðjónsson Jórunn E. Eyfjörð Lars Rönnstrand Janúar 2019 Thesis for a doctoral degree at tHe University of Iceland. All rigHts reserved. No Part of tHis Publication may be reProduced in any form witHout tHe Prior permission of the copyright holder. © Josue A. Ballesteros Álvarez. 2019 ISBN 978-9935-9421-4-2 Printing by HáskólaPrent Reykjavik, Iceland 2019 Ágrip StjórnPróteinin MITF , TFEB, TFE3 og TFEC (stundum nefnd MiT-TFE þættirnir) tilheyra bHLHZip fjölskyldu umritunarþátta sem bindast DNA og stjórna tjáningu gena. MITF er mikilvægt fyrir myndun og starfsemi litfruma en ættingjar þess, TFEB og TFE3, stjórna myndun og starfsemi lysósóma og sjálfsáti. Sjálfsát er líffræðilegt ferli sem gegnir mikilvægu hlutverki í starfsemi fruma en getur einnig haft áHrif á myndun og meðHöndlun sjúkdóma. Í verkefni þessu var samstarf MITF, TFE3 og TFEB Próteinanna skoðað í sortuæxlisfrumum og hvaða áhrif þau Hafa á tjáningu hvers annars. Eins og MITF eru TFEB og TFE3 genin tjáð í sortuæxlisfrumum og sortuæxlum; TFEC er ekki tjáð í þessum frumum og var því ekki skoðað í þessu verkefni. Með notkun sérvirkra hindra var sýnt að boðleiðir hafa áhrif á staðsetningu próteinanna þriggja í sortuæxlisfrumum. Umritunarþættir þessir geta bundist skyldum DNA-bindisetum og haft áhrif á tjáningu gena sem eru nauðsynleg fyrir myndun bæði lýsósóma og melanósóma.
    [Show full text]
  • Identification of 10 Hub Genes Related to the Progression of Colorectal
    Identification of 10 Hub genes related to the progression of colorectal cancer by co-expression analysis Jie Meng1,2, Rui Su2, Yun Liao2, Yanyan Li2 and Ling Li2 1 Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China 2 Department of Pharmacy, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China ABSTRACT Background: Colorectal cancer (CRC) is the third most common cancer in the world. The present study is aimed at identifying hub genes associated with the progression of CRC. Method: The data of the patients with CRC were obtained from the Gene Expression Omnibus (GEO) database and assessed by weighted gene co-expression network analysis (WGCNA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses performed in R by WGCNA, several hub genes that regulate the mechanism of tumorigenesis in CRC were identified. Differentially expressed genes in the data sets GSE28000 and GSE42284 were used to construct a co-expression network for WGCNA. The yellow, black and blue modules associated with CRC level were filtered. Combining the co-expression network and the PPI network, 15 candidate hub genes were screened. Results: After validation using the TCGA-COAD dataset, a total of 10 hub genes (MT1X, MT1G, MT2A, CXCL8, IL1B, CXCL5, CXCL11, IL10RA, GZMB, KIT) closely related to the progression of CRC were identified. The expressions of MT1G, CXCL8, IL1B, CXCL5, CXCL11 and GZMB in CRC tissues were higher than normal tissues (p-value < 0.05). The expressions of MT1X, MT2A, IL10RA and KIT in CRC tissues were lower than normal tissues (p-value < 0.05).
    [Show full text]
  • Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and Above Metal Homeostasis and Antioxidant Response
    biology Review Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and above Metal Homeostasis and Antioxidant Response Mohammed Bensellam 1,* , D. Ross Laybutt 2,3 and Jean-Christophe Jonas 1 1 Pôle D’endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, B-1200 Brussels, Belgium; [email protected] 2 Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; [email protected] 3 St Vincent’s Clinical School, UNSW Sydney, Sydney, NSW 2010, Australia * Correspondence: [email protected]; Tel.: +32-2764-9586 Simple Summary: Defective insulin secretion by pancreatic beta cells is key for the development of type 2 diabetes but the precise mechanisms involved are poorly understood. Metallothioneins are metal binding proteins whose precise biological roles have not been fully characterized. Available evidence indicated that Metallothioneins are protective cellular effectors involved in heavy metal detoxification, metal ion homeostasis and antioxidant defense. This concept has however been challenged by emerging evidence in different medical research fields revealing novel negative roles of Metallothioneins, including in the context of diabetes. In this review, we gather and analyze the available knowledge regarding the complex roles of Metallothioneins in pancreatic beta cell biology and insulin secretion. We comprehensively analyze the evidence showing positive effects Citation: Bensellam, M.; Laybutt, of Metallothioneins on beta cell function and survival as well as the emerging evidence revealing D.R.; Jonas, J.-C. Emerging Roles of negative effects and discuss the possible underlying mechanisms. We expose in parallel findings Metallothioneins in Beta Cell from other medical research fields and underscore unsettled questions.
    [Show full text]
  • Initial Sequencing and Comparative Analysis of the Mouse Genome
    articles Initial sequencing and comparative analysis of the mouse genome Mouse Genome Sequencing Consortium* *A list of authors and their af®liations appears at the end of the paper ........................................................................................................................................................................................................................... The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identi®cation of intraspecies polymorphism. With the complete sequence of the human genome nearly in hand1,2, covering about 90% of the euchromatic human genome, with about the next challenge is to extract the extraordinary trove of infor- 35% in ®nished form1. Since then, progress towards a complete mation encoded within its roughly 3 billion nucleotides. This human sequence has proceeded swiftly, with approximately 98% of information includes the blueprints for all RNAs and proteins, the genome now available in draft form and about 95% in ®nished the regulatory elements that ensure proper expression of all genes, form.
    [Show full text]
  • SAMD9 and SAMD9L in Inherited Predisposition to Ataxia, Pancytopenia, and Myeloid Malignancies
    Leukemia (2018) 32:1106–1115 https://doi.org/10.1038/s41375-018-0074-4 REVIEW ARTICLE Myelodysplastic syndrome SAMD9 and SAMD9L in inherited predisposition to ataxia, pancytopenia, and myeloid malignancies 1,2 3 1 2 4 5,6 Josef Davidsson ● Andreas Puschmann ● Ulf Tedgård ● David Bryder ● Lars Nilsson ● Jörg Cammenga Received: 17 October 2017 / Revised: 25 January 2018 / Accepted: 31 January 2018 / Published online: 25 February 2018 © The Author(s) 2018. This article is published with open access Abstract Germline mutations in the SAMD9 and SAMD9L genes, located in tandem on chromosome 7, are associated with a clinical spectrum of disorders including the MIRAGE syndrome, ataxia–pancytopenia syndrome and myelodysplasia and leukemia syndrome with monosomy 7 syndrome. Germline gain-of-function mutations increase SAMD9 or SAMD9L’s normal antiproliferative effect. This causes pancytopenia and generally restricted growth and/or specific organ hypoplasia in non- hematopoietic tissues. In blood cells, additional somatic aberrations that reverse the germline mutation’s effect, and give rise to the clonal expansion of cells with reduced or no antiproliferative effect of SAMD9 or SAMD9L include complete or partial chromosome 7 loss or loss-of-function mutations in SAMD9 or SAMD9L. Furthermore, the complete or partial loss of chromosome 7q may cause myelodysplastic syndrome in these patients. SAMD9 mutations appear to associate with a more 1234567890();,: severe disease phenotype, including intrauterine growth restriction, developmental delay and hypoplasia of adrenal glands, testes, ovaries or thymus, and most reported patients died in infancy or early childhood due to infections, anemia and/or hemorrhages. SAMD9L mutations have been reported in a few families with balance problems and nystagmus due to cerebellar atrophy, and may lead to similar hematological disease as seen in SAMD9 mutation carriers, from early childhood to adult years.
    [Show full text]
  • Master Thesis
    Mutagenic Interrogation of SAMD9 and SAMD9L Function Master Thesis For the attainment of the academic degree Master of Science From the University of Applied Sciences FH Campus Wien Submitted by: Tamara Szattler Personal identity code 1510544055 Supervisor: Yenan Bryceson Karolinska Institutet Stockholm Sweden Submitted on: 29.03.2018 1. Abstract in English Heterozygous gain - of - function m utations in SAMD9 and SAMD9L , two homologues on human chromosome 7, a re associated with severe clinical mani festations such as early onset bone marrow failure, cytopenia and monosomy 7 with high risk of progression to myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) . Additionally, biallelic SAMD9 mutations have been associated with normophosphatemi c tumoral calcinosis ( NFTC ) . SAMD9 and SAMD9L inhibit cell proliferation and are characterized as tumor suppressors. However, t he physiological function and regulation of SAMD9 and SAMD9L remains unclear . To identify the mechanisms through which mutated SA MD9/SAMD9L cause pathogenesis , it is instrumental to evaluate and characterize novel variants in functional assays. Additionally, targeting specific sites for mutagenesis and evaluate the effects on protein function can provide understanding of how individ ual domains in SAMD9/SAMD9L function . A ssessment of new variants requires a robust method . I have optimized a protocol for the evaluation of SAMD9/SAMD9L variants. In this context, I tested effects of several disease - associated as well as designed mutation s in SAMD9 and SAMD9L on cell proliferation and cell cycle progression. The presented data on SAMD9/SAMD9L variants associated with myeloid malignancies correlate with previous findings of others and suggest that these mutations enhance the function of the tumor suppressors .
    [Show full text]
  • A Comparative Genomic Study in Schizophrenic and in Bipolar Disorder Patients, Based on Microarray Expression Pro�Ling Meta�Analysis
    Hindawi Publishing Corporation e Scienti�c �orld �ournal Volume 2013, Article ID 685917, 14 pages http://dx.doi.org/10.1155/2013/685917 Research Article A Comparative Genomic Study in Schizophrenic and in Bipolar Disorder Patients, Based on Microarray Expression Pro�ling Meta�Analysis Marianthi Logotheti,1, 2, 3 Olga Papadodima,2 Nikolaos Venizelos,1 Aristotelis Chatziioannou,2 and Fragiskos Kolisis3 1 Neuropsychiatric Research Laboratory, Department of Clinical Medicine, Örebro University, 701 82 Örebro, Sweden 2 Metabolic Engineering and Bioinformatics Program, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece 3 Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece Correspondence should be addressed to Aristotelis Chatziioannou; [email protected] and Fragiskos Kolisis; [email protected] Received 2 November 2012; Accepted 27 November 2012 Academic Editors: N. S. T. Hirata, M. A. Kon, and K. Najarian Copyright © 2013 Marianthi Logotheti et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Schizophrenia affecting almost 1 and bipolar disorder affecting almost 3 –5 of the global population constitute two severe mental disorders. e catecholaminergic and the serotonergic pathways have been proved to play an important role in the development of schizophrenia, bipolar% disorder, and other related psychiatric% disorders.% e aim of the study was to perform and interpret the results of a comparative genomic pro�ling study in schizophrenic patients as well as in healthy controls and in patients with bipolar disorder and try to relate and integrate our results with an aberrant amino acid transport through cell membranes.
    [Show full text]
  • Palmitic Acid Effects on Hypothalamic Neurons
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.03.454666; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Running title: Oleic and palmitic acid effects on hypothalamic neurons Concentration-dependent change in hypothalamic neuronal transcriptome by the dietary fatty acids: oleic and palmitic acids Fabiola Pacheco Valencia1^, Amanda F. Marino1^, Christos Noutsos1, Kinning Poon1* 1Department of Biological Sciences, SUNY Old Westbury, Old Westbury NY, United States ^Authors contributed equally to this work *Corresponding Author: Kinning Poon 223 Store Hill Rd Old Westbury, NY 11568, USA 1-516-876-2735 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.08.03.454666; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Prenatal high-fat diet exposure increases hypothalamic neurogenesis events in embryos and programs offspring to be obesity-prone. The molecular mechanism involved in these dietary effects of neurogenesis are unknown. This study investigated the effects of oleic and palmitic acids, which are abundant in a high-fat diet, on the hypothalamic neuronal transcriptome and how these changes impact neurogenesis events. The results show differential effects of low and high concentrations of oleic or palmitic acid treatment on differential gene transcription.
    [Show full text]