Dräger Gas List 2015 List of Detectable Gases and Vapours Dräger Gas List 2015 List of Detectable Gases and Vapours
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter
EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter EPA 454/B-18-008 August 2018 EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, NC EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter 9/1/2018 Informational Document This informational document describes the emerging technologies that can measure and/or identify pollutants using state of the science techniques Forward Optical Remote Sensing (ORS) technologies have been available since the late 1980s. In the early days of this technology, there were many who saw the potential of these new instruments for environmental measurements and how this technology could be integrated into emissions and ambient air monitoring for the measurement of flux. However, the monitoring community did not embrace ORS as quickly as anticipated. Several factors contributing to delayed ORS use were: • Cost: The cost of these instruments made it prohibitive to purchase, operate and maintain. • Utility: Since these instruments were perceived as “black boxes.” Many instrument specialists were wary of how they worked and how the instruments generated the values. • Ease of use: Many of the early instruments required a well-trained spectroscopist who would have to spend a large amount of time to setup, operate, collect, validate and verify the data. • Data Utilization: Results from path integrated units were different from point source data which presented challenges for data use and interpretation. -
Fast Facts from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019
Fast Facts 1990–2019 National-Level U.S. Greenhouse Gas Inventory 7% 3% 10% U.S. Greenhouse Gas Greenhouse U.S. Emissions in 2019* Nitrous Oxide (N O) Fluorinated Gases 2 80% Methane (CH4) Carbon Dioxide (CO ) 29% 2 23% 7% 10% 6% 25% Total U.S. Greenhouse Gas Greenhouse Emissions U.S. Total Sector Economic in 2019* by Transportation Electricity Industry Agriculture Commercial Residential 2019 Total Emissions 2018–2019 Change 1990–2019 Change million metric tons of CO equivalent 6,558 2 -1.7% total emissions 1.8% total emissions CO emissions from CO removals by forests 2 2 CO emissions CO emissions fossil fuel combustion: and other lands: -2.2% 2 2.8% 2 CO emissions from fossil CO emissions from fossil 74.1% 12.4% 2 2 of total emissions of total emissions -2.7% fuel combustion 2.6% fuel combustion U.S. Greenhouse Gas Emissions * Percentages may not add to 100% due to independent rounding and the way the inventory qualifies U.S. territories (not shown) as a separate sector. Emissions from Land-Use, Land-Use Change and Forestry are reported separately and not shown in the figure. To learn more about the inventory, visit www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks, April 2021 or explore the data at https://cfpub.epa.gov/ghgdata/inventoryexplorer. EPA 430-F-21-011 U.S. Greenhouse Gas Emissions U.S. Greenhouse Gas Emissions and Sinks (MMT CO2 Equivalents) by Gas Gas/Source* 1990 2005 2015 2016 2017 2018 2019 CO 6,134.5 5,371.8 5,248.0 5,207.8 5,375.5 5,255.8 HFCs, PFCs, SF6, and NF3 Nitrous Oxide 2 5,113.5 8,000 Methane Carbon Dioxide Fossil Fuel Combustion 4,731.5 5,753.5 5,008.3 4,911.5 4,854.5 4,991.4 4,856.7 7,000 Transportation 1,469.1 1,858.6 1,719.2 1,759.9 1,782.4 1,816.6 1,817.2 6,000 Electric Power Sector 1,820.0 2,400.1 1,900.6 1,808.9 1,732.0 1,752.9 1,606.0 Eq. -
SENSIT® GOLD Helps Find the Source of Combustible Gases Fast!
SENSITSENSIT®® GOLDGOLD helpshelps findfind thethe sourcesource ofof combustiblecombustible gasesgases fast!fast! Innovative Detection Solutions MADE IN USA www.gasleaksensors.com SENSIT® GOLD VERsatile multiPLE GAS DeteCtion InstRUMENT SENSIT® GOLD is designed to provide personal protection from potentially hazardous conditions and help find the source of combustible gases fast! Whether you need an investigation tool or a confined space monitor, you can depend on the SENSIT® GOLD to provide the safety and accuracy you need. Displays Up To 4 Gases GOLD Standard Features • LEL (PPM Optional) • Internal Pump • Oxygen • Water/Dust Filter • Carbon Monoxide • Push Button Operation • Hydrogen Sulfide • Field Calibration • Hydrogen Cyanide (Optional) • Date/Time Display • Calibration Alert • Operation Memory • Calibration Memory • Infrared Download • Audible/Visual Alarms • Bright LCD Display • Programmable Auto Shut Off INDUSTRY USERS APPLICATIONS PARTIAL LIST OF GASES SENSED* Butane Utilities Gas Leak Survey/Investigations Carbon Monoxide Maintenance Confined Space Monitoring Gasoline Fire Departments Gas Emergency Investigations Hydrogen Sulfide Safety Inspectors Vessel Testing Methane Home Inspectors Natural Gas Water/Sewer Departments Oxygen Heating Contractors Propane Utility Contractors Industrial Plants *Contact Sensit Technologies for more info. Propane Marketers LUER PROBE CONNECTOR WATER / DIRT FILTER LEL / PPM SENSOR INFRARED COMMUNICATIONS BACKLIT LCD DISPLAY ALARM LEDs OPERATION BUTTONS TICK ADJUST FLEXIBLE GOOSENECK STANDARD KIT -
IVF Guidebook
Design Guidebook Gas Delivery Systems for In-Vitro Fertilization Clinics ® 1 CONTENTS 5 Introduction 6-7 In-Vitro Fertilization Overview - Intra Cytoplasmic Sperm Injection 8-9 Equipment Commonly Using Gases in an IVF Clinic 10-11 Typical IVF Clinic Layout 12 Properties of Patient Care Gases 13 Properties of Cell Culture Gases & Liquid Nitrogen for Cryopreservation 14 Typical Distribution System - Carbon Dioxide 15 Typical Distribution System - Nitrogen 16 Typical Distribution System - Blood Gas 17 Typical Distribution System - Liquid Nitrogen 18 Equipment Specifications - Gas Cylinder Discharging 19 Equipment Specifications - Pipeline Accessories 20 Equipment Specifications - Safety & Annunciation 21 Equipment Specifications - Point-of-Use Control 22 Equipment Specifications - Cryogenic Fluid Handling 23-24 Important Design Criteria - Cell Culture Gases 25-26 Important Design Criteria - Cryogenic System 27 Discovery - Contacts 28 Discovery - Gas Supply to Cell Culture Equipment 29 Discovery - Cryogenic System 30-31 List of Equipment 32 Copyright 33-34 Notes 4 INTRODUCTION INFERTILITY A COMMON PROBLEM OUR ROLE AS GAS DELIVERY SYSTEM DESIGNERS Infertility, a condition characterized by the inability As gas delivery system designers, we have a complicated to become pregnant despite having carefully timed, task ahead of us. Our task is to provide a reliable gas unprotected sex for a year, is experienced by 6% distribution system that performs to expectations and of married women ages 15-44 in the United States, is simple to operate. For the gas distribution system, we according to the CDC’s National Survey of Family must: Growth with data for 2006-2010. Both men and women • supply very high quality gas molecules to keep contribute to the couple’s infertility. -
Guidelines for the Preparation of Safety Data Sheets
GUIDELINES FOR THE PREPARATION OF SAFETY DATA SHEETS EIGA 919/14 Revision of EIGA 919/13 EUROPEAN INDUSTRIAL GASES ASSOCIATION AISBL AVENUE DES ARTS 3-5 • B – 1210 BRUSSELS Tel: +32 2 217 70 98 • Fax: +32 2 219 85 14 E-mail: [email protected] • Internet: www.eiga.eu EIGA 919/14 GUIDELINES FOR THE PREPARATION OF SAFETY DATA SHEETS PREPARED BY : Joachim Barbe Messer Group Ewoud Beheydt Praxair Gianluigi Colombo Sapio Produzione Idrogeno Ossigeno Joachim Eiselt Air Liquide Natalie Kingswood The Linde Group Zbigniew Sokolowski Air Products Ben Valk The Linde Group Pierre Wolfs EIGA Disclaimer All technical publications of EIGA or under EIGA's name, including Codes of practice, Safety procedures and any other technical information contained in such publications were obtained from sources believed to be reliable and are based on technical information and experience currently available from members of EIGA and others at the date of their issuance. While EIGA recommends reference to or use of its publications by its members, such reference to or use of EIGA's publications by its members or third parties are purely voluntary and not binding. Therefore, EIGA or its members make no guarantee of the results and assume no liability or responsibility in connection with the reference to or use of information or suggestions contained in EIGA's publications. EIGA has no control whatsoever as regards, performance or non performance, misinterpretation, proper or improper use of any information or suggestions contained in EIGA's publications by any person or entity (including EIGA members) and EIGA expressly disclaims any liability in connection thereto. -
Toward a List of Molecules As Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry
Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Seager, S.; Bains, W. and Petkowski, J.J. “Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry.” Astrobiology 16, no. 6 (June 2016): 465–485 ©2016 Mary Ann Liebert, Inc As Published http://dx.doi.org/10.1089/ast.2015.1404 Publisher Mary Ann Liebert, Inc. Version Final published version Citable link http://hdl.handle.net/1721.1/109943 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. ASTROBIOLOGY Volume 16, Number 6, 2016 ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2015.1404 Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry S. Seager,1,2 W. Bains,1,3 and J.J. Petkowski1 Abstract Thousands of exoplanets are known to orbit nearby stars. Plans for the next generation of space-based and ground-based telescopes are fueling the anticipation that a precious few habitable planets can be identified in the coming decade. Even more highly anticipated is the chance to find signs of life on these habitable planets by way of biosignature gases. But which gases should we search for? Although a few biosignature gases are prominent in Earth’s atmospheric spectrum (O2,CH4,N2O), others have been considered as being produced at or able to accumulate to higher levels on exo-Earths (e.g., dimethyl sulfide and CH3Cl). -
The Synthesis and Characterization of Binuclear Zirconocene Complexes and Their Study As Initiators in the Polymerization of M
END-GROUP FUNCTIONALIZATION OF ANIONICALLY SYNTHESIZED POLYMERS VIA HYDROSILATION REACTIONS A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Hoon Kim May, 2006 END-GROUP FUNCTIONALIZATION OF ANIONICALLY SYNTHESIZED POLYMERS VIA HYDROSILATION REACTIONS Hoon Kim Dissertation Approved: Accepted: Advisor Department Chair Dr. Roderic P. Quirk Dr. Mark D. Foster Committee Member Dean of the College Dr. Joseph P. Kennedy Dr. Frank N. Kelley Committee Member Dean of the Graduate School Dr. William Brittain Dr. George R. Newkome Committee Member Date Dr. Coleen Pugh Committee Member Dr. Chrys Wesdemiotis ii ABSTRACT One of the unique features of living, alkyllithium-initiated, anionic polymerization is the ability to produce a stable carbanionic chain end after complete monomer consumption, which can be followed by reaction with electrophiles to form various end- functionalized polymers. Although a variety of functional polymers have been synthesized in the last few decades, each specific functionalization has had to be designed and optimized individually. Consequently, the development of general functionalization methodologies has drawn recent interest. However, even these general functionalization methods require the use of protecting groups, and the complexity in synthetic routes and the thermal/moisture instability of many protected functional agents have restricted their practical application. This thesis describes a new, general functionalization methodology, combining well-defined, living anionic polymerization with efficient and highly selective, platinum-catalyzed hydrosilation reactions with functionalized alkenes. Well-defined, Si-H functionalized polymers (P-SiH) have been synthesized by sec- butyllithium-initiated, living anionic polymerization in benzene followed by termination with dimethylchlorosilane. -
A Review of Organosilanes in Organic Chemistry
A Review of Organosilanes in Organic Chemistry • Silyl Protecting and Derivatisation Reagents • Organosilanes as Reducing Agents • Silanes in Cross-coupling Chemistry • Allylsilanes Used to Stabilize α-Carbanions and β-Carbocations INTRODUCTION Organosilanes have varied uses in organic chemistry from the most frequently employed protecting groups to intermediates in organic synthesis. The Acros Organics portfolio of organosilanes is continuously expanding to meet your chemistry needs. In this brochure you will find an overview of four of the most important applications of organosilanes: • Silyl Protecting and Derivatisation Reagents 1, 2 • Organosilanes as Reducing Agents 3 • Silanes in Cross-coupling Chemistry 4 • Allylsilanes Used to Stabilize α-Carbanions and β-Carbocations4 Silyl Protecting and Derivatisation Reagents Silicon protecting groups are probably the most frequently employed of all protecting groups, and modern natural product synthesis is inconceivable without them.5 Silylating agents are mostly used to protect alcohols and phenols, but have also found application in the protection of amines, carboxylic acids, amides, thiols and alkynes. By varying the substituents attached to silicon, the steric and electronic characteristics of the protecting group can be finely tuned, allowing a wide variety of both reaction and deprotection conditions. The leaving group also plays an important role in the reactivity and use of silylating reagents. Whilst chlorotrimethylsilane [product code: 42643] liberates hydrogen chloride on reaction, -
HIGH HAZARD GAS Review Date: 09/23/2019
University of Pittsburgh EH&S Guideline Number: 04-021 Safety Manual Subject: Effective Date: 04/19/2017 Page 1 of 9 HIGH HAZARD GAS Review Date: 09/23/2019 STORAGE AND USE OF HIGH HAZARD GAS 1. Definition of High Hazard (HH) Gases For these guidelines, any gas meeting one or more of the following definitions based on International Fire Code (IFC) and National Fire Protection Association (NFPA) standards: 1.1. Flammable gas – a material that is a gas at 68ºF (20ºC) or less at an absolute pressure of 14.7 psi (101.325 kPa) when in a mixture of 13% or less by volume with air, or that has a flammable range at an absolute pressure of 14.7 psi (101.325 kPa) with air of at least 12%, regardless of the lower limit 1.2. Pyrophoric gas – a gas with an autoignition temperature in air at or below 130ºF (54.4ºC) 1.3. Health Hazard 3 (HH3) gas – material that, under emergency conditions and according to the standards, can cause serious or permanent injury 1.4. Health Hazard 4 (HH4) gas – material that, under emergency conditions and according to the standards, can be lethal The storage and usage of a gas or gases meeting any of the above definitions must follow all applicable IFC and NFPA guidelines and the requirements outlined in this document. Consult EH&S for specific guidance on gas mixtures containing corrosive, flammable or poisonous gas components (ex. 1% carbon monoxide/nitrogen, 5% hydrogen sulfide/helium). 2. Notification Requirements Prior to Obtaining High Hazard Gases 2.1. -
Hazardous Substances (Chemicals) Transfer Notice 2006
16551655 OF THURSDAY, 22 JUNE 2006 WELLINGTON: WEDNESDAY, 28 JUNE 2006 — ISSUE NO. 72 ENVIRONMENTAL RISK MANAGEMENT AUTHORITY HAZARDOUS SUBSTANCES (CHEMICALS) TRANSFER NOTICE 2006 PURSUANT TO THE HAZARDOUS SUBSTANCES AND NEW ORGANISMS ACT 1996 1656 NEW ZEALAND GAZETTE, No. 72 28 JUNE 2006 Hazardous Substances and New Organisms Act 1996 Hazardous Substances (Chemicals) Transfer Notice 2006 Pursuant to section 160A of the Hazardous Substances and New Organisms Act 1996 (in this notice referred to as the Act), the Environmental Risk Management Authority gives the following notice. Contents 1 Title 2 Commencement 3 Interpretation 4 Deemed assessment and approval 5 Deemed hazard classification 6 Application of controls and changes to controls 7 Other obligations and restrictions 8 Exposure limits Schedule 1 List of substances to be transferred Schedule 2 Changes to controls Schedule 3 New controls Schedule 4 Transitional controls ______________________________ 1 Title This notice is the Hazardous Substances (Chemicals) Transfer Notice 2006. 2 Commencement This notice comes into force on 1 July 2006. 3 Interpretation In this notice, unless the context otherwise requires,— (a) words and phrases have the meanings given to them in the Act and in regulations made under the Act; and (b) the following words and phrases have the following meanings: 28 JUNE 2006 NEW ZEALAND GAZETTE, No. 72 1657 manufacture has the meaning given to it in the Act, and for the avoidance of doubt includes formulation of other hazardous substances pesticide includes but -
Compressed Gas Cylinders
General Assistance Office of Environment, Health & Safety 642-3073 Emergency Phone Numbers Emergencies: Life-threatening Emergency or Imminent Hazard to the Environment 911 From cell phone 642-3333 Non Emergencies: Chemical or Biological Spill, or Radioactive Materials Spill/Business Hours EH&S 642-3073 Off-hours/Weekend Spills UCPD 642-6760 Compressed Physical-Plant Campus Services (24 hours) 642-1032 Gas Cylinders: Proper Management And Use Published by the Office of Environment, Health & Safety www.ehs.berkeley.edu University of California, Berkeley Revised January 2012 Office of Environment, Health & Safety Contents Page INTRODUCTION 1 1.0 General Hazards 1 2.0 Think Before You Buy 2 3.0 Receiving Compressed Gas Cylinders from the Vendor 2 4.0 Keep Your Chemical Inventory Up To Date 3 5.0 Safe Storage Practices 3 6.0 Moving and Transporting Cylinders 5 7.0 Safe Use 6 8.0 Special Precautions for Certain Gases 7 8.1 Flammable Gases 7 8.2 Toxic Gases 8 8.3 Oxygen and Oxidizing Gases 8 8.4 Corrosive Gases 8 8.5 Dangerously Reactive Gases 9 8.6 Pyrophoric Gases 9 8.7 Storage of Incompatible Gases 9 9.0 Safe Use of Regulators and Valves 9 10.0 How to Attach a Regulator 10 11.0 How to Shutdown a Cylinder with a Regulator 11 12.0 Compressed Gas Cylinder Return or Disposal 12 13.0 Other Resources 13 Introduction University of California, Berkeley (UC Berkeley) departments that use compressed gas cylinders must comply with a wide variety of laws and regulations, including those issued by Cal/OSHA, the California Fire Code and the City of Berkeley. -
2016 Medical Gas Container-Closure Rule Questions and Answers Guidance for Industry1
2016 Medical Gas Container- Closure Rule Questions and Answers Guidance for Industry (Small Entity Compliance Guide) U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) January 2017 Current Good Manufacturing Practice Labeling 2016 Medical Gas Container- Closure Rule Questions and Answers Guidance for Industry (Small Entity Compliance Guide) Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993-0002 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353; Email: [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) January 2017 Current Good Manufacturing Practice Labeling TABLE OF CONTENTS I. INTRODUCTION............................................................................................................. 1 II. BACKGROUND ............................................................................................................... 2 III. QUESTIONS AND ANSWERS ....................................................................................... 4 Contains Nonbinding Recommendations 2016 Medical Gas Container-Closure Rule Questions and Answers 1 Guidance for Industry (Small Entity Compliance Guide) This guidance