Guidelines for the Preparation of Safety Data Sheets

Total Page:16

File Type:pdf, Size:1020Kb

Guidelines for the Preparation of Safety Data Sheets GUIDELINES FOR THE PREPARATION OF SAFETY DATA SHEETS EIGA 919/14 Revision of EIGA 919/13 EUROPEAN INDUSTRIAL GASES ASSOCIATION AISBL AVENUE DES ARTS 3-5 • B – 1210 BRUSSELS Tel: +32 2 217 70 98 • Fax: +32 2 219 85 14 E-mail: [email protected] • Internet: www.eiga.eu EIGA 919/14 GUIDELINES FOR THE PREPARATION OF SAFETY DATA SHEETS PREPARED BY : Joachim Barbe Messer Group Ewoud Beheydt Praxair Gianluigi Colombo Sapio Produzione Idrogeno Ossigeno Joachim Eiselt Air Liquide Natalie Kingswood The Linde Group Zbigniew Sokolowski Air Products Ben Valk The Linde Group Pierre Wolfs EIGA Disclaimer All technical publications of EIGA or under EIGA's name, including Codes of practice, Safety procedures and any other technical information contained in such publications were obtained from sources believed to be reliable and are based on technical information and experience currently available from members of EIGA and others at the date of their issuance. While EIGA recommends reference to or use of its publications by its members, such reference to or use of EIGA's publications by its members or third parties are purely voluntary and not binding. Therefore, EIGA or its members make no guarantee of the results and assume no liability or responsibility in connection with the reference to or use of information or suggestions contained in EIGA's publications. EIGA has no control whatsoever as regards, performance or non performance, misinterpretation, proper or improper use of any information or suggestions contained in EIGA's publications by any person or entity (including EIGA members) and EIGA expressly disclaims any liability in connection thereto. EIGA's publications are subject to periodic review and users are cautioned to obtain the latest edition. EIGA 2014 - EIGA grants permission to reproduce this publication provided the Association is acknowledged as the source EUROPEAN INDUSTRIAL GASES ASSOCIATION AISBL Avenue des Arts 3-5 B 1210 Brussels Tel +32 2 217 70 98 Fax +32 2 219 85 14 E-mail: [email protected] Internet: www.eiga.eu SAC EIGA 919/14 Table of Contents 1 Introduction ......................................................................................................................... 1 1.1 Scope and purpose ............................................................................................................. 1 1.1.1 Scope....................................................................................................................... 1 1.1.2 Purpose ................................................................................................................... 1 1.2 Legal background of the document ..................................................................................... 1 1.3 Responsibilities and traceability .......................................................................................... 2 1.3.1 Responsibilities (art.31) ........................................................................................... 2 1.3.2 Traceability (art.36) .................................................................................................. 3 1.4 Transitional periods ............................................................................................................. 3 2 Preparation of an extSDS ................................................................................................... 4 2.1 General requirements ......................................................................................................... 4 2.1.1 When is an extSDS needed? .................................................................................. 4 2.1.2 Distribution of extSDS ............................................................................................. 5 2.1.3 Generation of a SDS ............................................................................................... 5 2.2 Exposure Scenarios ............................................................................................................ 6 2.2.1 General .................................................................................................................... 6 2.2.2 Exposure scenarios for gas mixtures ...................................................................... 6 3 LISAM.................................................................................................................................. 7 3.1 Introduction ......................................................................................................................... 7 3.2 Maintenance of the LISAM tool ........................................................................................... 7 3.3 Use of the LISAM tool ......................................................................................................... 8 3.4 Example of a Safety Data Sheet ......................................................................................... 8 4 Glossary .............................................................................................................................. 9 5 References ........................................................................................................................ 10 6 List of Annexes .................................................................................................................. 10 6.1 Annex 1: List of “gases” .................................................................................................... 11 6.2 Annex 2: Detailed content of a SDS for gases ................................................................. 16 6.3 Annex 3: Example of a SDS generated with the LISAM tool ............................................ 40 SAC EIGA 919/14 1 Introduction This document outlines the recommendations of EIGA to supply Safety Data Sheets (SDS) for gases and gas mixtures in accordance with the requirements of the EC Regulation 1907/2006 (REACH Regulation), in particular its Art 31 and its Annex II. The recommendations of EIGA on the supply of SDS were summarised previously in EIGA document 906 (the old Labelling/SDS Guide according to DSD/DPD) and in EIGA document 918 (the New Labelling/SDS Guide according to CLP) . With the new extensive requirements of REACH on “extended Safety Data Sheet (extSDS)”, it became necessary to develop a more comprehensive set of guidelines on SDS, separate from the requirements on Classification and Labelling linked to the CLP, presently in EIGA Doc.169. Both documents are nevertheless still closely connected because the content of an SDS is partially driven by the CLP classification of the substance or the mixture. This revision of the 2013 version covers the new phrases added to the EIGA library (see Annex 2). 1.1 Scope and purpose 1.1.1 Scope The document gives guidance for the issue of SDS for gases and gas mixtures that meet all of the following criteria: a) the products are defined as “gases” according to the CLP Regulation b) they are all allowed to be put on the market in the EU i.e. they have an EINECS number or they have been pre-registered in accordance with the REACH Regulation, c) they are marketed by most EIGA members. The list of “gases” considered by EIGA with their identification numbers and status according to the REACH Regulation can be found in Annex 1. 1.1.2 Purpose The new concept of extended Safety Data Sheet (extSDS) introduces new and extensive requirements on the content of a SDS. The content of the extSDS and in particular of the Exposure Scenario(s) (ESs) to be annexed are linked to the Chemical Safety Reports that may be required in the registration dossiers of the gases under REACH, starting from the end of 2010. This document aims at: 1. Defining how to complete the new structure of the extSDS 2. Defining the new library of “safety phrases” that is necessary for the completion of the new extSDS. 3. Developing a systematic approach for the selection or the generation of the appropriate ESs to be appended to the SDSs for pure gases and for gas mixtures. 4. Explaining how the recommendations of EIGA have been implemented in the LISAM SDS authoring tool supported by EIGA. 1.2 Legal background of the document The requirements on SDS are outlined in Art. 31 and in Annex II of REACH. Annex II has been revised with Regulation (EC) N° 453/2010 (OJ 133 of 31/05/2010) in order to align the structure of the SDS with the structure recommended in Annex IV of the UN-GHS (the Purple Book). Part of the content of the SDS is driven by the classification of the substance or mixture according to the provisions of the CLP Regulation 1272/2008 that are outlined in EIGA Doc. 169. The links between this document and the regulations are illustrated below. 1 SAC EIGA 919/14 UN Committee of Experts on TDG and GHS UN Sub-Committee UN Sub-Committee of Experts on GHS of Experts on TDG GHS RTDG “Purple Book” “Orange Book” WP15 of UN-ECE ADR REACH Regulation CLP Regulation Directive on the TDG (EC) No 1907/2006 (EC) No 1272/2008 2008/68/EC SDS Cl. & Lab. Cl. &Lab. for Tpt. for supply and use Doc. 919 The SDS Guide Doc. 169 (this document) The Cl. & Lab. Guide 1.3 Responsibilities and traceability 1.3.1 Responsibilities (art.31) As actors in the supply chain, EIGA Members may have different roles (manufacturer, importer, retailer, formulator, etc.) as defined in REACH and illustrated in the figure below Possible roles of EIGA members in the supply chain EU Manufacturer EIGA EU Manufacturer Non-EU Manufacturer SDS+ES (Only Rep.) SDS+ES EIGA EU Importer SDS+ES SDS+ES EIGA Downstream User: -Transfilling gases=
Recommended publications
  • Benzene MSDS
    He a lt h 2 3 Fire 3 2 0 Re a c t iv it y 0 Pe rs o n a l Pro t e c t io n H Material Safety Data Sheet Benzene MSDS Section 1: Chemical Product and Company Identification Product Name: Benzene Contact Information: Catalog Codes: SLB1564, SLB3055, SLB2881 Sciencelab.com, Inc. 14025 Smith Rd. CAS#: 71-43-2 Houston, Texas 77396 RTECS: CY1400000 US Sales: 1-800-901-7247 International Sales: 1-281-441-4400 TSCA: TSCA 8(b) inventory: Benzene Order Online: ScienceLab.com CI#: Not available. CHEMTREC (24HR Emergency Telephone), call: Synonym: Benzol; Benzine 1-800-424-9300 Chemical Name: Benzene International CHEMTREC, call: 1-703-527-3887 Chemical Formula: C6-H6 For non-emergency assistance, call: 1-281-441-4400 Section 2: Composition and Information on Ingredients Composition: Name CAS # % by Weight Benzene 71-43-2 100 Toxicological Data on Ingredients: Benzene: ORAL (LD50): Acute: 930 mg/kg [Rat]. 4700 mg/kg [Mouse]. DERMAL (LD50): Acute: >9400 mg/kg [Rabbit]. VAPOR (LC50): Acute: 10000 ppm 7 hours [Rat]. Section 3: Hazards Identification Potential Acute Health Effects: Very hazardous in case of eye contact (irritant), of inhalation. Hazardous in case of skin contact (irritant, permeator), of ingestion. Inflammation of the eye is characterized by redness, watering, and itching. Potential Chronic Health Effects: CARCINOGENIC EFFECTS: Classified A1 (Confirmed for human.) by ACGIH, 1 (Proven for human.) by IARC. MUTAGENIC EFFECTS: Classified POSSIBLE for human. Mutagenic for mammalian somatic cells. Mutagenic for bacteria and/or yeast. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Classified Reproductive system/toxin/female [POSSIBLE].
    [Show full text]
  • Fast Facts from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019
    Fast Facts 1990–2019 National-Level U.S. Greenhouse Gas Inventory 7% 3% 10% U.S. Greenhouse Gas Greenhouse U.S. Emissions in 2019* Nitrous Oxide (N O) Fluorinated Gases 2 80% Methane (CH4) Carbon Dioxide (CO ) 29% 2 23% 7% 10% 6% 25% Total U.S. Greenhouse Gas Greenhouse Emissions U.S. Total Sector Economic in 2019* by Transportation Electricity Industry Agriculture Commercial Residential 2019 Total Emissions 2018–2019 Change 1990–2019 Change million metric tons of CO equivalent 6,558 2 -1.7% total emissions 1.8% total emissions CO emissions from CO removals by forests 2 2 CO emissions CO emissions fossil fuel combustion: and other lands: -2.2% 2 2.8% 2 CO emissions from fossil CO emissions from fossil 74.1% 12.4% 2 2 of total emissions of total emissions -2.7% fuel combustion 2.6% fuel combustion U.S. Greenhouse Gas Emissions * Percentages may not add to 100% due to independent rounding and the way the inventory qualifies U.S. territories (not shown) as a separate sector. Emissions from Land-Use, Land-Use Change and Forestry are reported separately and not shown in the figure. To learn more about the inventory, visit www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks, April 2021 or explore the data at https://cfpub.epa.gov/ghgdata/inventoryexplorer. EPA 430-F-21-011 U.S. Greenhouse Gas Emissions U.S. Greenhouse Gas Emissions and Sinks (MMT CO2 Equivalents) by Gas Gas/Source* 1990 2005 2015 2016 2017 2018 2019 CO 6,134.5 5,371.8 5,248.0 5,207.8 5,375.5 5,255.8 HFCs, PFCs, SF6, and NF3 Nitrous Oxide 2 5,113.5 8,000 Methane Carbon Dioxide Fossil Fuel Combustion 4,731.5 5,753.5 5,008.3 4,911.5 4,854.5 4,991.4 4,856.7 7,000 Transportation 1,469.1 1,858.6 1,719.2 1,759.9 1,782.4 1,816.6 1,817.2 6,000 Electric Power Sector 1,820.0 2,400.1 1,900.6 1,808.9 1,732.0 1,752.9 1,606.0 Eq.
    [Show full text]
  • Arsenic Pentafluoride Sds- Material Safety Data Sheet
    Tel: 514-956-7503 Fax: 514-956-7504 Internet: www.megs.ca E-mail: [email protected] Montreal St-Laurent Tel : 514-956-7503 Fax : 514-956-7504 Ottawa Nepean Tel : 613-226-4228 Fax : 613-226-4229 Quebec Quebec Tel : 418-834-7447 Fax : 418-834-3774 ARSENIC PENTAFLUORIDE SDS- MATERIAL SAFETY DATA SHEET TABLE OF CONTENTS: 1. Chemical Product and Company Identification 24 Hour EMERGENCY 2. Composition, Information on Ingredients CONTACT 3. Hazards Identification 4. First Aid Measures 5. Fire Fighting Measures U.S- CHEMTREC 1-800- 6. Accidental Release Measures 424-9300 7. Handling and Storage 8. Exposure Controls, Personal Protection CANADA- CANUTEC 613- 9. Physical and Chemical Properties 996-6666 10. Stability and Reactivity 11. Toxicological Information 12. Ecological Information 13. Disposal Considerations 14. Transport Information 15. Regulatory Information 16. Other Information 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION-----------Up to Table of Contents Matheson Tri-Gas, Inc. The telephone numbers listed below are emergency numbers, please contact your local branch for routine inquiries. USA CANADA 959 Route 46 East 530 Watson Street Parsippany, New Jersey Whitby, Ontario 07054-0624 USA L1N 5R9 Canada Phone: 973-257-1100 Phone: 905-668-3570 SUBSTANCE: ARSENIC PENTAFLUORIDE SDS SYMBOL: AsF5 TRADE NAMES/SYNONYMS: ARSORANE, PENTAFLUORO-; ARSENIC FLUORIDE (ASF5); ARSENIC FLUORIDE; ASF5; MAT02015 CHEMICAL FAMILY: non-metallic, halides CREATION DATE: Jan 24 1989 REVISION DATE: Mar 16 1999 2. COMPOSITION, INFORMATION ON INGREDIENTS-----------Up
    [Show full text]
  • SENSIT® GOLD Helps Find the Source of Combustible Gases Fast!
    SENSITSENSIT®® GOLDGOLD helpshelps findfind thethe sourcesource ofof combustiblecombustible gasesgases fast!fast! Innovative Detection Solutions MADE IN USA www.gasleaksensors.com SENSIT® GOLD VERsatile multiPLE GAS DeteCtion InstRUMENT SENSIT® GOLD is designed to provide personal protection from potentially hazardous conditions and help find the source of combustible gases fast! Whether you need an investigation tool or a confined space monitor, you can depend on the SENSIT® GOLD to provide the safety and accuracy you need. Displays Up To 4 Gases GOLD Standard Features • LEL (PPM Optional) • Internal Pump • Oxygen • Water/Dust Filter • Carbon Monoxide • Push Button Operation • Hydrogen Sulfide • Field Calibration • Hydrogen Cyanide (Optional) • Date/Time Display • Calibration Alert • Operation Memory • Calibration Memory • Infrared Download • Audible/Visual Alarms • Bright LCD Display • Programmable Auto Shut Off INDUSTRY USERS APPLICATIONS PARTIAL LIST OF GASES SENSED* Butane Utilities Gas Leak Survey/Investigations Carbon Monoxide Maintenance Confined Space Monitoring Gasoline Fire Departments Gas Emergency Investigations Hydrogen Sulfide Safety Inspectors Vessel Testing Methane Home Inspectors Natural Gas Water/Sewer Departments Oxygen Heating Contractors Propane Utility Contractors Industrial Plants *Contact Sensit Technologies for more info. Propane Marketers LUER PROBE CONNECTOR WATER / DIRT FILTER LEL / PPM SENSOR INFRARED COMMUNICATIONS BACKLIT LCD DISPLAY ALARM LEDs OPERATION BUTTONS TICK ADJUST FLEXIBLE GOOSENECK STANDARD KIT
    [Show full text]
  • Safety Data Sheet Material Name: Fire Extinguisher with Recycled Halon 1301 and Methanol ID: KA006
    ^^9-^^ Material Safety Data Sheet Material Name: Fire Extinguisher with recycled Halon 1301 and Methanol ID: KA006 I * * * Section 1 - Chemical Product and Company Identification * * * | Chemical Name: Bromotrifluoromethane and Methanol Product Use: Extinguishing Fires Manufacturer Information Kidde Aerospace Phone: 252-246-7004 4200 Airport Drive, NW Wiison, NC 27896 Emergency # 1-800-451-8346; 760-602-8700 (3E Company) I * * * Section 2 - Composition / Information on Ingredients * * * I CAS» Component Percent 75-63-8 bromotrifluoromethane 08 67-56-1 Methyl alcohol 2 Component Related Regulatory Information This product may be regulated, have exposure limits or other information identified as the following: BromofluonDcarbons, Bnamine compounds. Component Information/Information on Non-Hazardous Components This product is considered to be hazardous under 29 CFR 1910.1200 (Hazard Communication). This is a controlled product under the criteria specified in the Canadian Workplace Hazardous Materials Information System (WHMIS). * * * Section 3 - Hazards Identification * * * I Emergency Overview Waming. Asphyxiant. Inhalation of vapors ofthis product may affect the cardiovascular and central nervous system and may cause death. Skin or eye contact with the liquid will cause frostbite. Pressurized container may explode when exposed to heat or flame. May cause blindness. May be harmful ifabsorbed through the skin. Potential Health Effects: Eyes Contacl with the liquid ofthis product will cause frostbite to the eyes. Potential Health Effects: Skin Contact with the liquid ofthis product will cause frostbite to the skin. This product contains methanol which can be absorbed though the skin and cause harmful effects. Potential Health Effects: Ingestion Note likely route of entry. This product contains methanol. Ingestion of methanol may cause irregular heartbeat, headache, dizziness, visual disturbances and blindness.
    [Show full text]
  • IVF Guidebook
    Design Guidebook Gas Delivery Systems for In-Vitro Fertilization Clinics ® 1 CONTENTS 5 Introduction 6-7 In-Vitro Fertilization Overview - Intra Cytoplasmic Sperm Injection 8-9 Equipment Commonly Using Gases in an IVF Clinic 10-11 Typical IVF Clinic Layout 12 Properties of Patient Care Gases 13 Properties of Cell Culture Gases & Liquid Nitrogen for Cryopreservation 14 Typical Distribution System - Carbon Dioxide 15 Typical Distribution System - Nitrogen 16 Typical Distribution System - Blood Gas 17 Typical Distribution System - Liquid Nitrogen 18 Equipment Specifications - Gas Cylinder Discharging 19 Equipment Specifications - Pipeline Accessories 20 Equipment Specifications - Safety & Annunciation 21 Equipment Specifications - Point-of-Use Control 22 Equipment Specifications - Cryogenic Fluid Handling 23-24 Important Design Criteria - Cell Culture Gases 25-26 Important Design Criteria - Cryogenic System 27 Discovery - Contacts 28 Discovery - Gas Supply to Cell Culture Equipment 29 Discovery - Cryogenic System 30-31 List of Equipment 32 Copyright 33-34 Notes 4 INTRODUCTION INFERTILITY A COMMON PROBLEM OUR ROLE AS GAS DELIVERY SYSTEM DESIGNERS Infertility, a condition characterized by the inability As gas delivery system designers, we have a complicated to become pregnant despite having carefully timed, task ahead of us. Our task is to provide a reliable gas unprotected sex for a year, is experienced by 6% distribution system that performs to expectations and of married women ages 15-44 in the United States, is simple to operate. For the gas distribution system, we according to the CDC’s National Survey of Family must: Growth with data for 2006-2010. Both men and women • supply very high quality gas molecules to keep contribute to the couple’s infertility.
    [Show full text]
  • Toward a List of Molecules As Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry
    Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Seager, S.; Bains, W. and Petkowski, J.J. “Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry.” Astrobiology 16, no. 6 (June 2016): 465–485 ©2016 Mary Ann Liebert, Inc As Published http://dx.doi.org/10.1089/ast.2015.1404 Publisher Mary Ann Liebert, Inc. Version Final published version Citable link http://hdl.handle.net/1721.1/109943 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. ASTROBIOLOGY Volume 16, Number 6, 2016 ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2015.1404 Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry S. Seager,1,2 W. Bains,1,3 and J.J. Petkowski1 Abstract Thousands of exoplanets are known to orbit nearby stars. Plans for the next generation of space-based and ground-based telescopes are fueling the anticipation that a precious few habitable planets can be identified in the coming decade. Even more highly anticipated is the chance to find signs of life on these habitable planets by way of biosignature gases. But which gases should we search for? Although a few biosignature gases are prominent in Earth’s atmospheric spectrum (O2,CH4,N2O), others have been considered as being produced at or able to accumulate to higher levels on exo-Earths (e.g., dimethyl sulfide and CH3Cl).
    [Show full text]
  • HIGH HAZARD GAS Review Date: 09/23/2019
    University of Pittsburgh EH&S Guideline Number: 04-021 Safety Manual Subject: Effective Date: 04/19/2017 Page 1 of 9 HIGH HAZARD GAS Review Date: 09/23/2019 STORAGE AND USE OF HIGH HAZARD GAS 1. Definition of High Hazard (HH) Gases For these guidelines, any gas meeting one or more of the following definitions based on International Fire Code (IFC) and National Fire Protection Association (NFPA) standards: 1.1. Flammable gas – a material that is a gas at 68ºF (20ºC) or less at an absolute pressure of 14.7 psi (101.325 kPa) when in a mixture of 13% or less by volume with air, or that has a flammable range at an absolute pressure of 14.7 psi (101.325 kPa) with air of at least 12%, regardless of the lower limit 1.2. Pyrophoric gas – a gas with an autoignition temperature in air at or below 130ºF (54.4ºC) 1.3. Health Hazard 3 (HH3) gas – material that, under emergency conditions and according to the standards, can cause serious or permanent injury 1.4. Health Hazard 4 (HH4) gas – material that, under emergency conditions and according to the standards, can be lethal The storage and usage of a gas or gases meeting any of the above definitions must follow all applicable IFC and NFPA guidelines and the requirements outlined in this document. Consult EH&S for specific guidance on gas mixtures containing corrosive, flammable or poisonous gas components (ex. 1% carbon monoxide/nitrogen, 5% hydrogen sulfide/helium). 2. Notification Requirements Prior to Obtaining High Hazard Gases 2.1.
    [Show full text]
  • SDS Bromomethane Ch3br
    Page : 1/12 Revised edition n° : 10.0 SAFETY DATASHEET Revision date : 07/2018 MTG009 Bromomethane SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Trade name Bromomethane Chemical description Bromomethane, Methyl bromid CAS N° 74-83-9 CE N° 200-813-2 Index N° 602-002-00-2 Registration n° Registration deadline not expired Chemical formula CH3Br 1.2. Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Industrial and professional Test gas/Calibration gas Laboratory use Contact supplier for more information on uses Uses advised against Consumer use not recommended 1.3. Details of the supplier of the safety data sheet MULTIGAS Company identification Route de l’Industrie 102 CH-1564 Domdidier Phone number +41 (0) 26 676 94 94 E-mail address [email protected] 1.4. Emergency telephone numbers 145 (Toxicology Centre Zurich) or +41 (0) 44 251 51 51 +41 (0) 26 676 94 94 (Multigas) SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification according to Regulation (EC) No. 1272/2008 [CLP] Physical hazards Flammable gases, Category 2 H221 Gases under pressure : Liquefied gas H280 Acute toxicity (oral), Category 3 H301 Page : 2/12 Revised edition n° : 10.0 SAFETY DATASHEET Revision date : 07/2018 MTG009 Bromomethane Skin corrosion/irritation, Category 2 H315 Serious eye damage/eye irritation, Category 2 H319 Acute toxicity (inhalation: gas) Category 2 H330 Specific target organ toxicity — Single exposure, Category 3, H335 Respiratory tract irritation Germ cell mutagenicity, Category 2 H341 Specific target organ toxicity — Repeated exposure, Category 2 H373 Hazardous to the aquatic environment — Acute Hazard, H400 Category 1 Hazardous to the ozone layer — category 1 H420 For the complete H-sentences texts mentioned in that chapter, refer to Section 16 2.2.
    [Show full text]
  • Compressed Gas Cylinders
    General Assistance Office of Environment, Health & Safety 642-3073 Emergency Phone Numbers Emergencies: Life-threatening Emergency or Imminent Hazard to the Environment 911 From cell phone 642-3333 Non Emergencies: Chemical or Biological Spill, or Radioactive Materials Spill/Business Hours EH&S 642-3073 Off-hours/Weekend Spills UCPD 642-6760 Compressed Physical-Plant Campus Services (24 hours) 642-1032 Gas Cylinders: Proper Management And Use Published by the Office of Environment, Health & Safety www.ehs.berkeley.edu University of California, Berkeley Revised January 2012 Office of Environment, Health & Safety Contents Page INTRODUCTION 1 1.0 General Hazards 1 2.0 Think Before You Buy 2 3.0 Receiving Compressed Gas Cylinders from the Vendor 2 4.0 Keep Your Chemical Inventory Up To Date 3 5.0 Safe Storage Practices 3 6.0 Moving and Transporting Cylinders 5 7.0 Safe Use 6 8.0 Special Precautions for Certain Gases 7 8.1 Flammable Gases 7 8.2 Toxic Gases 8 8.3 Oxygen and Oxidizing Gases 8 8.4 Corrosive Gases 8 8.5 Dangerously Reactive Gases 9 8.6 Pyrophoric Gases 9 8.7 Storage of Incompatible Gases 9 9.0 Safe Use of Regulators and Valves 9 10.0 How to Attach a Regulator 10 11.0 How to Shutdown a Cylinder with a Regulator 11 12.0 Compressed Gas Cylinder Return or Disposal 12 13.0 Other Resources 13 Introduction University of California, Berkeley (UC Berkeley) departments that use compressed gas cylinders must comply with a wide variety of laws and regulations, including those issued by Cal/OSHA, the California Fire Code and the City of Berkeley.
    [Show full text]
  • Toxic and Highly Toxic Gas Handling Procedure
    Environmental Health and Safety Toxic and Highly Toxic Gas Handling Procedure Date of Issuance: 10/2019 Revision Date: 5/27/2021 Revision Number: 1 Prepared by: EHS 1. Scope and Background The Carnegie Mellon University Toxic and Highly Toxic Gas Handling Program specifies minimum requirements for safe storage, use, and handling of toxic and highly toxic gas at Carnegie Mellon University. This program has been approved by the Laboratory Safety Committee. This document: • summarizes the health and safety risks associated with toxic and highly toxic gas use and handling; • identifies exposure control methods to protect employee’s safety and health and the environment; • outlines regulatory and university requirements related to this work; • specifies emergency response procedures for addressing toxic gas issues; and • provides resources for further information. Toxic and highly toxic gases are gases that may cause significant acute health effects at low concentrations. Health effects may include severe skin or eye irritation, pulmonary edema, neurotoxicity or other potentially fatal conditions. The criteria used to establish the materials addressed by this policy are: • A National Fire Protection Association (NFPA) health rating of 3 or 4 • An NFPA health rating of 2 with poor physiological warning properties • Pyrophoric (self-igniting) characteristics, OR • An extremely low occupational exposure limits in the absence of an NFPA health rating. Table 1 identifies common gases that meet the criteria of toxic or highly toxic, though it is
    [Show full text]
  • List of Extremely Hazardous Substances
    Chemical Name CAS Number Hazard A A-alpha-C (2-Amino-9H-pyrido{2,3-b]indole) 26148 -68-5 Carcinogen Acetaldehyde 76-07-0 Carcinogen, Reproductive Toxin Acetamide 60-35-5 Carcinogen Acetochlor 34256-82-1 Carcinogen 2-Acetylaminofluorene 53-96-3 Carcinogen Acifluorfen 62476-59-9 Carcinogen Acrolein 107-02-8 High acute toxicity Acrylamide 79-06-1 Carcinogen Acrylonitrile 107-13-1 Carcinogen Actinomycin D 50-76-0 Carcinogen Adriamycin (Doxorubicin hydrochloride) 23214-92-8 Carcinogen AF-2; [2-(2-furyl)-3-(5-nitro-2-furyl)]acrylamide 3588-53-7 Carcinogen Aflatoxins ---- Carcinogen, Reproductive Toxin Alachlor 15972-60-8 Carcinogen Aldrin 309-00-2 Carcinogen Allyl chloride 107-05-1 Carcinogen Aluminum chloride 7446-70-0 Reproductive Toxin 2-Aminoanthraquinone 117-79-3 Carcinogen p-Aminoazobenzene 60-09-3 Carcinogen ortho-Aminoazotoluene 97-56-3 Carcinogen 4-Aminobiphenyl (4-aminodiphenyl) 92-67-1 Carcinogen 3-Amino-9-ethylcarbazole hydrochloride 6109-97-3 Carcinogen 1-Amino-2-methylanthraquinone 82-28-0 Carcinogen 2-Amino-5-(5-nitro-2-furyl)-1,3,4-thiadiazole 712-68-5 Carcinogen 2-Aminopyridine 462-08-8 High acute toxicity Amitrole 61-82-5 Carcinogen Anesthetic gases --- Reproductive Toxin ortho-Anisidine 90-04-0 Carcinogen ortho-Anisidine hydrochloride 134-29-2 Carcinogen Antimony oxide (Antimony trioxide) 130-96-4 Carcinogen Aramite 140-57-8 Carcinogen Arsenic (inorganic arsenic compounds) --- Carcinogen Arsenic 7440-38-2 Reproductive Toxin Arsenic pentafluoride gas 784-36-3 High Acute Toxicity Arsine gas 7784-42-1 High Acute Toxicity Asbestos
    [Show full text]