If a Bird Flies in the Forest, Does Anyone Hear It? Avian Flight Sound Cues and Hearing in Lepidoptera

Total Page:16

File Type:pdf, Size:1020Kb

If a Bird Flies in the Forest, Does Anyone Hear It? Avian Flight Sound Cues and Hearing in Lepidoptera If a Bird Flies in the Forest, Does Anyone Hear it? Avian Flight Sound Cues and Hearing in Lepidoptera By Jean-Paul G. Fournier A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science in Biology Carleton University Ottawa, Ontario ©2011 Jean-Paul G. Fournier Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-81698-1 Our file Notre reference ISBN: 978-0-494-81698-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extra its substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission. In compliance with the Canadian Conformement a la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondaires ont ete enleves de thesis. cette these. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. 1+1 Canada Abstract Insectivorous birds exert a strong selection pressure on insects. Insects have many anti-predator mechanisms that they employ in response to avian predation. The least investigated of these mechanisms is the use of hearing. I tested the hypothesis that insects can hear the sounds produced by attacking birds. The bird flight sound cues of two insectivorous species, the black-capped chickadee, Poecile atricapillus, and the eastern phoebe, Sayornis phoebe, were found to be pulsed, broad-frequency sounds with peak frequencies in the sonic range, but also with a large ultrasonic component. Bird flight sound cues are produced at biologically relevant intensities (~75 dB at 30 cm) and are audible to the human ear from over three meters away. Physiological recordings of the moth, Trichoplusia ni, demonstrated that they are capable of hearing the bird flight cues at natural distances at which a bird would attack. This study provides the first evidence of insects detecting the passive flight cues of an avian predator. 11 Acknowledgements I would like to thank my committee members Dr. John Lewis and Dr. Jeff Dawson for their input and recommendations throughout my Master's thesis. Specifically, I would like to thank Dr. Lewis for sparking my interest in neuroscience and introducing me to the incredible field of neuroethology. If it were not for you taking the time to answer all my questions and directing me to Dr. Jayne Yack, I would not be writing these words right now. I thank Dr. Jeff Dawson for showing me what a true scientist really is. The field of neuroethology is multidisciplinary and requires a wide range of skills and techniques to ultimately explain the neural basis of behaviour. I am envious of the vast amounts of information this scientist has at the ready for any troubled "lesser" scientist. There were countless times I approached Dr. Dawson with a problem and he not only supplied me with an answer, but sat me down and gave me a complete lesson regarding the topic on his white-board. 1 really appreciate the time you took to do that for me. More than anyone, I have to thank my supervisor, Dr. Jayne Yack, for taking me on as a graduate student and allowing me to take on an amazing project that was number one on my list. I had no intentions of ever working with insects. Now I couldn't imagine a life without them. Outside of Academia, I have officially become the weird bug guy who captures moths and puts them in his pocket for "later use". It is because of you, Dr. Yack, and your lab, that I have become this person and I thank you for that. You have taught me so much, not only about insect bioacoustics, but about research and the life of a scientist. I love this life and though it is an incredible amount of work that never ends, it is meaningful and exciting. I am very grateful you saw the love of biology I have in me and allowed me to work in your lab and with great people. iii I would like to thank the entire Yack lab for showing me the ropes and helping me get started here. Specifically, I have to thank Sen Sivalinghem. First of all, he is a walking encyclopedia of all things science and more. Sen you made doing physiology all night a pleasure (not that doing physiology all night isn't a pleasure in itself) and I thank you for being a good friend. I thank Ed Bruggink for enthusiastically helping with butterfly and moth rearing. When busy or stressed there was no better way to clear my mind than to have a good conversation with you in the greenhouse. I thank Mike Jutting for help with all things electronic. I would also like to thank Jennifer Mongrain and Matt Jackson for their help at QUBS with collecting moths. I thank my family and friends for their support and for believing in me. Lastly, I would like to thank Dr. James Fullard for allowing me to use his lab and equipment at QUBS and most of all for joking with me that my project would never work. It felt fantastic proving him wrong. The short time I knew him was a pleasure. Funding for this study was provided to Dr. J. E. Yack by the Natural Sciences and Engineering Research Council and the Canadian Foundation for Innovation (CFI). Funding to J-P Fournier was provided by Carleton University. IV Table of Contents Abstract ii Acknowledgements iii Table of Contents v List of Figures vii List of Tables ix 1. General Introduction 1 1.1 Hearing in Lepidoptera 3 1.2 Thesis Objectives 9 2. Acoustic Signals and Cues Associated with Flight in Insectivorous Birds .... 11 2.1 Introduction 11 2.1.1 Active Signals and Passive Cues of Insectivorous Predators 11 2.1.2 Acoustic Cues Produced by Avian Predators 15 2.1.3 Chapter Objectives 21 2.2 Materials and Methods 22 2.2.1 Animals and Location 22 2.2.2 Setup of Audio and Video Recordings 23 2.2.3 Analysis 26 2.3 Results 30 2.3.1 General Foraging Flight Characteristics 30 2.3.2 Temporal Analysis 42 2.3.3 Spectral Analysis 44 2.3.4 Sound Level Analysis 45 2.4 Discussion 46 2.4.1 Variation in the Foraging Techniques of the Eastern Phoebe 47 2.4.2 Foraging Techniques of the Black-Capped Chickadee 49 2.4.3 Avian Flight Sound Cues 50 2.4.4 Comparison of Avian Flight Sound Cues and Signals 52 3. Are Insects Capable of Detecting Avian Flight Sound Cues? 56 3.1 Introduction 56 3.1.1 Insect Ears: Single or Multi-Functional 57 3.1.2 Could Insects be Listening for Passive Cues from Predators? 60 3.1.3 Chapter Objectives 62 3.2 Materials and Methods 64 3.2.1 Animals 64 3.2.2 Extracellular Physiology 64 3.2.3 Data Analysis 68 3.3 Results 70 3.3.1 Are Moths Capable of Hearing Bird Flight Sounds? 70 3.3.2 Bird Flight Sound Playbacks 72 3.4 Discussion 81 v 3.4.1 Are Bird Flight Sounds Relevant to Moths? 81 3.4.2 Are Bird Flight Sounds Capable of Eliciting a Behavioural Response in Moths? 83 3.4.3 Detection Distances 86 3.4.4 A2 Cell Firing Patterns - A Possible Safety Mechanism 88 4. General Conclusion 91 5. References 94 VI List of Figures 1.1 Phylogeny of the Lepidoptera 5 1.2 Location and external morphology of the tympanal organs found in Lepidoptera 7 2.1 Bird flight sound recordings set-up 25 2.2 Comparison of filtered and unfiltered eastern phoebe {Sayornis phoebe) flight sound cues 33 2.3 Eastern phoebe {Sayornis phoebe) direct attack (1) 34 2.4 Eastern phoebe {Sayornisphoebe) direct attack (2) 35 2.5 Eastern phoebe {Sayornis phoebe) "swift-like" attack 36 2.6 Eastern phoebe {Sayornisphoebe) hover attack (1) 37 2.7 Eastern phoebe {Sayornisphoebe) hover attack (2) 38 2.8 Eastern phoebe {Sayornisphoebe) aerial glean attack 39 2.9 Black-capped chickadee {Poecile atricapillus) take-off flight 40 2.10 Black-capped chickadee {Poecile atricapillus) approach and take-off flight 41 3.1 Typical sensory response to sound stimuli from extracellular nerve recordings from IIINlb's Al cell in Trichoplusia ni 70 3.2 Audiograms from extracellular nerve recordings of IIINlb's Al cell in Trichoplusia ni 71 3.3 Comparison of Trichoplusia ni audiogram to Sayornis phoebe flight sound power spectrum 72 3.4 Representative traces of the response of Trichoplusia ni's auditory receptors (Al and A2 cells) to the flight sounds produced by an approaching Sayornis phoebe 73 3.5 Measurements of Trichoplusia nfs Al cell response to single flight cycle playbacks of Sayornis phoebe 76 vii 3.6 Trichoplusia
Recommended publications
  • St Julians Park Species List, 1984 – 2003
    St Julians Park Species List, 1984 – 2003 Fungi Species Common Name Date recorded Scleroderma citrinum Common Earth Ball 19/09/99 Amillaria mellea Honey Fungus 19/09/99 Hypholoma sublateridium Brick Caps 19/09/99 Piptoporus belulinus Birch Polypore 19/09/99 Lycoperdon perlatum Common Puffball 19/09/99 Coriolus versicolor Many-Zoned Polypore 19/09/99 Boletus erythropus - 19/09/99 Lactarius quietus Oak/Oily Milk Cap 19/09/99 Russula cyanoxantha The Charcoal Burner 19/09/99 Amanita muscaria Fly Agaric 19/09/99 Laccaria laccata Deceiver 19/09/99 Lepidoptera Species Common Name Date recorded Melanargia galathea Marbled White 1992/3 Venessa cardui Painted Lady 1992/3 Thymelicus sylvestris Small Skipper 1992/3, 06/06/98 Ochlodes venata Large Skipper 1992/3, 06/06/98 Pararge aegeria Speckled Wood 1992/3, 06/06/98 Venessa atalanta Red Admiral 1992/3 Aglais urticae Small Tortoiseshell 1992/3 Polyommatus icarus Common Blue 1992/3, 06/06/98 Pyronia tithonus Gamekeeper 1992/3 Maniola jurtina Meadow Brown 1992/3, 06/06/98 Aphantopus hyperantus Ringlet 1992/3, 06/06/98 Inachis 10 Peacock 1992/3, 23/03/00 Polygonia C-album Comma 1992/3, 23/03/00 Anthocaris cardamines Orange Tip 1992/3 Noctua pronuba Large Yellow Underwing 06/06/98 Pieris brassicae Large White 06/06/98 Zygaena trifolii 5 Spot Burnet 06/06/98 Diboba caeruleocephala Figure of Eight 22/10/99 Xanthia aurago Barred Sallow 22/10/99 Chloroclysta truncate Common Marbled Carpet 22/10/99 Epirrata dilutata November Moth 22/10/99 Epirrata chrysti Pale November Moth 22/10/99, 07/11/99 Chloroclysta
    [Show full text]
  • Acoustic Communication in the Nocturnal Lepidoptera
    Chapter 6 Acoustic Communication in the Nocturnal Lepidoptera Michael D. Greenfield Abstract Pair formation in moths typically involves pheromones, but some pyra- loid and noctuoid species use sound in mating communication. The signals are generally ultrasound, broadcast by males, and function in courtship. Long-range advertisement songs also occur which exhibit high convergence with commu- nication in other acoustic species such as orthopterans and anurans. Tympanal hearing with sensitivity to ultrasound in the context of bat avoidance behavior is widespread in the Lepidoptera, and phylogenetic inference indicates that such perception preceded the evolution of song. This sequence suggests that male song originated via the sensory bias mechanism, but the trajectory by which ances- tral defensive behavior in females—negative responses to bat echolocation sig- nals—may have evolved toward positive responses to male song remains unclear. Analyses of various species offer some insight to this improbable transition, and to the general process by which signals may evolve via the sensory bias mechanism. 6.1 Introduction The acoustic world of Lepidoptera remained for humans largely unknown, and this for good reason: It takes place mostly in the middle- to high-ultrasound fre- quency range, well beyond our sensitivity range. Thus, the discovery and detailed study of acoustically communicating moths came about only with the use of electronic instruments sensitive to these sound frequencies. Such equipment was invented following the 1930s, and instruments that could be readily applied in the field were only available since the 1980s. But the application of such equipment M. D. Greenfield (*) Institut de recherche sur la biologie de l’insecte (IRBI), CNRS UMR 7261, Parc de Grandmont, Université François Rabelais de Tours, 37200 Tours, France e-mail: [email protected] B.
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Scottish Macro-Moth List, 2015
    Notes on the Scottish Macro-moth List, 2015 This list aims to include every species of macro-moth reliably recorded in Scotland, with an assessment of its Scottish status, as guidance for observers contributing to the National Moth Recording Scheme (NMRS). It updates and amends the previous lists of 2009, 2011, 2012 & 2014. The requirement for inclusion on this checklist is a minimum of one record that is beyond reasonable doubt. Plausible but unproven species are relegated to an appendix, awaiting confirmation or further records. Unlikely species and known errors are omitted altogether, even if published records exist. Note that inclusion in the Scottish Invertebrate Records Index (SIRI) does not imply credibility. At one time or another, virtually every macro-moth on the British list has been reported from Scotland. Many of these claims are almost certainly misidentifications or other errors, including name confusion. However, because the County Moth Recorder (CMR) has the final say, dubious Scottish records for some unlikely species appear in the NMRS dataset. A modern complication involves the unwitting transportation of moths inside the traps of visiting lepidopterists. Then on the first night of their stay they record a species never seen before or afterwards by the local observers. Various such instances are known or suspected, including three for my own vice-county of Banffshire. Surprising species found in visitors’ traps the first time they are used here should always be regarded with caution. Clerical slips – the wrong scientific name scribbled in a notebook – have long caused confusion. An even greater modern problem involves errors when computerising the data.
    [Show full text]
  • Cheshire (Vice County 58) Moth Report for 2016
    CHESHIRE (VICE COUNTY 58) MOTH REPORT FOR 2016 Oleander Hawk-Moth: Les Hall Authors: Steve H. Hind and Steve W. Holmes Date: May 2016 Cheshire moth report 2016 Introduction This was the final year of recording for the National Macro-moth Atlas. A few species were added to squares during daytime searches early in the year but any plans to trap in under- recorded squares were often thwarted by cold nights and it was not until mid-July that SHH considered it worthwhile venturing into the uplands. The overall atlas coverage in the county has been good and our results should compare well against the rest of the country, although there remain gaps in most squares, where we failed to find species which are most likely present. Hopefully these gaps will be filled over the next few years, as recording of our Macro-moths continue. As always, a list of those species new for their respective 10km squares during 2016 can be found after the main report. A special effort was made during the winter to add historical records from the collections at Manchester Museum and past entomological journals, which will enable us to compare our current data with that of the past. Now that recording for the Macro- moth atlas is over, our efforts turn to the Micro-moths and the ongoing Micro-moth recording scheme. There is a lot to discover about the distributions of our Micro-moths across the county and the increasing interest continues to add much valuable information. 2016 was another poor year for moths, with results from the national Garden Moth Scheme showing a 20% decline on 2015 (excluding Diamond-back Moth, of which there was a significant invasion).
    [Show full text]
  • Biology and Phenology of Flight of Adults of Geometridae in the Conditions of the Khorezm Oasis Х.U
    International Journal of Academic Pedagogical Research (IJAPR) ISSN: 2643-9123 Vol. 4 Issue 10, October - 2020, Pages: 70-73 Biology And Phenology Of Flight Of Adults Of Geometridae In The Conditions Of The Khorezm Oasis Х.U. Bekchanov¹, М.Х. Bekchanov², G.Q.Komiljanova³. ¹ Сandidate of Zoological Sciences,Urgench State University of Uzbekistan. ² Phd doctor, Urgench State University of Uzbekistan. ³Student of the Faculty of natural Sciences, Urgench State University of Uzbekistan. [email protected] Abstract: The paper presents the results of biology and phenology of flight of adults of Geometridae in the conditions of the Khorezm Oasis, as well as a review of the literature on this topic. Presented 18 species of 2 subfamilies: Archiearinae and Sterrhinae, which also includes previously published information on finds in the region. Keywords—: Geometridae; Lepidoptera; Archiearinae and Sterrhinae; caterpillar; chrysalis; adult butterfly; phenology INTRODUCTION oligophages (Plum Geometridae (Angerona prunaria) and monophages) Winter Geometridae (Operophthera brumata). Butterflies of different shapes, small or medium-sized After feeding, the caterpillars go into the soil and pupate (average wingspan: 20-55 mm). Many species are there. characterized by a slender abdomen and wide wings. Some Pupa. The morphological structure is specific, but most species keep their wings spread out, some - folded top-like. often the pupae are smooth, reddish-brown and are in the There are species in which females are short-winged or ground in a cocoon or without it. Species of such genera as without wings at all. Some species have a thick body, which Ourapteryx, Selenia, Angerona pupate on tree branches in gives them a certain resemblance to cocoons.
    [Show full text]
  • The Bat–Moth Arms Race Hannah M
    © 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 1589-1602 doi:10.1242/jeb.086686 REVIEW Evolutionary escalation: the bat–moth arms race Hannah M. ter Hofstede1,* and John M. Ratcliffe2,* ABSTRACT exclusive to the interactions between bats and moths. Most Echolocation in bats and high-frequency hearing in their insect prey adaptations that make bats better moth hunters also make them make bats and insects an ideal system for studying the sensory more effective hunters of other insects, and such adaptations are ecology and neuroethology of predator–prey interactions. Here, we therefore not moth specific. Likewise, some moths use their ears to review the evolutionary history of bats and eared insects, focusing on detect not only bats but also insect-eating birds or mates (Conner, the insect order Lepidoptera, and consider the evidence for 1999; Nakano et al., 2015). antipredator adaptations and predator counter-adaptations. Ears The evolutionary histories of predator and prey also differ. The ∼ evolved in a remarkable number of body locations across insects, with order Lepidoptera (moths and butterflies) originated 150 million the original selection pressure for ears differing between groups. years ago (mya; Misof et al., 2014), long before the origin of bats, Although cause and effect are difficult to determine, correlations which first took to the wing sometime between 60 and 95 mya between hearing and life history strategies in moths provide evidence (Bininda-Emonds et al., 2007). Although powered flight is a for how these two variables influence each other. We consider life defining characteristic of bats, laryngeal echolocation may have ∼ history variables such as size, sex, circadian and seasonal activity evolved only 50 mya (Simmons et al., 2008; Teeling, 2009; patterns, geographic range and the composition of sympatric bat Veselka et al., 2010).
    [Show full text]
  • Wisconsin Entomological Society Newsletter
    Wisconsin Entomological Society Newsletter It wasleast acomparedbuggy year--to 2009.at News from the andUS. Itsoutherncan be I ended the year with a InsOet ÜÌagnostie Lab easily separated 14 percent rise in sam- sy Phit Pettitteri from our native ples and a 19 percent rise in brown stink e-mails. I never prayed for an bugs because of early frost, so I was not too summer rains assured us of the two light-colored bands overwhelmed. The spring and plenty of mosquitoes. I found in the antennae of the thought they were normal non-native. Signifìcant fruit bad- but Dr. Stan Temple - damage is seen on apples, ••• an emeritus professor from cherries, green beans, soy- News from the Wildlife Ecology -- shared beans, raspberries and pears. Insect Diagnostic Lab with me that his light trap If that was not enough, the Page 1 counts were the highest he adults migrate into homes in Spring Meeting Date has seen in over 20 years of the fall and behave like multi- Page 2 trapping. colored Asian lady beetles. 2010 Wisconsin I never should have made Vacuum them up and they Lepidoptera Season any comment in the last smell big time. We had inter- Summary newsletter about no new state cepts in Manitowoc and Dane Page 3 records. In September we had counties from packages Photo Salon Winners two unwelcome insects arrive: shipped from out east, and I Page 8 The spotted-winged Droso- am waiting on. a sample from Books & Websites phila (Drosophila suzukii) and the northwest part of the Page 9 the brown marmorated stink state.
    [Show full text]
  • Hampshire & Isle of Wight Butterfly & Moth Report 2013
    Butterfly Conservation HAMPSHIRE & ISLE OF WIGHT BUTTERFLY & MOTH REPORT 2013 Contents Page Introduction – Mike Wall 2 The butterfly and moth year 2013 – Tim Norriss 3 Branch reserves updates Bentley Station Meadow – Jayne Chapman 5 Magdalen Hill Down – Jenny Mallett 8 Yew Hill – Brian Fletcher 9 Dukes on the Edge – Dan Hoare 11 Reflections on Mothing – Barry Goater 13 Brown Hairstreak – Henry Edmunds 18 Obituary: Tony Dobson – Mike Wall 19 Hampshire & Isle of Wight Moth Weekend 2013 – Mike Wall 21 Common Species Summary 24 Branch photographic competition 26 Alternative Mothing – Tim Norriss 28 Great Butterfly Race 2013 – Lynn Fomison 29 Weather report 2013 – Dave Owen 30 Glossary of terms 32 Butterfly report 2013 33 Butterfly record coverage 2013 33 Summary of earliest-latest butterfly sightings 2013 34 2012-2013 butterfly trends in Hampshire & Isle of Wight 35 Species accounts 36 Moth report 2013 72 Editorial 72 Moth record coverage 2013 73 Species accounts 74 List of observers 146 Index to Butterfly Species Accounts 152 1 Introduction I have pleasure in writing this, my first introduction as Chairman of the Branch. When I joined Butterfly Conservation some ten years ago, as a new recruit to the wonderful world of moths, I never envisaged becoming part of the main committee let alone finding myself on this ‘lofty perch’! Firstly, I would like to register my and the Branch’s thanks to Pete Eeles for his support and enthusiasm for the branch during his time as chair, despite the pressures of a job that often saw him away from the country, and to the other members of the main committee for their support and enthusiasm over the past twelve months.
    [Show full text]
  • Insects and Mites Associated with Ontario Forests: Classification, Common Names, Main Hosts and Importance
    cfs-scf.nrcan-rncan.gc.ca Insects and mites associated with Ontario forests: Classification, common names, main hosts and importance. Nystrom, K.L.; Ochoa, I. M. 2006. Information Report GLC-X-7 Natural Resources Canada Canadian Forest Service Great Lakes Forestry Centre Sault Ste. Marie, Ontario Library and Archives Canada Cataloguing in Publication Nystrom, K.L. Insects and mites associated with Ontario forests : classification, common names, main hosts, and importance / K.L. Nystrom and I.M. Ochoa. (Information report, 0832-7122 ; GLC-X-7) Includes abstract in French. Includes index. Previously published 1994. Includes bibliographical references: p. 77 ISBN 0-662-43153-7 ISSN 2562-0738 (online) Cat. no.: Fo123-2/7-2006E 1. Forest insects--Ontario. 2. Plant mites--Ontario. 3. Forest insects--Nomenclature. 4. Plant mites--Nomenclature. I. Ochoa, I.M. II. Great Lakes Forestry Centre III. Title. IV. Series: Information report (Great Lakes Forestry Centre) ; GLC-X-7 SB764 C3 N97 2006 634.9'6709713 C2006-980111-8 Nystrom, K.L. and Ochoa, I.M. 2006. Insects and mites associated with Ontario forests: classification, common names, main hosts, and importance. Nat. Res. Can., Can. For. Ser., Sault Ste. Marie, Ontario. Inf. Rep. GLC-X-7. 98p. ABSTRACT This report was prepared to facilitate the use of scientific and common names of insects and mites dealt with by the forestry community of Ontario and includes most of the species recorded by the Forest Health Unit over the past 60 years. Insects and mites are arranged alphabetically by genus and species. Information provided for each entry includes order, family name, common name, host plant or insect type and a rating of current importance.
    [Show full text]
  • New World Geometrid Moths (Lepidoptera: Geometridae): Molecular Phylogeny, Biogeography, Taxonomic Updates and Description of 11 New Tribes
    77 (3): 457 – 486 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. New World geometrid moths (Lepidoptera: Geometridae): Molecular phylogeny, biogeography, taxonomic updates and description of 11 new tribes Gunnar Brehm *, 1, Leidys Murillo-Ramos 2, 14, Pasi Sihvonen 3, Axel Hausmann 4, B. Christian Schmidt 5, Erki Õunap 6, 7, Alfred Moser 8, Rolf Mörtter 9, Daniel Bolt 10, Florian Bodner 11, Aare Lindt 12, Luis E. Parra 13 & Niklas Wahlberg 14 1 Institut für Zoologie und Evolutionsbiologie mit Phyletischem Museum, Erbertstr. 1, 07743 Jena, Germany; Gunnar Brehm * [gunnar.brehm @ uni-jena.de] — 2 Departamento de Biología, Universidad de Sucre; Leidys Murillo-Ramos [[email protected]] — 3 Finnish Mu- seum of Natural History, Pohjoinen Rautatiekatu 13, 00100 Helsinki, Finland; Pasi Sihvonen [[email protected]] — 4 Staatliche Natur- wissenschaftliche Sammlungen Bayerns – Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany; Axel Hausmann [[email protected]] — 5 Canadian National Collection of Insects, Arachnids & Nematodes, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada; B. Christian Schmidt [[email protected]] — 6 Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; Erki Õunap [[email protected]] — 7 Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia — 8 UFRGS – Universidade Federal do Rio Grande do Sul, Porto Alegre,
    [Show full text]
  • Appendix 5: Fauna Known to Occur on Fort Drum
    Appendix 5: Fauna Known to Occur on Fort Drum LIST OF FAUNA KNOWN TO OCCUR ON FORT DRUM as of January 2017. Federally listed species are noted with FT (Federal Threatened) and FE (Federal Endangered); state listed species are noted with SSC (Species of Special Concern), ST (State Threatened, and SE (State Endangered); introduced species are noted with I (Introduced). INSECT SPECIES Except where otherwise noted all insect and invertebrate taxonomy based on (1) Arnett, R.H. 2000. American Insects: A Handbook of the Insects of North America North of Mexico, 2nd edition, CRC Press, 1024 pp; (2) Marshall, S.A. 2013. Insects: Their Natural History and Diversity, Firefly Books, Buffalo, NY, 732 pp.; (3) Bugguide.net, 2003-2017, http://www.bugguide.net/node/view/15740, Iowa State University. ORDER EPHEMEROPTERA--Mayflies Taxonomy based on (1) Peckarsky, B.L., P.R. Fraissinet, M.A. Penton, and D.J. Conklin Jr. 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press. 456 pp; (2) Merritt, R.W., K.W. Cummins, and M.B. Berg 2008. An Introduction to the Aquatic Insects of North America, 4th Edition. Kendall Hunt Publishing. 1158 pp. FAMILY LEPTOPHLEBIIDAE—Pronggillled Mayflies FAMILY BAETIDAE—Small Minnow Mayflies Habrophleboides sp. Acentrella sp. Habrophlebia sp. Acerpenna sp. Leptophlebia sp. Baetis sp. Paraleptophlebia sp. Callibaetis sp. Centroptilum sp. FAMILY CAENIDAE—Small Squaregilled Mayflies Diphetor sp. Brachycercus sp. Heterocloeon sp. Caenis sp. Paracloeodes sp. Plauditus sp. FAMILY EPHEMERELLIDAE—Spiny Crawler Procloeon sp. Mayflies Pseudocentroptiloides sp. Caurinella sp. Pseudocloeon sp. Drunela sp. Ephemerella sp. FAMILY METRETOPODIDAE—Cleftfooted Minnow Eurylophella sp. Mayflies Serratella sp.
    [Show full text]