Solving the FYVE Domain–Ptdins(3)P Puzzle

Total Page:16

File Type:pdf, Size:1020Kb

Solving the FYVE Domain–Ptdins(3)P Puzzle © 2001 Nature Publishing Group http://structbio.nature.com news and views Solving the FYVE domain–PtdIns(3)P puzzle Paul C. Driscoll Recent crystallographic analyses of membrane-tethering FYVE finger domains from proteins involved in the regulation of endocytic vesicle trafficking have led to conflicting views of the precise nature of the contacts formed with the specific phospholipid ligand. New NMR data obtained for ligand-bound forms of a FYVE domain help resolve the atomic details of this interaction. The truly dynamic nature of eukaryotic cell membranes is brought into sharp focus by the text book description of receptor-mediated endocytosis: ∼50% of the plasma membrane is internalized and recycled every hour whereas the synthesis of new membrane is perhaps one tenth of this rate. The highly regulated process of endocytosis, by which cells recover fluid, chemicals and specific macromolecules from the external environment, is the tar- get of intense investigation. The interplay of cytosolic proteins with constituent plasma and endosomal membranes pro- vides many challenges to structural biolo- gists, not least at the interface between the soluble components and the membrane lipids themselves. Progress by the tradi- tional methods of structural investigation at this ‘phase boundary’ is particularly difficult. © http://structbio.nature.com Group 2001 Nature Publishing In a paper published recently in Science, Kutateladze and Overduin1 report an extension of their earlier work using NMR spectroscopy to analyze the lipid interactions of the FYVE protein domain from the protein early endosome Fig. 1 The chemical structure of PtdIns(3)P and the predicted ‘side-on’ interaction with the FYVE antigen-1 (EEA1). EEA1 has a major role domain of Vps27p (ref. 10; PDB code 1VFY). For the lipid, the D-myo-inositol ring is shown in red, 1′ and 3′ phosphates in blue. For Vps27p, the zinc atoms are shown in red, the ligand binding in the regulation of endosome trafficking residues of the conserved R(R/K)HHCRxCG sequence in yellow. The inner leaflet of the plasma and dynamics, specifically to promote the membrane is shown schematically in gray. tethering of two endosomal vesicles prior to fusion. The new observations serve to illuminate the likely mode of FYVE domain–membrane interfacial interac- action of class III PtdIns 3′OH-kinase. In product PtdIns(3)P is EEA1 (ref. 3). tion and provoke reassessment of alterna- yeast cells this lipid kinase is known as EEA1 contains an N-terminal zinc finger, tive predictions based upon X-ray Vps34p. Vps stands for vacuolar protein an abundance of heptad repeats predict- crystallographic studies of other mem- sorting mutant and the name reflects the ed to form a homodimeric parallel bers of this class of membrane attachment phenotype — Vps34p is essential for traf- α-helical coiled coil, a C-terminal proxi- domain. ficking of hydrolytic enzymes to the yeast mal region possibly containing a calmod- vacuole, which has a similar role to the ulin-binding IQ motif, and a C-terminal Properties of PtdIns lysosome in mammalian cells. Vps34p is Cys-rich domain with homology to sev- Phosphatidylinositol (PtdIns) provides a also implicated in the endocytotic path- eral other proteins implicated in mem- starting point for a rich chemistry that is way of yeast. Class III PtdIns 3′OH-kinase brane trafficking events. Stenmark and exploited by many different constitutive in mammalian cells is likewise now coworkers4 dubbed this last segment the and acute phase (for example, growth fac- understood to have an important role in FYVE domain based upon the four pro- tor stimulation) cellular processes2. The membrane trafficking in various con- teins then identified to contain such D-myo-inositol headgroup contains five texts3. sequences: Fab1p, YOTB, Vac1p and hydroxyl groups, three of which (posi- EEA1. The FYVE domain has eight con- tions 3′, 4′ and 5′) are known targets for FYVE domains bind PtdIns(3)P served cysteines, which coordinate two phosphorylation. In eukaryotic cells, Biochemical and inhibitor studies have Zn2+ ions, and several other conserved PtdIns(3)P (Fig. 1) is produced by the revealed that a direct target of the lipid features. The most notable of these is the nature structural biology • volume 8 number 4 • april 2001 287 © 2001 Nature Publishing Group http://structbio.nature.com news and views Fig. 2 The FYVE homodimer found in the crystal structure of the Drosophila Hrs VHS-FYVE tandem module pair12 (PDB code 1DVP), viewed from the putative ligand binding face (left). Conserved ligand binding residues are highlighted in yellow and the zinc atoms in red. The location of bound cit- rate ions (blue) is indicated by the yellow arrows. If the FYVE domains interact with PtdIns(3)P in the membrane (gray) as a homodimer, then the ori- entation of the FYVE domain with respect to the membrane (right), obtained by 90° rotation of the structure about the dotted line (left), is quite different from that predicted in ref. 9 (Fig. 1). basic amino acid sequence motif two zinc atoms and a small hydrophobic the surface of the membrane and interact R(R/K)HHCRxCG surrounding the core. The solvent-exposed face of the with the fatty acid side chains of the mem- third and fourth cysteine residues, sever- domain on the opposite side to the α-helix brane interior. al hydrophobic amino acid positions and is approximately flat and contains the The flat-face model. More recently a an isolated Arg residue towards the basic residues of the R(R/K)HHCRxCG second crystal structure of a FYVE C-terminus. motif, which are arrayed along the first domain has emerged as a part of the tan- As early as 1996 it was demonstrated strand of the first β-hairpin. dem VHS-FYVE construct of Drosophila that the endosomal localization of EEA1 A provocative feature of the intermole- Hrs13. In this structure the basic FYVE depended upon the presence of the FYVE cular contacts within these crystals is the domain architecture seen for Vps27p is domain4. Subsequently several groups occupancy of the basic surface patch pre- closely replicated, but the intriguing were able to show that fusion proteins of sented by the R(R/K)HHCRxCG motif by aspect of this study is that the protein © http://structbio.nature.com Group 2001 Nature Publishing the truncated forms of these and other the backbone and side chain carboxylate crystallizes as a homodimer, with the proteins comprising FYVE domains can groups from two residues six positions interface formed by a head-to-tail associ- directly and selectively bind PtdIns(3)P apart in the C-terminal α-helix of a lattice ation of the FYVE domain which buries in vitro and in vivo5–7. These and other neighbor. This interaction was conve- 1,920 Å2 of accessible surface area (Fig. 2). studies have led to the notion that the niently exploited to derive a molecular The dimer contact includes residues from FYVE domain, now identified in more model of how the 1,3-bisphospho-myo- the N-terminal segment and the strands than 30 different proteins, represents a inositol headgroup of PtdIns(3)P might of the two β-sheets, and includes a con- conserved adaptor domain whose prim- occupy the equivalent binding site, and served Trp residue and one of the His ary function is to act as a membrane- additionally why PtdIns(4)P or more residues in the R(R/K)HHCRxCG motif. attachment module that depends upon highly modified PtdInsPn lipids would The dimerization mode creates two interaction with PtdIns(3)P (ref. 8). not interact as a result of steric clashes. neighboring cavities, each of which con- Such a mode of PtdIns(3)P interaction tains an intimately bound citrate anion Crystal structures of the FYVE would be broadly consistent with site- from the crystallization liquor. The area domain directed mutagenesis studies which have around these ‘multianion-binding sites’ Structural biologists were not slow to clearly identified the R(R/K)HHCRxCG exhibits a very strong positive electrostat- descend on the FYVE domain as a target motif as the site of PtdIns(3)P bind- ic polarization and appears to be ideal for for structure elucidation. Misra and ing10,11. promoting an essentially flat-face interac- Hurley10 were the first to report the deter- The side-on model. In the model pro- tion of the VHS-FYVE tandem domain mination of the FYVE domain structure, posed by Misra and Hurley9 the FYVE pair with a pair of PtdIns(3)P molecules in the form of a 1.15 Å resolution crystal domain would bind the PtdIns(3)P sub- in the membrane. Moreover the apparent structure of that from yeast Vps27p strate in a ‘side-on’ manner with the long intimate association of the citrate ions (Fig. 1), which is the putative equivalent axis of the domain oriented perpendicular with the protein, combined with the simi- of the mammalian protein hepatocyte to the membrane plane (Fig. 1). These lar dimensions and spatial charge charac- growth factor-regulated tyrosine kinase authors argue that such an orientation teristics of the PtdIns(3)P headgroup substrate (Hrs) and plays a role in endo- would place the loop containing the con- again conveniently allowed for modeling some maturation9. The 60-residue frag- served hydrophobic amino acids (includ- of the putative physiological interaction. ment is folded into a pair of anti-parallel ing a di-leucine pair in the case of However the outcome of this exercise is a β-hairpins and a C-terminal α-helix that, Vps27p), which occurs just upstream of position for the 1,3-bisphospho-myo- together with an N-terminal region of the β1 strand in the FYVE domain con- inositol headgroup that is rather different irregular secondary structure, encloses the sensus, in an ideal position to penetrate from that anticipated from the Vps27p 288 nature structural biology • volume 8 number 4 • april 2001 © 2001 Nature Publishing Group http://structbio.nature.com news and views Fig.
Recommended publications
  • Structure and Function of the Fgd Family of Divergent FYVE Domain Proteins
    Biochemistry and Cell Biology Structure and Function of the Fgd Family of Divergent FYVE Domain Proteins Journal: Biochemistry and Cell Biology Manuscript ID bcb-2018-0185.R1 Manuscript Type: Mini Review Date Submitted by the 03-Aug-2018 Author: Complete List of Authors: Eitzen, Gary; University of Alberta Faculty of Medicine and Dentistry Smithers, Cameron C.; University of Alberta, Biochemistry Murray, Allan; University of Alberta Faculty of Medicine and Dentistry Overduin, Michael; University of Alberta Faculty of Medicine and Dentistry Draft Fgd, Pleckstrin Homology domain, FYVE domain, Dbl Homology Domain, Keyword: Rho GEF Is the invited manuscript for consideration in a Special CSMB Special Issue Issue? : https://mc06.manuscriptcentral.com/bcb-pubs Page 1 of 37 Biochemistry and Cell Biology Title: Structure and Function of the Fgd Family of Divergent FYVE Domain Proteins Authors: Gary Eitzen1, Cameron C. Smithers2, Allan G Murray3 and Michael Overduin2* Draft 1Department of Cell Biology, 2Department of Biochemistry, 3Department of Medicine, University of Alberta, Edmonton, Alberta, Canada *Corresponding author. Michael Overduin Telephone: +1 780 492 3518 Fax: +1 780 492-0886 E-mail: [email protected] https://mc06.manuscriptcentral.com/bcb-pubs Biochemistry and Cell Biology Page 2 of 37 Abstract FYVE domains are highly conserved protein modules that typically bind phosphatidylinositol 3-phosphate (PI3P) on the surface of early endosomes. Along with pleckstrin homology (PH) and phox homology (PX) domains, FYVE domains are the principal readers of the phosphoinositide (PI) code that mediate specific recognition of eukaryotic organelles. Of all the human FYVE domain-containing proteins, those within the Faciogenital dysplasia (Fgd) subfamily are particularly divergent, and couple with GTPases to exert unique cellular functions.
    [Show full text]
  • Molecular Mechanism of Membrane Targeting by the GRP1 PH Domain
    Supplemental Material can be found at: http://www.jlr.org/cgi/content/full/M800150-JLR200/DC1 Molecular mechanism of membrane targeting by the GRP1 PH domain † † † Ju He,* Rachel M. Haney, ,§ Mohsin Vora, Vladislav V. Verkhusha,** Robert V. Stahelin, ,§ and Tatiana G. Kutateladze1,* Department of Pharmacology,* University of Colorado Health Sciences Center, Aurora, CO; † Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN; Department of Chemistry and Biochemistry and The Walther Center for Cancer Research,§ University of Notre Dame, South Bend, IN; and Department of Anatomy and Structural Biology,** Downloaded from Albert Einstein College of Medicine, Bronx, NY Abstract The general receptor for phosphoinositides iso- Supplementary key words general receptor for phosphoinositides iso- • • • form 1 (GRP1) is recruited to the plasma membrane in re- form 1 pleckstrin homology domain phosphoinositide phosphati- dylinositol 3,4,5-trisphosphate sponse to activation of phosphoinositide 3-kinases and www.jlr.org accumulation of phosphatidylinositol 3,4,5-trisphosphate ʼ [PtdIns(3,4,5)P3]. GRP1 s pleckstrin homology (PH) do- main recognizes PtdIns(3,4,5)P3 with high specificity and af- The signaling lipid phosphatidylinositol 3,4,5-trisphos- finity, however, the precise mechanism of its association phate [PtdIns(3,4,5)P3] is produced in plasma membranes at Albert Einstein College of Medicine Library on July 14, 2008 with membranes remains unclear. Here, we detail the mo- in response to stimulation of cell surface receptors by lecular basis of membrane anchoring by the GRP1 PH do- growth factors and hormones (1). Class I phosphoinositide main. Our data reveal a multivalent membrane docking (PI) 3-kinases phosphorylate the inositol headgroup of the involving PtdIns(3,4,5)P binding, regulated by pH and fa- 3 relatively abundant phosphatidylinositol 4,5-bisphosphate cilitated by electrostatic interactions with other anionic lip- [Ptdns(4,5)P2], transiently elevating the level of PtdIns ids.
    [Show full text]
  • The PX Domain Protein Interaction Network in Yeast
    The PX domain protein interaction network in yeast Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der Fakultät für Chemie und Biowissenschaften der Universität Karlsruhe (TH) vorgelegte DISSERTATION von Dipl. Biol. Carolina S. Müller aus Buenos Aires Dekan: Prof. Dr. Manfred Kappes Referent: Dr. Nils Johnsson Korreferent: HD. Dr. Adam Bertl Tag der mündlichen Prüfung: 17.02.2005 I dedicate this work to my Parents and Alex TABLE OF CONTENTS Table of contents Introduction 1 Yeast as a model organism in proteome analysis 1 Protein-protein interactions 2 Protein Domains in Yeast 3 Classification of protein interaction domains 3 Phosphoinositides 5 Function 5 Structure 5 Biochemistry 6 Localization 7 Lipid Binding Domains 8 The PX domain 10 Function of PX domain containing proteins 10 PX domain structure and PI binding affinities 10 Yeast PX domain containing proteins 13 PX domain and protein-protein interactions 13 Lipid binding domains and protein-protein interactions 14 The PX-only proteins Grd19p and Ypt35p and their phenotypes 15 Aim of my PhD work 16 Project outline 16 Searching for interacting partners 16 Confirmation of obtained interactions via a 16 second independent method Mapping the interacting region 16 The Two-Hybrid System 17 Definition 17 Basic Principle of the classical Yeast-Two Hybrid System 17 Peptide Synthesis 18 SPOT synthesis technique 18 Analysis of protein- peptide contact sites based on SPOT synthesis 19 TABLE OF CONTENTS Experimental procedures 21 Yeast two-hybrid assay
    [Show full text]
  • Membrane Insertion of the FYVE Domain Is Modulated by Ph Ju He,1 Mohsin Vora,2 Rachel M
    proteins STRUCTURE O FUNCTION O BIOINFORMATICS Membrane insertion of the FYVE domain is modulated by pH Ju He,1 Mohsin Vora,2 Rachel M. Haney,2,3 Grigory S. Filonov,4 Catherine A. Musselman,1 Christopher G. Burd,5 Andrei G. Kutateladze,6 Vladislav V. Verkhusha,4 Robert V. Stahelin,2,3,7* and Tatiana G. Kutateladze1* 1 Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045 2 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, Indiana 46617 3 Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 4 Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461 5 Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 6 Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210 7 The Walther Center for Cancer Research, University of Notre Dame, Notre Dame, Indiana 46556 INTRODUCTION ABSTRACT Phosphoinositide (PI) 3-kinases regulate membrane trafficking, pro- The FYVE domain associates with phosphati- tein sorting and signaling by generating phosphatidylinositol (PtdIns) dylinositol 3-phosphate [PtdIns(3)P] in mem- derivatives phosphorylated at the third position of the inositol ring.1,2 branes of early endosomes and penetrates bilayers. Here, we detail principles of mem- Of the four known products of PI 3-kinases, PtdIns 3-phosphate brane anchoring and show that the FYVE do- [PtdIns(3)P] is the most abundant and is constitutively produced in the main insertion into PtdIns(3)P-enriched cytosolic leaflet of membranes of early endosomes.
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • 1 Novel Expression Signatures Identified by Transcriptional Analysis
    ARD Online First, published on October 7, 2009 as 10.1136/ard.2009.108043 Ann Rheum Dis: first published as 10.1136/ard.2009.108043 on 7 October 2009. Downloaded from Novel expression signatures identified by transcriptional analysis of separated leukocyte subsets in SLE and vasculitis 1Paul A Lyons, 1Eoin F McKinney, 1Tim F Rayner, 1Alexander Hatton, 1Hayley B Woffendin, 1Maria Koukoulaki, 2Thomas C Freeman, 1David RW Jayne, 1Afzal N Chaudhry, and 1Kenneth GC Smith. 1Cambridge Institute for Medical Research and Department of Medicine, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK 2Roslin Institute, University of Edinburgh, Roslin, Midlothian, EH25 9PS, UK Correspondence should be addressed to Dr Paul Lyons or Prof Kenneth Smith, Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK. Telephone: +44 1223 762642, Fax: +44 1223 762640, E-mail: [email protected] or [email protected] Key words: Gene expression, autoimmune disease, SLE, vasculitis Word count: 2,906 The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Annals of the Rheumatic Diseases and any other BMJPGL products to exploit all subsidiary rights, as set out in their licence (http://ard.bmj.com/ifora/licence.pdf). http://ard.bmj.com/ on September 29, 2021 by guest. Protected copyright. 1 Copyright Article author (or their employer) 2009.
    [Show full text]
  • Cellular Functions of Phosphatidylinositol 3-Phosphate and FYVE Domain Proteins David J
    Biochem. J. (2001) 355, 249–258 (Printed in Great Britain) 249 REVIEW ARTICLE Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins David J. GILLOOLY, Anne SIMONSEN and Harald STENMARK1 Department of Biochemistry, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway PtdIns3P is a phosphoinositide 3-kinase product that has been identified which contain a FYVE domain, and in this review we strongly implicated in regulating membrane trafficking in both discuss the functions of PtdIns3P and its FYVE-domain-con- mammalian and yeast cells. PtdIns3P has been shown to be taining effector proteins in membrane trafficking, cytoskeletal specifically located on membranes associated with the endocytic regulation and receptor signalling. pathway. Proteins that contain FYVE zinc-finger domains are recruited to PtdIns3P-containing membranes. Structural in- formation is now available concerning the interaction between Key words: membrane traffic, phosphoinositide, phospho- FYVE domains and PtdIns3P. A number of proteins have been inositide 3-kinase, protein domains, recruitment. INTRODUCTION PtdIns(3,4,5)P$. PtdIns(3,4,5)P$ is produced upon agonist stimu- Phosphorylated derivatives of PtdIns, known as phospho- lation in mammalian cells and interacts with a number of inositides, play a key role in the membrane recruitment and\or proteins containing pleckstrin homology (PH) domains [3,5]. activation of proteins [1]. In this way they provide a means for Cellular PtdIns(3,4)P# is probably mainly produced from a the temporal and spatial regulation of complex cellular processes. dephosphorylation of PtdIns(3,4,5)P$, since the kinetics of its The products of phosphoinositide 3-kinases (PI 3-kinases) production often immediately follow on from a transient have been the subject of much investigation and have been PtdIns(3,4,5)P$ production [6].
    [Show full text]
  • Supplemental Table 3 Two-Class Paired Significance Analysis of Microarrays Comparing Gene Expression Between Paired
    Supplemental Table 3 Two‐class paired Significance Analysis of Microarrays comparing gene expression between paired pre‐ and post‐transplant kidneys biopsies (N=8). Entrez Fold q‐value Probe Set ID Gene Symbol Unigene Name Score Gene ID Difference (%) Probe sets higher expressed in post‐transplant biopsies in paired analysis (N=1871) 218870_at 55843 ARHGAP15 Rho GTPase activating protein 15 7,01 3,99 0,00 205304_s_at 3764 KCNJ8 potassium inwardly‐rectifying channel, subfamily J, member 8 6,30 4,50 0,00 1563649_at ‐‐ ‐‐ ‐‐ 6,24 3,51 0,00 1567913_at 541466 CT45‐1 cancer/testis antigen CT45‐1 5,90 4,21 0,00 203932_at 3109 HLA‐DMB major histocompatibility complex, class II, DM beta 5,83 3,20 0,00 204606_at 6366 CCL21 chemokine (C‐C motif) ligand 21 5,82 10,42 0,00 205898_at 1524 CX3CR1 chemokine (C‐X3‐C motif) receptor 1 5,74 8,50 0,00 205303_at 3764 KCNJ8 potassium inwardly‐rectifying channel, subfamily J, member 8 5,68 6,87 0,00 226841_at 219972 MPEG1 macrophage expressed gene 1 5,59 3,76 0,00 203923_s_at 1536 CYBB cytochrome b‐245, beta polypeptide (chronic granulomatous disease) 5,58 4,70 0,00 210135_s_at 6474 SHOX2 short stature homeobox 2 5,53 5,58 0,00 1562642_at ‐‐ ‐‐ ‐‐ 5,42 5,03 0,00 242605_at 1634 DCN decorin 5,23 3,92 0,00 228750_at ‐‐ ‐‐ ‐‐ 5,21 7,22 0,00 collagen, type III, alpha 1 (Ehlers‐Danlos syndrome type IV, autosomal 201852_x_at 1281 COL3A1 dominant) 5,10 8,46 0,00 3493///3 IGHA1///IGHA immunoglobulin heavy constant alpha 1///immunoglobulin heavy 217022_s_at 494 2 constant alpha 2 (A2m marker) 5,07 9,53 0,00 1 202311_s_at
    [Show full text]
  • Table S3. List of Predicted Genes Targeted by at Least 5 Mirnas Significantly up Regulated In
    Table S3. List of predicted genes targeted by at least 5 miRNAs significantly up regulated in CD105+ MVs. Official symbol Gene name n° of targeting miRNAs TNRC6B trinucleotide repeat containing 6B 11 BNC2 basonuclin 2 9 BRWD1 bromodomain and WD repeat domain containing 1 8 MIB1 mindbomb homolog 1 (Drosophila) 8 ANKRD52 ankyrin repeat domain 52 8 FOXP1 forkhead box P1 8 ITGB8 integrin, beta 8 8 CNOT6L CCR4-NOT transcription complex, subunit 6-like 8 PTP4A1 protein tyrosine phosphatase type IVA, member 1 7 PPP1R15B protein phosphatase 1, regulatory (inhibitor) subunit 15B 7 TET3 tet oncogene family member 3 7 GMFB glia maturation factor, beta 7 PRKAA2 protein kinase, AMP-activated, alpha 2 catalytic subunit 7 PTPRD protein tyrosine phosphatase, receptor type, D 7 TP53INP1 tumor protein p53 inducible nuclear protein 1 7 FNDC3B fibronectin type III domain containing 3B 7 FAT3 FAT tumor suppressor homolog 3 (Drosophila) 7 CCND2 cyclin D2 7 ONECUT2 one cut homeobox 2 7 RBM9 RNA binding motif protein 9 7 ERBB4 v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian) 7 BACH2 BTB and CNC homology 1, basic leucine zipper transcription factor 2 7 SMAD4 SMAD family member 4 7 MECP2 methyl CpG binding protein 2 (Rett syndrome) 7 UBN2 ubinuclein 2 7 PTEN phosphatase and tensin homolog 7 RALGPS1 Ral GEF with PH domain and SH3 binding motif 1 7 DLC1 deleted in liver cancer 1 6 ENAH enabled homolog (Drosophila) 6 NUFIP2 nuclear fragile X mental retardation protein interacting protein 2 6 KCMF1 potassium channel modulatory factor 1 6 IGF1 insulin-like growth factor 1 (somatomedin C) 6 ZNF148 zinc finger protein 148 6 TIAM1 T-cell lymphoma invasion and metastasis 1 6 CDK6 cyclin-dependent kinase 6 6 RP5-1022P6.2 hypothetical protein KIAA1434 6 ACVR2B activin A receptor, type IIB 6 CLCN5 chloride channel 5 6 HLF hepatic leukemia factor 6 TBC1D12 TBC1 domain family, member 12 6 FRMD4A FERM domain containing 4A 6 NUS1 nuclear undecaprenyl pyrophosphate synthase 1 homolog (S.
    [Show full text]
  • Suppl Figure 1
    Suppl Table 2. Gene Annotation (October 2011) for the selected genes used in the study. Locus Identifier Gene Model Description AT5G51780 basic helix-loop-helix (bHLH) DNA-binding superfamily protein; FUNCTIONS IN: DNA binding, sequence-specific DNA binding transcription factor activity; INVOLVED IN: regulation of transcription; LOCATED IN: nucleus; CONTAINS InterPro DOMAIN/s: Helix-loop-helix DNA-binding domain (InterPro:IPR001092), Helix-loop-helix DNA-binding (InterPro:IPR011598); BEST Arabidopsis thaliana protein match is: basic helix-loop-helix (bHLH) D AT3G53400 BEST Arabidopsis thaliana protein match is: conserved peptide upstream open reading frame 47 (TAIR:AT5G03190.1); Has 285 Blast hits to 285 proteins in 23 species: Archae - 0; Bacteria - 0; Metazoa - 1; Fungi - 0; Plants - 279; Viruses - 0; Other Eukaryotes - 5 (source: NCBI BLink). AT1G44760 Adenine nucleotide alpha hydrolases-like superfamily protein; FUNCTIONS IN: molecular_function unknown; INVOLVED IN: response to stress; EXPRESSED IN: 22 plant structures; EXPRESSED DURING: 13 growth stages; CONTAINS InterPro DOMAIN/s: UspA (InterPro:IPR006016), Rossmann-like alpha/beta/alpha sandwich fold (InterPro:IPR014729); BEST Arabidopsis thaliana protein match is: Adenine nucleotide alpha hydrolases-li AT4G19950 unknown protein; BEST Arabidopsis thaliana protein match is: unknown protein (TAIR:AT5G44860.1); Has 338 Blast hits to 330 proteins in 72 species: Archae - 2; Bacteria - 94; Metazoa - 7; Fungi - 0; Plants - 232; Viruses - 0; Other Eukaryotes - 3 (source: NCBI BLink). AT3G14280
    [Show full text]
  • Multipurpose Cellular Lipids with Emerging Roles in Cell Death
    Cell Death & Differentiation (2019) 26:781–793 https://doi.org/10.1038/s41418-018-0269-2 REVIEW ARTICLE Phosphoinositides: multipurpose cellular lipids with emerging roles in cell death 1 1 1 1 1 1 Thanh Kha Phan ● Scott A Williams ● Guneet K Bindra ● Fung T Lay ● Ivan K. H Poon ● Mark D Hulett Received: 5 September 2018 / Revised: 18 December 2018 / Accepted: 19 December 2018 / Published online: 11 February 2019 © ADMC Associazione Differenziamento e Morte Cellulare 2019 Abstract Phosphorylated phosphatidylinositol lipids, or phosphoinositides, critically regulate diverse cellular processes, including signalling transduction, cytoskeletal reorganisation, membrane dynamics and cellular trafficking. However, phosphoinosi- tides have been inadequately investigated in the context of cell death, where they are mainly regarded as signalling secondary messengers. However, recent studies have begun to highlight the importance of phosphoinositides in facilitating cell death execution. Here, we cover the latest phosphoinositide research with a particular focus on phosphoinositides in the mechanisms of cell death. This progress article also raises key questions regarding the poorly defined role of phosphoinositides, particularly during membrane-associated events in cell death such as apoptosis and secondary necrosis. fi 1234567890();,: 1234567890();,: The review then further discusses important future directions for the phosphoinositide eld, including therapeutically targeting phosphoinositides to modulate cell death. Facts peptide-induced necrosis,
    [Show full text]
  • Membrane-Binding Mechanism of the EEA1 FYVE Domain Revealed by Multi-Scale Molecular Dynamics Simulations
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.18.431783; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 99737766.docx 18-Feb-21 Membrane-binding mechanism of the EEA1 FYVE domain revealed by multi-scale molecular dynamics simulations Andreas Haahr Larsen*, Lilya Tata*, Laura John & Mark S.P. Sansom** *contributed equally Department of Biochemistry, University of Oxford, Oxford, United Kingdom, OX1 3QU **contact e-mail: [email protected] For submission to: PLoS Comp Biol. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.18.431783; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 99737766.docx 18-Feb-21 Abstract Early Endosomal Antigen 1 (EEA1) is a key protein in endosomal trafficking and is implicated in both autoimmune and neurological diseases. The C-terminal FYVE domain of EEA1 binds endosomal membranes, which contain phosphatidylinositol-3-phosphate (PI(3)P). Although it is known that FYVE binds PI(3)P specifically, it has not previously been described of how FYVE attaches and binds to endosomal membranes. In this study, we employed both coarse-grained (CG) and atomistic (AT) molecular dynamics (MD) simulations to determine how FYVE binds to PI(3)P- containing membranes.
    [Show full text]