Incoherent Digital Holography: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparison Between Digital Fresnel Holography and Digital Image-Plane Holography: the Role of the Imaging Aperture M
Comparison between Digital Fresnel Holography and Digital Image-Plane Holography: The Role of the Imaging Aperture M. Karray, Pierre Slangen, Pascal Picart To cite this version: M. Karray, Pierre Slangen, Pascal Picart. Comparison between Digital Fresnel Holography and Digital Image-Plane Holography: The Role of the Imaging Aperture. Experimental Mechanics, Society for Experimental Mechanics, 2012, 52 (9), pp.1275-1286. 10.1007/s11340-012-9604-6. hal-02012133 HAL Id: hal-02012133 https://hal.archives-ouvertes.fr/hal-02012133 Submitted on 26 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Comparison between Digital Fresnel Holography and Digital Image-Plane Holography: The Role of the Imaging Aperture M. Karray & P. Slangen & P. Picart Abstract Optical techniques are now broadly used in the experimental analysis. Particularly, a theoretical analysis field of experimental mechanics. The main advantages are of the influence of the aperture and lens in the case of they are non intrusive and no contact. Moreover optical image-plane holography is proposed. Optimal filtering techniques lead to full spatial resolution displacement maps and image recovering conditions are thus established. enabling the computing of mechanical value also in high Experimental results show the appropriateness of the spatial resolution. -
Digital Holography Using a Laser Pointer and Consumer Digital Camera Report Date: June 22Nd, 2004
Digital Holography using a Laser Pointer and Consumer Digital Camera Report date: June 22nd, 2004 by David Garber, M.E. undergraduate, Johns Hopkins University, [email protected] Available online at http://pegasus.me.jhu.edu/~lefd/shc/LPholo/lphindex.htm Acknowledgements Faculty sponsor: Prof. Joseph Katz, [email protected] Project idea and direction: Dr. Edwin Malkiel, [email protected] Digital holography reconstruction: Jian Sheng, [email protected] Abstract The point of this project was to examine the feasibility of low-cost holography. Can viable holograms be recorded using an ordinary diode laser pointer and a consumer digital camera? How much does it cost? What are the major difficulties? I set up an in-line holographic system and recorded both still images and movies using a $600 Fujifilm Finepix S602Z digital camera and a $10 laser pointer by Lazerpro. Reconstruction of the stills shows clearly that successful holograms can be created with a low-cost optical setup. The movies did not reconstruct, due to compression and very low image resolution. Garber 2 Theoretical Background What is a hologram? The Merriam-Webster dictionary defines a hologram as, “a three-dimensional image reproduced from a pattern of interference produced by a split coherent beam of radiation (as a laser).” Holograms can produce a three-dimensional image, but it is more helpful for our purposes to think of a hologram as a photograph that can be refocused at any depth. So while a photograph taken of two people standing far apart would have one in focus and one blurry, a hologram taken of the same scene could be reconstructed to bring either person into focus. -
What Resolution Should Your Images Be?
What Resolution Should Your Images Be? The best way to determine the optimum resolution is to think about the final use of your images. For publication you’ll need the highest resolution, for desktop printing lower, and for web or classroom use, lower still. The following table is a general guide; detailed explanations follow. Use Pixel Size Resolution Preferred Approx. File File Format Size Projected in class About 1024 pixels wide 102 DPI JPEG 300–600 K for a horizontal image; or 768 pixels high for a vertical one Web site About 400–600 pixels 72 DPI JPEG 20–200 K wide for a large image; 100–200 for a thumbnail image Printed in a book Multiply intended print 300 DPI EPS or TIFF 6–10 MB or art magazine size by resolution; e.g. an image to be printed as 6” W x 4” H would be 1800 x 1200 pixels. Printed on a Multiply intended print 200 DPI EPS or TIFF 2-3 MB laserwriter size by resolution; e.g. an image to be printed as 6” W x 4” H would be 1200 x 800 pixels. Digital Camera Photos Digital cameras have a range of preset resolutions which vary from camera to camera. Designation Resolution Max. Image size at Printable size on 300 DPI a color printer 4 Megapixels 2272 x 1704 pixels 7.5” x 5.7” 12” x 9” 3 Megapixels 2048 x 1536 pixels 6.8” x 5” 11” x 8.5” 2 Megapixels 1600 x 1200 pixels 5.3” x 4” 6” x 4” 1 Megapixel 1024 x 768 pixels 3.5” x 2.5” 5” x 3 If you can, you generally want to shoot larger than you need, then sharpen the image and reduce its size in Photoshop. -
Invention of Digital Photograph
Invention of Digital photograph Digital photography uses cameras containing arrays of electronic photodetectors to capture images focused by a lens, as opposed to an exposure on photographic film. The captured images are digitized and stored as a computer file ready for further digital processing, viewing, electronic publishing, or digital printing. Until the advent of such technology, photographs were made by exposing light sensitive photographic film and paper, which was processed in liquid chemical solutions to develop and stabilize the image. Digital photographs are typically created solely by computer-based photoelectric and mechanical techniques, without wet bath chemical processing. The first consumer digital cameras were marketed in the late 1990s.[1] Professionals gravitated to digital slowly, and were won over when their professional work required using digital files to fulfill the demands of employers and/or clients, for faster turn- around than conventional methods would allow.[2] Starting around 2000, digital cameras were incorporated in cell phones and in the following years, cell phone cameras became widespread, particularly due to their connectivity to social media websites and email. Since 2010, the digital point-and-shoot and DSLR formats have also seen competition from the mirrorless digital camera format, which typically provides better image quality than the point-and-shoot or cell phone formats but comes in a smaller size and shape than the typical DSLR. Many mirrorless cameras accept interchangeable lenses and have advanced features through an electronic viewfinder, which replaces the through-the-lens finder image of the SLR format. While digital photography has only relatively recently become mainstream, the late 20th century saw many small developments leading to its creation. -
Foveon FO18-50-F19 4.5 MP X3 Direct Image Sensor
® Foveon FO18-50-F19 4.5 MP X3 Direct Image Sensor Features The Foveon FO18-50-F19 is a 1/1.8-inch CMOS direct image sensor that incorporates breakthrough Foveon X3 technology. Foveon X3 direct image sensors Foveon X3® Technology • A stack of three pixels captures superior color capture full-measured color images through a unique stacked pixel sensor design. fidelity by measuring full color at every point By capturing full-measured color images, the need for color interpolation and in the captured image. artifact-reducing blur filters is eliminated. The Foveon FO18-50-F19 features the • Images have improved sharpness and immunity to color artifacts (moiré). powerful VPS (Variable Pixel Size) capability. VPS provides the on-chip capabil- • Foveon X3 technology directly converts light ity of grouping neighboring pixels together to form larger pixels that are optimal of all colors into useful signal information at every point in the captured image—no light for high frame rate, reduced noise, or dual mode still/video applications. Other absorbing filters are used to block out light. advanced features include: low fixed pattern noise, ultra-low power consumption, Variable Pixel Size (VPS) Capability and integrated digital control. • Neighboring pixels can be grouped together on-chip to obtain the effect of a larger pixel. • Enables flexible video capture at a variety of resolutions. • Enables higher ISO mode at lower resolutions. Analog Biases Row Row Digital Supplies • Reduces noise by combining pixels. Pixel Array Analog Supplies Readout Reset 1440 columns x 1088 rows x 3 layers On-Chip A/D Conversion Control Control • Integrated 12-bit A/D converter running at up to 40 MHz. -
Single-Pixel Imaging Via Compressive Sampling
© DIGITAL VISION Single-Pixel Imaging via Compressive Sampling [Building simpler, smaller, and less-expensive digital cameras] Marco F. Duarte, umans are visual animals, and imaging sensors that extend our reach— [ cameras—have improved dramatically in recent times thanks to the intro- Mark A. Davenport, duction of CCD and CMOS digital technology. Consumer digital cameras in Dharmpal Takhar, the megapixel range are now ubiquitous thanks to the happy coincidence that the semiconductor material of choice for large-scale electronics inte- Jason N. Laska, Ting Sun, Hgration (silicon) also happens to readily convert photons at visual wavelengths into elec- Kevin F. Kelly, and trons. On the contrary, imaging at wavelengths where silicon is blind is considerably Richard G. Baraniuk more complicated, bulky, and expensive. Thus, for comparable resolution, a US$500 digi- ] tal camera for the visible becomes a US$50,000 camera for the infrared. In this article, we present a new approach to building simpler, smaller, and cheaper digital cameras that can operate efficiently across a much broader spectral range than conventional silicon-based cameras. Our approach fuses a new camera architecture Digital Object Identifier 10.1109/MSP.2007.914730 1053-5888/08/$25.00©2008IEEE IEEE SIGNAL PROCESSING MAGAZINE [83] MARCH 2008 based on a digital micromirror device (DMD—see “Spatial Light Our “single-pixel” CS camera architecture is basically an Modulators”) with the new mathematical theory and algorithms optical computer (comprising a DMD, two lenses, a single pho- of compressive sampling (CS—see “CS in a Nutshell”). ton detector, and an analog-to-digital (A/D) converter) that com- CS combines sampling and compression into a single non- putes random linear measurements of the scene under view. -
Scanning Camera for Continuous-Wave Acoustic Holography
Scanning Camera for Continuous-Wave Acoustic Holography Hillary W. Gao, Kimberly I. Mishra, Annemarie Winters, Sidney Wolin, and David G. Griera) Department of Physics and Center for Soft Matter Research, New York University, New York, NY 10003, USA (Dated: 7 August 2018) 1 We present a system for measuring the amplitude and phase profiles of the pressure 2 field of a harmonic acoustic wave with the goal of reconstructing the volumetric sound 3 field. Unlike optical holograms that cannot be reconstructed exactly because of the 4 inverse problem, acoustic holograms are completely specified in the recording plane. 5 We demonstrate volumetric reconstructions of simple arrangements of objects using 6 the Rayleigh-Sommerfeld diffraction integral, and introduce a technique to analyze 7 the dynamic properties of insonated objects. a)[email protected] 1 Scanning Holographic Camera 8 Most technologies for acoustic imaging use the temporal and spectral characteristics of 1 9 acoustic pulses to map interfaces between distinct phases. This is the basis for sonar , and 2 10 medical and industrial ultrasonography . Imaging continuous-wave sound fields is useful for 3 11 industrial and environmental noise analysis, particularly for source localization . Substan- 12 tially less attention has been paid to visualizing the amplitude and phase profiles of sound 13 fields for their own sakes, with most effort being focused on visualizing the near-field acous- 14 tic radiation emitted by localized sources, a technique known as near-field acoustic holog- 4{6 15 raphy (NAH) . The advent of acoustic manipulation in holographically structured sound 7{11 16 fields creates a need for effective sound-field visualization. -
Digital Refocusing with Incoherent Holography
Digital Refocusing with Incoherent Holography Oliver Cossairt Nathan Matsuda Northwestern University Northwestern University Evanston, IL Evanston, IL [email protected] [email protected] Mohit Gupta Columbia University New York, NY [email protected] Abstract ‘adding’ and ‘subtracting’ blur to the point spread functions (PSF) of different scene points, depending on their depth. In Light field cameras allow us to digitally refocus a pho- a conventional 2D image, while it is possible to add blur to tograph after the time of capture. However, recording a a scene point’s PSF, it is not possible to subtract or remove light field requires either a significant loss in spatial res- blur without introducing artifacts in the image. This is be- olution [10, 20, 9] or a large number of images to be cap- cause 2D imaging is an inherently lossy process; the angular tured [11]. In this paper, we propose incoherent hologra- information in the 4D light field is lost in a 2D image. Thus, phy for digital refocusing without loss of spatial resolution typically, if digital refocusing is desired, 4D light fields are from only 3 captured images. The main idea is to cap- captured. Unfortunately, light field cameras sacrifice spa- ture 2D coherent holograms of the scene instead of the 4D tial resolution in order to capture the angular information. light fields. The key properties of coherent light propagation The loss in resolution can be significant, up to 1-2 orders are that the coherent spread function (hologram of a single of magnitude. While there have been attempts to improve point source) encodes scene depths and has a broadband resolution by using compressive sensing techniques [14], spatial frequency response. -
A High Full Well Capacity CMOS Image Sensor for Space Applications
sensors Article A High Full Well Capacity CMOS Image Sensor for Space Applications Woo-Tae Kim 1 , Cheonwi Park 1, Hyunkeun Lee 1 , Ilseop Lee 2 and Byung-Geun Lee 1,* 1 School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; [email protected] (W.-T.K.); [email protected] (C.P.); [email protected] (H.L.) 2 Korea Aerospace Research Institute, Daejeon 34133, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-62-715-3231 Received: 24 January 2019; Accepted: 26 March 2019; Published: 28 March 2019 Abstract: This paper presents a high full well capacity (FWC) CMOS image sensor (CIS) for space applications. The proposed pixel design effectively increases the FWC without inducing overflow of photo-generated charge in a limited pixel area. An MOS capacitor is integrated in a pixel and accumulated charges in a photodiode are transferred to the in-pixel capacitor multiple times depending on the maximum incident light intensity. In addition, the modulation transfer function (MTF) and radiation damage effect on the pixel, which are especially important for space applications, are studied and analyzed through fabrication of the CIS. The CIS was fabricated using a 0.11 µm 1-poly 4-metal CIS process to demonstrate the proposed techniques and pixel design. A measured FWC of 103,448 electrons and MTF improvement of 300% are achieved with 6.5 µm pixel pitch. Keywords: CMOS image sensors; wide dynamic range; multiple charge transfer; space applications; radiation damage effects 1. Introduction Imaging devices are essential components in the space environment for a range of applications including earth observation, star trackers on satellites, lander and rover cameras [1]. -
Lecture Notes 3 Charge-Coupled Devices (Ccds) – Part II • CCD
Lecture Notes 3 Charge-Coupled Devices (CCDs) { Part II • CCD array architectures and pixel layout ◦ One-dimensional CCD array ◦ Two-dimensional CCD array • Smear • Readout circuits • Anti-blooming, electronic shuttering, charge reset operation • Window of interest, pixel binning • Pinned photodiode EE 392B: CCDs{Part II 3-1 One-Dimensional (Linear) CCD Operation A. Theuwissen, \Solid State Imaging with Charge-Coupled Devices," Kluwer (1995) EE 392B: CCDs{Part II 3-2 • A line of photodiodes or photogates is used for photodetection • After integration, charge from the entire row is transferred in parallel to the horizontal CCD (HCCD) through transfer gates • New integration period begins while charge packets are transferred through the HCCD (serial transfer) to the output readout circuit (to be discussed later) • The scene can be mechanically scanned at a speed commensurate with the pixel size in the vertical direction to obtain 2D imaging • Applications: scanners, scan-and-print photocopiers, fax machines, barcode readers, silver halide film digitization, DNA sequencing • Advantages: low cost (small chip size) EE 392B: CCDs{Part II 3-3 Two-Dimensional (Area) CCD • Frame transfer CCD (FT-CCD) ◦ Full frame CCD • Interline transfer CCD (IL-CCD) • Frame-interline transfer CCD (FIT-CCD) • Time-delay-and-integration CCD (TDI-CCD) EE 392B: CCDs{Part II 3-4 Frame Transfer CCD Light−sensitive CCD array Frame−store CCD array Amplifier Output Horizontal CCD Integration Vertical shift Operation Vertical shift Horizotal shift Time EE 392B: CCDs{Part II 3-5 Pixel Layout { FT-CCD D. N. Nichols, W. Chang, B. C. Burkey, E. G. Stevens, E. A. Trabka, D. -
One Is Enough. a Photograph Taken by the “Single-Pixel Camera” Built by Richard Baraniuk and Kevin Kelly of Rice University
One is Enough. A photograph taken by the “single-pixel camera” built by Richard Baraniuk and Kevin Kelly of Rice University. (a) A photograph of a soccer ball, taken by a conventional digital camera at 64 64 resolution. (b) The same soccer ball, photographed by a single-pixel camera. The image is de- rived× mathematically from 1600 separate, randomly selected measurements, using a method called compressed sensing. (Photos courtesy of R. G. Baraniuk, Compressive Sensing [Lecture Notes], Signal Processing Magazine, July 2007. c 2007 IEEE.) 114 What’s Happening in the Mathematical Sciences Compressed Sensing Makes Every Pixel Count rash and computer files have one thing in common: compactisbeautiful.Butifyou’veevershoppedforadigi- Ttal camera, you might have noticed that camera manufac- turers haven’t gotten the message. A few years ago, electronic stores were full of 1- or 2-megapixel cameras. Then along came cameras with 3-megapixel chips, 10 megapixels, and even 60 megapixels. Unfortunately, these multi-megapixel cameras create enor- mous computer files. So the first thing most people do, if they plan to send a photo by e-mail or post it on the Web, is to com- pact it to a more manageable size. Usually it is impossible to discern the difference between the compressed photo and the original with the naked eye (see Figure 1, next page). Thus, a strange dynamic has evolved, in which camera engineers cram more and more data onto a chip, while software engineers de- Emmanuel Candes. (Photo cour- sign cleverer and cleverer ways to get rid of it. tesy of Emmanuel Candes.) In 2004, mathematicians discovered a way to bring this “armsrace”to a halt. -
CMOS Active Pixel Image Sensors for Highly Integrated Imaging Systems
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 2, FEBRUARY 1997 187 CMOS Active Pixel Image Sensors for Highly Integrated Imaging Systems Sunetra K. Mendis, Member, IEEE, Sabrina E. Kemeny, Member, IEEE, Russell C. Gee, Member, IEEE, Bedabrata Pain, Member, IEEE, Craig O. Staller, Quiesup Kim, Member, IEEE, and Eric R. Fossum, Senior Member, IEEE Abstract—A family of CMOS-based active pixel image sensors Charge-coupled devices (CCD’s) are currently the dominant (APS’s) that are inherently compatible with the integration of on- technology for image sensors. CCD arrays with high fill-factor, chip signal processing circuitry is reported. The image sensors small pixel sizes, and large formats have been achieved and were fabricated using commercially available 2-"m CMOS pro- cesses and both p-well and n-well implementations were explored. some signal processing operations have been demonstrated The arrays feature random access, 5-V operation and transistor- with charge-domain circuits [1]–[3]. However, CCD’s cannot transistor logic (TTL) compatible control signals. Methods of be easily integrated with CMOS circuits due to additional on-chip suppression of fixed pattern noise to less than 0.1% fabrication complexity and increased cost. Also, CCD’s are saturation are demonstrated. The baseline design achieved a pixel high capacitance devices so that on-chip CMOS drive electron- size of 40 "m 40 "m with 26% fill-factor. Array sizes of 28 28 elements and 128 128 elements have been fabricated and ics would dissipate prohibitively high power levels for large characterized. Typical output conversion gain is 3.7 "V/e for the area arrays (2–3 W).