Characterizing the Bacterial Fish Pathogen Flavobacterium Columnare, and Some Factors Affecting Its Pathogenicity

Total Page:16

File Type:pdf, Size:1020Kb

Characterizing the Bacterial Fish Pathogen Flavobacterium Columnare, and Some Factors Affecting Its Pathogenicity JYVÄSKYLÄ STUDIES IN BIOLOGICAL AND ENVIRONMENTAL SCIENCE 206 Heidi Kunttu Characterizing the Bacterial Fish Pathogen Flavobacterium columnare, and Some Factors Affecting its Pathogenicity JYVÄSKYLÄ STUDIES IN BIOLOGICAL AND ENVIRONMENTAL SCIENCE 206 Heidi Kunttu Characterizing the Bacterial Fish Pathogen Flavobacterium columnare, and Some Factors Affecting its Pathogenicity Esitetään Jyväskylän yliopiston matemaattis-luonnontieteellisen tiedekunnan suostumuksella julkisesti tarkastettavaksi yliopiston Ylistönrinteellä, salissa YAA303 toukokuun 8. päivänä 2010 kello 12. Academic dissertation to be publicly discussed, by permission of the Faculty of Mathematics and Science of the University of Jyväskylä, in Ylistönrinne, hall YAA303, on May 8, 2010 at 12 o'clock noon. UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄ 2010 Characterizing the Bacterial Fish Pathogen Flavobacterium columnare, and Some Factors Affecting its Pathogenicity JYVÄSKYLÄ STUDIES IN BIOLOGICAL AND ENVIRONMENTAL SCIENCE 206 Heidi Kunttu Characterizing the Bacterial Fish Pathogen Flavobacterium columnare, and Some Factors Affecting its Pathogenicity UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄ 2010 Editor Timo Marjomäki Department of Biological and Environmental Science, University of Jyväskylä Pekka Olsbo Publishing Unit, University Library of Jyväskylä Jyväskylä Studies in Biological and Environmental Science Editorial Board Jari Haimi, Anssi Lensu, Timo Marjomäki, Varpu Marjomäki Department of Biological and Environmental Science, University of Jyväskylä Cover pictures by Heidi Kunttu URN:ISBN:978-951-39-3867-3 ISBN 978-951-39-3867-3 (PDF) ISBN 978-951-39-3853-6 (nid.) ISSN 1456-9701 Copyright © 2010 , by University of Jyväskylä Jyväskylä University Printing House, Jyväskylä 2010 ABSTRACT Kunttu, Heidi Characterizing the bacterial fish pathogen Flavobacterium columnare, and some factors affecting its pathogenicity Jyväskylä: University of Jyväskylä, 2010, 69 p. (Jyväskylä Studies in Biological and Environmental Science ISSN 1456-9701; 206) ISBN 978-951-39-3867-3 (PDF), 978-951-39-3853-6 (nid.) Yhteenveto: Kalapatogeeni Flavobacterium columnare -bakteerin ominaisuuksia ja patogeenisuuteen vaikuttavia tekijöitä Diss. Flavobacterium columnare is a bacterial pathogen of fresh water fish causing lethal columnaris disease worldwide. At Finnish fish farms, columnaris disease has occurred since the early 1980s, and is a serious problem in salmonid farming in Finland. Currently, the only effective treatment is with antibiotics. Factors related to the pathogenicity of F. columnare, transmission of columnaris disease and the immunity of salmonids to columnaris infections are poorly known. F. columnare strains isolated from Finnish fish farms were characterized geno- and phenotypically, virulence and transmission experiments were conducted, and the efficacy of two immunostimulants against columnaris infections in rainbow trout (Oncorhynchus mykiss Walbaum) fingerlings was evaluated. Finnish F. columnare strains constituted a genetically homogeneous group that differed from strains isolated from other parts of the world and tolerated narrower pH and salinity ranges than F. columnare type strain (NCIMB 2248T). Finnish strains could be divided into seven genetic groups, which can co-occur during the same outbreak at fish farms. Among the genetic groups, four colony types were formed. Formation of rhizoid colonies is suggested to be a prerequisite for virulence of F. columnare. Colony types may have a role in the infection process and persistence of F. columnare at fish farms. The bacterium was able to survive in fresh water and also as a saprophyte, and to use saprophytism as a transmission strategy. These properties, together with co- occurrence of different genetic groups, may promote the continuous nature of outbreaks at fish farms and lead to development of highly virulent F. columnare strains. Immunostimulation was effective in boosting innate immune defence parameters of rainbow trout, but was inefficient in protecting fish against F. columnare infections. This suggests that antibody-mediated immunity is also essential in protecting fish from columnaris disease. Keywords: Colony type; columnaris disease; Flavobacterium columnare; immunostimulation; saprophytism; transmission; virulence. Heidi Kunttu, University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland Author’s address Heidi Kunttu Department of Biological and Environmental Science P.O. Box 35 FI-40014 University of Jyväskylä Finland [email protected] Supervisors Professor E. Tellervo Valtonen Department of Biological and Environmental Science P.O. Box 35 FI-40014 University of Jyväskylä Finland Docent Ilmari Jokinen Department of Biological and Environmental Science P.O. Box 35 FI-40014 University of Jyväskylä Finland Dr. Lotta-Riina Suomalainen Department of Biological and Environmental Science P.O. Box 35 FI-40014 University of Jyväskylä Finland Reviewers Docent Tom Wiklund Laboratory of Aquatic Pathobiology Åbo Akademi University BioCity, Artillerigatan 6 FI-20520 Åbo Finland Dr. Craig Shoemaker Aquatic Animal Health Research Unit United States Department of Agriculture Agricultural Research Service 990 Wire Road Auburn, AL 36832 USA Opponent Dr. Jean-François Bernardet L’institut National de la Recherche Agronomique Laboratoire de Virologie et Immunologie Domaine de Vilvert 78350 Jouy-en-Josas France CONTENTS LIST OF ORIGINAL PUBLICATIONS ABBREVIATIONS 1 INTRODUCTION ..................................................................................................... 9 1.1 Columnaris disease at fish farms ................................................................... 9 1.2 Flavobacterium columnare ................................................................................ 10 1.3 Studying the genetic diversity of bacteria ................................................... 11 1.4 Virulence factors of fish pathogenic bacteria.............................................. 13 1.5 Host immune defence versus virulence mechanisms of pathogens ....... 14 1.6 Influence of fish farming conditions on disease outbreaks ...................... 16 1.7 Curing and preventing diseases at fish farms and enhancing immune defence of fish .................................................................................. 17 2 AIMS OF THE STUDY ........................................................................................... 19 3 SUMMARY OF MATERIALS AND METHODS ................................................ 20 3.1 Bacterial strains ............................................................................................... 20 3.2 Fish and experimental setup of bath challenge (II, V) ............................... 21 3.3 Genomic analyses of Flavobacterium columnare strains (I) ......................... 22 3.4 Growth features of F. columnare strains (I) .................................................. 22 3.5 Experiments on colony morphology types formed by F. columnare strains (II, III) ................................................................................................... 22 3.5.1 Genomic analyses and whole cell proteins (II)................................ 23 3.5.2 Adhesion on polystyrene (II, III) ....................................................... 24 3.5.3 Adhesion on gill tissue of rainbow trout (II) ................................... 24 3.5.4 Inhibition of adhesion (III) ................................................................. 24 3.5.5 Choindroitin AC lyase activity (III) .................................................. 25 3.6 Saprophyte experiment (IV) .......................................................................... 25 3.7 Transmission experiment (IV) ...................................................................... 25 3.8 Survival in water (IV) ..................................................................................... 26 3.9 Immunostimulant experiments (V) .............................................................. 26 3.9.1 Trial 1: Feeding with yeast β-glucan ................................................. 26 3.9.2 Trial 2: Injection with yeast β-glucan ................................................ 27 3.9.3 Trial 3: Feeding with β-hydroxy-β-methylbutyrate (HMB) .......... 27 3.9.4 Determining the immune status of fish ............................................ 27 4 RESULTS AND DISCUSSION .............................................................................. 29 4.1 Finnish Flavobacterium columnare strains (I) ................................................ 29 4.1.1 Genetic properties ................................................................................ 29 4.1.2 Growth features ................................................................................... 31 4.2 Colony types formed by Finnish F. columnare strains (II, III) ................... 32 4.2.1 Genetic basis of differential colony formation (II) .......................... 33 4.2.2 Relationship between virulence (II), adhesion (II, III) and chondroitin AC lyase activity (III) of the colony types .................. 35 4.2.3 Inhibition of adhesion (III) ................................................................. 39 4.3 Saprophytic life style and transmission properties of F. columnare (IV) ... 40 4.4 Immunostimulation of rainbow trout against columnaris disease (V)... 42 4.4.1 Effect on immune status ..................................................................... 42 4.4.2 Protection
Recommended publications
  • Viral Haemorrhagic Septicaemia Virus (VHSV): on the Search for Determinants Important for Virulence in Rainbow Trout Oncorhynchus Mykiss
    Downloaded from orbit.dtu.dk on: Nov 08, 2017 Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss Olesen, Niels Jørgen; Skall, H. F.; Kurita, J.; Mori, K.; Ito, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olesen, N. J., Skall, H. F., Kurita, J., Mori, K., & Ito, T. (2015). Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 147-147). [O-139] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts.
    [Show full text]
  • 2019 ASEAN-FEN 9Th International Fisheries Symposium BOOK of ABSTRACTS
    2019 ASEAN-FEN 9th International Fisheries Symposium BOOK OF ABSTRACTS A New Horizon in Fisheries and Aquaculture Through Education, Research and Innovation 18-21 November 2019 Seri Pacific Hotel Kuala Lumpur Malaysia Contents Oral Session Location… .................................................................... 1 Poster Session ...................................................................................... 2 Special Session… ................................................................................ 3 Special Session 1: ....................................................................... 4 Special Session 2: ..................................................................... 10 Special Session 3: ..................................................................... 16 Oral Presentation… ......................................................................... 26 Session 1: Fisheries Biology and Resource Management 1 ………………………………………………………………….…...27 Session 2: Fisheries Biology and Resource Management 2 …………………………………………………………...........….…62 Session 3: Nutrition and Feed........................................................ 107 Session 4: Aquatic Animal Health ................................................ 146 Session 5: Fisheries Socio-economies, Gender, Extension and Education… ..................................................................................... 196 Session 6: Information Technology and Engineering .................. 213 Session 7: Postharvest, Fish Products and Food Safety… ......... 219 Session
    [Show full text]
  • Respiratory Disorders of Fish
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Disorders of the Respiratory System in Pet and Ornamental Fish a, b Helen E. Roberts, DVM *, Stephen A. Smith, DVM, PhD KEYWORDS Pet fish Ornamental fish Branchitis Gill Wet mount cytology Hypoxia Respiratory disorders Pathology Living in an aquatic environment where oxygen is in less supply and harder to extract than in a terrestrial one, fish have developed a respiratory system that is much more efficient than terrestrial vertebrates. The gills of fish are a unique organ system and serve several functions including respiration, osmoregulation, excretion of nitroge- nous wastes, and acid-base regulation.1 The gills are the primary site of oxygen exchange in fish and are in intimate contact with the aquatic environment. In most cases, the separation between the water and the tissues of the fish is only a few cell layers thick. Gills are a common target for assault by infectious and noninfectious disease processes.2 Nonlethal diagnostic biopsy of the gills can identify pathologic changes, provide samples for bacterial culture/identification/sensitivity testing, aid in fungal element identification, provide samples for viral testing, and provide parasitic organisms for identification.3–6 This diagnostic test is so important that it should be included as part of every diagnostic workup performed on a fish.
    [Show full text]
  • FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
    SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Detection and Identification of Fish Pathogens: What Is the Future?
    The Israeli Journal of Aquaculture – Bamidgeh 60(4), 2008, 213-229. 213 Detection and Identification of Fish Pathogens: What is the Future? A Review I. Frans1,2†, B. Lievens1,2*†, C. Heusdens1,2 and K.A. Willems1,2 1 Scientia Terrae Research Institute, B-2860 Sint-Katelijne-Waver, Belgium 2 Research Group Process Microbial Ecology and Management, Department Microbial and Molecular Systems, Katholieke Universiteit Leuven Association, De Nayer Campus, B-2860 Sint-Katelijne-Waver, Belgium, and Leuven Food Science and Nutrition Research Centre (LfoRCe), Katholieke Universiteit Leuven, B-3001 Heverlee-Leuven, Belgium (Received 1.8.08, Accepted 20.8.08) Key words: biosecurity, diagnosis, DNA array, multiplexing, real-time PCR Abstract Fish diseases pose a universal threat to the ornamental fish industry, aquaculture, and public health. They can be caused by many organisms, including bacteria, fungi, viruses, and protozoa. The lack of rapid, accurate, and reliable means of detecting and identifying fish pathogens is one of the main limitations in fish pathogen diagnosis and disease management and has triggered the search for alternative diagnostic techniques. In this regard, the advent of molecular biology, especially polymerase chain reaction (PCR), provides alternative means for detecting and iden- tifying fish pathogens. Many techniques have been developed, each requiring its own protocol, equipment, and expertise. A major challenge at the moment is the development of multiplex assays that allow accurate detection, identification, and quantification of multiple pathogens in a single assay, even if they belong to different superkingdoms. In this review, recent advances in molecular fish pathogen diagnosis are discussed with an emphasis on nucleic acid-based detec- tion and identification techniques.
    [Show full text]
  • Reference to Gyrodactylus Salaris (Platyhelminthes, Monogenea)
    DISEASES OF AQUATIC ORGANISMS Published June 18 Dis. aquat. Org. 1 I REVIEW Host specificity and dispersal strategy in gyr odactylid monogeneans, with particular reference to Gyrodactylus salaris (Platyhelminthes, Monogenea) Tor A. Bakkel, Phil. D. Harris2, Peder A. Jansenl, Lars P. Hansen3 'Zoological Museum. University of Oslo. Sars gate 1, N-0562 Oslo 5, Norway 2Department of Biochemistry, 4W.University of Bath, Claverton Down, Bath BA2 7AY, UK 3Norwegian Institute for Nature Research, Tungasletta 2, N-7004 Trondheim. Norway ABSTRACT: Gyrodactylus salaris Malmberg, 1957 is an important pathogen in Norwegian populations of Atlantic salmon Salmo salar. It can infect a wide range of salmonid host species, but on most the infections are probably ultimately lim~tedby a host response. Generally, on Norwegian salmon stocks, infections grow unchecked until the host dies. On a Baltic salmon stock, originally from the Neva River, a host reaction is mounted, limltlng parasite population growth on those fishes initially susceptible. Among rainbow trouts Oncorhynchus mykiss from the sam.e stock and among full sib anadromous arctic char Salvelinus alpjnus, both naturally resistant and susceptible individuals later mounting a host response can be observed. This is in contrast to an anadromous stock of brown trout Salmo trutta where only innately resistant individuals were found. A general feature of salmonid infections is the considerable variation of susceptibility between individual fish of the same stock, which appears genetic in origin. The parasite seems to be generally unable to reproduce on non-salmonids, and on cyprinids, individual behavioural mechanisms of the parasite may prevent infection. Transmission occurs directly through host contact, and by detached gyrodactylids and also from dead fishes.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Cefas PANDA Report
    Project no. SSPE-CT-2003-502329 PANDA Permanent network to strengthen expertise on infectious diseases of aquaculture species and scientific advice to EU policy Coordination Action, Scientific support to policies WP4: Report on the current best methods for rapid and accurate detection of the main disease hazards in aquaculture, requirements for improvement, their eventual standardisation and validation, and how to achieve harmonised implementation throughout Europe of the best diagnostic methods Olga Haenen*, Inger Dalsgaard, Jean-Robert Bonami, Jean-Pierre Joly, Niels Olesen, Britt Bang Jensen, Ellen Ariel, Laurence Miossec and Isabelle Arzul Work package leader & corresponding author: Dr Olga Haenen, CIDC-Lelystad, NL ([email protected]) PANDA co-ordinator: Dr Barry Hill, CEFAS, UK; www.europanda.net © PANDA, 2007 Cover image: Koi with Koi Herpes Virus Disease: enophthalmia and gill necrosis (M.Engelsma acknowl.) Contents Executive summary 5 Section 1 Introduction 7 1.1 Description of work 7 1.2 Deliverables 8 1.3 Milestones and expected results 9 1.4 Structure of the report and how to use it 9 1.5 General remarks and links with other WPs of PANDA 9 Section 2 Materials and methods 10 2.1 Task force 10 2.2 Network 10 2.3 Workshops and dissemination 10 2.4 Analysis of data 10 2.5 Why harmonization throughout Europe background and aim 11 2.6. CRL functions 11 Section 3 Results 12 3.1 Task force 12 3.2 Network 12 3.3 Workshops and dissemination 12 3.4 Analysis of data 14 Diseases/pathogens of fish 14 3.4.1 Epizootic haematopoietic necrosis
    [Show full text]
  • Prevalence, Intensity, Longevity, and Persistence of Anisakis Sp. Larvae and Lacistorhynchus Tenuis Metacestodes in San Francisco Striped Bass
    29 NOAA Technical Report NMFS 29 Prevalence, Intensity, Longevity, and Persistence of Anisakis sp. Larvae and Lacistorhynchus tenuis Metacestodes in San Francisco Striped Bass Mike Moser, Judy A. Sakanari, Carol A. Reilly, and Jeannette Whipple April 1985 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA TECHNICAL REPORTS NMFS The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use ofthe resources. NMFS is also charged with the development and implemen­ tation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mongage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Repon NMFS series was established in 1983 to replace two subcategories of the Technical Reports series: "Special Scientific Repon-Fisheries" and "Circular." The series contains the following types of repons: Scientific investigations that document long-term continuing programs of NMFS, intensive scientific reports on studies of restricted scope, papers on applied fishery problems, technical repons of general interest intended to aid conservation and management, repons that review in considerable detail and at a high technical level cenain broad areas of research, and technical papers originating in economics studies and from management investigations.
    [Show full text]
  • AQUATIC SCIENCES and ENGINEERING
    AQUATIC SCIENCES and ENGINEERING VOLUME: 33 ISSUE: 3 2018 EISSN 2602-473X AQUATIC SCIENCES and ENGINEERING OWNER OF JOURNAL INTERNATIONAL EDITORIAL BOARD İstanbul University Faculty of Aquatic Sciences Prof. Genario Belmonte University of Salento, Italy EDITOR IN CHIEF Prof. Carsten Harms Prof. Devrim Memiş Applied University Bremerhaven, Germany İstanbul University Faculty of Aquatic Sciences, Turkey Prof. Konstantinos Kormas University of Thessaly, Greece DEAN Prof. Sergi Sabater Prof. Dr. Meriç Albay Institute of Aquatic Ecology, Spain Prof. Maya Petrova Stoyneva-Gaertner CO EDITOR IN CHIEF Sofia University “St Kliment Ohridski”, Bulgaria Prof. Özkan Özden Prof. Nuray Erkan İstanbul University Faculty of Aquatic Sciences, Turkey İstanbul University Faculty of Aquatic Sciences, Turkey LANGUAGE EDITOR Prof. Reyhan Akçaalan İstanbul University Faculty of Aquatic Sciences, Turkey Joanne Bates Department of Foreign Languages, İstanbul University, Prof. Saadet Karakulak İstanbul, Turkey İstanbul University Faculty of Aquatic Sciences, Turkey Prof. Sühendan Mol Tokay İstanbul University Faculty of Aquatic Sciences, Turkey Assoc. Prof. Lukas Kalous Czech University of Life Sciences, Czech Dr. Klaus Kohlmann Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Germany Dr. Piero Addis University of Cagliari, Italy Dr. Nico Salmaso Research and Innovation Centre, Italy Dr. Petra Viser University of Amsterdam, Netherlands Publisher Copyright © 2018 İstanbul University Press Journal Adress: İstanbul University Faculty Aquatic Sciences, Ordu Caddesi No:8 34134 Laleli Fatih/İstanbul Turkey E-mail: [email protected] for submussion instructions, subcription and all other information visit http://dergipark.gov.tr/tjas Publication Services Publisher Publication Coordinators Graphics Department İbrahim KARA Betül ÇİMEN Ünal ÖZER Özlem ÇAKMAK Neslihan YAMAN Publication Director Ali ŞAHİN Okan AYDOĞAN Deniz DURAN Merve SAĞLAMER Finance and Administration İrem DELİÇAY Contact Zeynep YAKIŞIRER Elif İLKKURŞUN Address: Büyükdere Cad.
    [Show full text]
  • Effects of Different Strategies of Low Temperature on Egg Hatching of Dactylogyrus Vastator (Monogenea: Dactylogyridae)
    Effects of Different Strategies of Low Temperature on Egg Hatching of Dactylogyrus Vastator (Monogenea: Dactylogyridae) Xiaoping Zhang Institute of Hydrobiology Chinese Academy of Sciences Baodi Shang Guizhou Fisheries Research Institute Yingyin Cheng Institute of Hydrobiology Chinese Academy of Sciences Guitang Wang Institute of Hydrobiology Chinese Academy of Sciences Wenxiang Li ( [email protected] ) Institute of Hydrobiology Chinese Academy of Sciences Research Keywords: Monogenea, Dactylogyrus vastator, low water temperature, egg hatching Posted Date: June 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-560786/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/9 Abstract Background: The development of dactylogyrids is water temperature dependent, and their eggs fail to hatch below 5°C. The dactylogyrids are supposed to overwinter with adults on hosts or eggs in the water. In the eld investigation, however, mean abundance of some Dactylogyrus species increases and reaches to a high level in winter, which suggests that the eggs may hatch into infective oncomiracidia in winter. Therefore, effects of low water temperature on egg hatching of D. vastator were determined on gills of goldsh (Carassius auratus) in laboratory. Results: The eggs of D. vastator hatched and the hatching success was 65.3%, 62.7%, 42.6% and 22.3% when eggs were rstly incubated for 0, 7, 14 and 21 days at 5 °C and then maintained for 15 days at 20 °C. Hatching success in 14 and 21-day group was signicantly lower than in 0 and 7-day group. When eggs were directly incubated at 5 °C, eggs failed to hatch within one month.
    [Show full text]
  • Assessing Disease Impacts of Hatcheries on Downstream Salmonids in the Willamette River Basin, Oregon
    AN ABSTRACT OF THE THESIS OF Michelle Jakaitis for the degree of Master of Science in Microbiology presented on November 4th, 2014. Title: Assessing Disease Impacts of Hatcheries on Downstream Salmonids in the Willamette River Basin, Oregon. Abstract approved: ____________________________________________________________ Jerri L. Bartholomew Hatcheries are often perceived as a source of pathogen amplification, potentially increasing disease risk to free-ranging populations; at the same time, free-ranging fishes may introduce pathogens into hatcheries through untreated water sources. Many pathogens exist naturally within the environment (with the exception of introduced pathogens) and the presence of a pathogen does not guarantee infection or disease (Naish, Taylor III, Levin, Quinn, Winton, Huppert & Hilborn 2007). Infections can be acute, chronic, or asymptomatic, fish may die, recover, or become carriers (Naish et al. 2007), and pathogens may be shed from any of these stages (Scottish Executive 2002). Most salmon and trout hatcheries along the Willamette River Basin, Oregon, USA, utilize an untreated river water supply for their rearing ponds and release this water, untreated, back into the river. This creates a potential for waterborne pathogens present in free-ranging hosts to be transmitted through the water supply to hatchery populations. Moreover, any hatchery epizootic can amplify pathogens and release these into the water, which could have a direct impact on free- ranging populations exposed to those pathogens in hatchery effluent. The goal of this thesis was to assess transmission of the pathogens Flavobacterium columnare, F. psychrophilum, Aeromonas salmonicida, Renibacterium salmonicida, and Infectious Hematopoietic Necrosis Virus (IHNV), at selected hatcheries in the Willamette River Basin. To accomplish this, I considered historical data and hatchery-specific and pathogen-specific factors involved in transmission and disease.
    [Show full text]