RUNNING HEAD: Fmri and Cognitive Theory 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Behavioral Neuroscience Uab Graduate Handbook
Behavioral Neuroscience Ph.D. Program Policies, Guidelines, & Procedures Student Handbook 2021-2022 University of Alabama at Birmingham Table of Contents Mission Statement __________________________________________ 3 History of the Program _______________________________________ 3 Policies and Procedures ______________________________________ 4 Overview of Student Career ___________________________________ 5 Typical Courses ____________________________________________ 5 Progress Reports ___________________________________________ 6 2nd Year Research Project __________________________________ 7 Qualifying Examination _______________________________________ 8 Dissertation ________________________________________________ 10 Behavioral Neuroscience Student Checklist _______________________ 13 Master’s Degree ____________________________________________ 15 Policies Regarding Adequate Progress __________________________ 16 Policies on Remunerated Activities _____________________________ 16 Vacation, Leave, Holiday Guidelines ____________________________ 17 Degree Requirements and Associated Procedures ________________ 18 2 BEHAVIORAL NEUROSCIENCE PROGRAM Mission Statement and History of the Program Mission Statement Behavioral neuroscience is represented by scientists with interests in the physiological and neural substrates of behavior. The mission of the Behavioral Neuroscience Ph.D. program is to produce outstanding young scientists capable of pursuing independent research careers in the field of behavioral neuroscience by providing graduate -
Joan Y. Chiao
JOAN Y. CHIAO Department of Psychology Northwestern University 2029 Sheridan Rd, Evanston, IL 60208 Email: [email protected] Phone: 847.467.0481 ACADEMIC POSITIONS 2006-present Assistant Professor, Department of Psychology, Northwestern University Affiliated Faculty, Neuroscience Institute (NUIN) Affiliated Faculty, Cognitive Science Program Affiliated Faculty, Asian American Studies Program Affiliated Faculty, Cognitive Neurology and Alzheimer’s Disease Center Affiliated Faculty, Multidisciplinary Program in Educational Science Affiliated Faculty, Technology and Social Behavior Program Faculty Associate, Institute for Policy Research EDUCATION Ph.D. Harvard University in Psychology, 2001-2006 B.S. Stanford University in Symbolic Systems with Honors, 1996-2000 RESEARCH INTERESTS • Social affective and cultural neuroscience • Race and its influence on perception, cognition and emotion • Psychological and neural mechanisms underlying social status and dominance • Integration of psychology and neuroscience research to public policy and population health issues HONORS, AWARDS and FELLOWSHIPS 2011 Association for Psychological Science Rising Star Award 2011 NIMH Early Career International Travel Award 2006-07 Japan Society for the Promotion of Science Research Fellow 2003-06 National Science Foundation Graduate Research Fellowship 2005 John Merck Summer Institute: Biology of Developmental Disabilities Allport Travel Funds, Harvard George W. Goethals Teaching Prizes, Harvard Cognitive Neuroscience Society Graduate Student Presenter Award -
The Medical Practice Impact of Functional Neuroimaging Studies in Disorders of Consciousness
The Medical Practice Impact of Functional Neuroimaging Studies in Disorders of Consciousness Fundacio Grífols • Conferències Josep Egozcue Barcelona • November 15, 2016 James L. Bernat, M.D. Louis and Ruth Frank Professor of Neuroscience Professor of Neurology and Medicine Geisel School of Medicine at Dartmouth Hanover, New Hampshire USA Overview • Review of disorders of consciousness • Case reports highlighting “covert cognition” • Diagnosis and prognosis • Communication • Medical decision-making • Treatment • Future directions Disorders of Consciousness • Coma • Vegetative state (VS) • Minimally conscious state (MCS) • Brain death • Locked-in syndrome (LIS) – Not a DoC but may be mistaken for one Giacino JT et al. Nat Rev Neurol 2014;10:99-114 VS: Criteria I • Unawareness of self and environment • No sustained, reproducible, or purposeful voluntary behavioral response to visual, auditory, tactile, or noxious stimuli • No language comprehension or expression Multisociety Task Force. N Engl J Med 1994;330:1499-1508, 1572-1579 VS: Criteria II • Present sleep-wake cycles • Preserved autonomic and hypothalamic function to survive for long intervals with medical/nursing care • Preserved cranial nerve reflexes Multisociety Task Force. N Engl J Med 1994;330:1499-1508, 1572-1579 VS: Behavioral Repertoire • Sleep, wake, yawn, breathe • Blink and move eyes but no sustained visual pursuit • Make sounds but no words • Variable respond to visual threat • Grimacing; chewing movements • Move limbs; startle myoclonus Bernat JL. Lancet 2006;367:1181-1192 VS: Diagnosis • Fulfill “negative” diagnostic criteria • Exam: Coma Recovery Scale – Revised • Have patient gaze at self in hand mirror • Interview nurses and caregivers • False-positive rates of 40% • Consider minimally conscious state Schnakers C et al. -
Social Neuroscience and Psychopathology: Identifying the Relationship Between Neural Function, Social Cognition, and Social Beha
Hooker, C.I. (2014). Social Neuroscience and Psychopathology, Chapter to appear in Social Neuroscience: Mind, Brain, and Society Social Neuroscience and Psychopathology: Identifying the relationship between neural function, social cognition, and social behavior Christine I. Hooker, Ph.D. ***************************** Learning Goals: 1. Identify main categories of social and emotional processing and primary neural regions supporting each process. 2. Identify main methodological challenges of research on the neural basis of social behavior in psychopathology and strategies for addressing these challenges. 3. Identify how research in the three social processes discussed in detail – social learning, self-regulation, and theory of mind – inform our understanding of psychopathology. Summary Points: 1. Several psychiatric disorders, such as schizophrenia and autism, are characterized by social functioning deficits, but there are few interventions that effectively address social problems. 2. Treatment development is hindered by research challenges that limit knowledge about the neural systems that support social behavior, how those neural systems and associated social behaviors are compromised in psychopathology, and how the social environment influences neural function, social behavior, and symptoms of psychopathology. 3. These research challenges can be addressed by tailoring experimental design to optimize sensitivity of both neural and social measures as well as reduce confounds associated with psychopathology. 4. Investigations on the neural mechanisms of social learning, self-regulation, and Theory of Mind provide examples of methodological approaches that can inform our understanding of psychopathology. 5. High-levels of neuroticism, which is a vulnerability for anxiety disorders, is related to hypersensitivity of the amygdala during social fear learning. 6. High-levels of social anhedonia, which is a vulnerability for schizophrenia- spectrum disorders, is related to reduced lateral prefrontal cortex (LPFC) activity 1 Hooker, C.I. -
Statistical Parametric Mapping (Spm): Theory, Software and Future Directions
STATISTICAL PARAMETRIC MAPPING (SPM): THEORY, SOFTWARE AND FUTURE DIRECTIONS 1 Todd C Pataky, 2Jos Vanrenterghem and 3Mark Robinson 1Shinshu University, Japan 2Katholieke Universiteit Leuven, Belgium 3Liverpool John Moores University, UK Corresponding author email: [email protected]. DESCRIPTION Table 1: Many types of biomechanical data are mDnD, but Overview— Statistical Parametric Mapping (SPM) [1] was most statistical tests in the literature are 1D0D: t tests, developed in Neuroimaging in the mid 1990s [2], primarily regression and ANOVA, and based on the relatively simple for the analysis of 3D fMRI and PET images, and has Gaussian distribution, despite nearly a century of theoretical recently appeared in Biomechanics for a variety of development in mD0D and mDnD statistics. applications with dataset types ranging from kinematic and force trajectories [3] to plantar pressure distributions [4] 0D data 1D data (Fig.1) and cortical bone thickness fields [5]. Scalar Vector Scalar Vector 1D0D mD0D 1D1D mD1D SPM’s fundamental observation unit is the “mDnD” Multivariate Random Field Theory Gaussian continuum, where m and n are the dimensionalities of the Gaussian Theory observed variable and spatiotemporal domain, respectively, T tests T2 tests making it ideally suited for a variety of biomechanical Applied Regression CCA SPM applications including: ANOVA MANOVA • (m=1, n=1) Joint flexion trajectories • (m=3, n=1) Three-component force trajectories • (m=1, n=2) Contact pressure distributions The purposes of this workshop are: • (m=6, n=3) Bone strain tensor fields. 1. To review SPM’s historical context. SPM handles all data types in a single, consistent statistical 2. To demonstrate how SPM generalizes common tests framework, generalizing to arbitrary data dimensionalities (including t tests, regression and ANOVA) to the and geometries through Eulerian topology. -
Brain Imaging Technologies
Updated July 2019 By Carolyn H. Asbury, Ph.D., Dana Foundation Senior Consultant, and John A. Detre, M.D., Professor of Neurology and Radiology, University of Pennsylvania With appreciation to Ulrich von Andrian, M.D., Ph.D., and Michael L. Dustin, Ph.D., for their expert guidance on cellular and molecular imaging in the initial version; to Dana Grantee Investigators for their contributions to this update, and to Celina Sooksatan for monograph preparation. Cover image by Tamily Weissman; Livet et al., Nature 2017 . Table of Contents Section I: Introduction to Clinical and Research Uses..............................................................................................1 • Imaging’s Evolution Using Early Structural Imaging Techniques: X-ray, Angiography, Computer Assisted Tomography and Ultrasound..............................................2 • Magnetic Resonance Imaging.............................................................................................................4 • Physiological and Molecular Imaging: Positron Emission Tomography and Single Photon Emission Computed Tomography...................6 • Functional MRI.....................................................................................................................................7 • Resting-State Functional Connectivity MRI.........................................................................................8 • Arterial Spin Labeled Perfusion MRI...................................................................................................8 -
Dissociating Hippocampal Versus Basal Ganglia Contributions to Learning and Transfer
Dissociating Hippocampal versus Basal Ganglia Contributions to Learning and Transfer Catherine E. Myers1, Daphna Shohamy1, Mark A. Gluck1, Steven Grossman1, Alan Kluger2, Steven Ferris3, James Golomb3, 4 5 Geoffrey Schnirman , and Ronald Schwartz Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/15/2/185/1757757/089892903321208123.pdf by guest on 18 May 2021 Abstract & Based on prior animal and computational models, we Parkinson’s disease, and healthy controls, using an ‘‘acquired propose a double dissociation between the associative learning equivalence’’ associative learning task. As predicted, Parkin- deficits observed in patients with medial temporal (hippo- son’s patients were slower on the initial learning but then campal) damage versus patients with Parkinson’s disease (basal transferred well, while the hippocampal atrophy group showed ganglia dysfunction). Specifically, we expect that basal ganglia the opposite pattern: good initial learning with impaired dysfunction may result in slowed learning, while individuals transfer. To our knowledge, this is the first time that a single with hippocampal damage may learn at normal speed. task has been used to demonstrate a double dissociation However, when challenged with a transfer task where between the associative learning impairments caused by previously learned information is presented in novel recombi- hippocampal versus basal ganglia damage/dysfunction. This nations, we expect that hippocampal damage will impair finding has implications for understanding the distinct -
Functional Neuroimaging of Disorders of Consciousness
Functional Neuroimaging of Disorders of Consciousness Martin R. Coleman, PhD* Adrian M. Owen, PhD*w Wolfson Brain Imaging Centre, Addenbrookes Hospital MRC Cognition and Brain Sciences Unit An accurate and reliable evaluation of the level and content of cognitive processing is of paramount importance for the appropriate management of severely brain-damaged patients with disorders of consciousness.1 Objective behavioral assessment of residual cognitive function can be extremely challenging in these patients, as motor responses may be minimal, inconsistent, and difficult to document, or may be undetectable because no cognitive output is possible. This difficulty leads to much confusion and a high-level of misdiagnoses in the vegetative state (VS), minimally conscious state, and locked-in syndrome.2,3 Recent advances in functional neuroimaging suggest a novel solution to this problem; so-called ‘‘activation’’ studies can be used to assess cognitive functions in altered states of consciousness without the need for any overt response on the part of the patient. In several recent studies, this approach has been used to detect residual cognitive function and even conscious awareness in patients who behaviorally meet the criteria defining the VS.4–6 Similarly, these techniques have been used in other studies to guide therapeutic interventions and track recovery processes.7,8 Such studies suggest that the future integration of emerging functional neuroimaging techniques with existing clinical and behavioral methods of assessment will be essential in reducing the current rate of misdiagnosis. Moreover, such FROM THE *CAMBRIDGE IMPAIRED CONSCIOUSNESS RESEARCH GROUP,WOLFSON BRAIN IMAGING CENTRE, ADDENBROOKES HOSPITAL AND THE wMRC COGNITION AND BRAIN SCIENCES UNIT REPRINTS:MARTIN R. -
Functional Imaging in Behavioral Neurology and Cognitive Neuropsychology
Functional Imaging in Behavioral Neurology and Cognitive Neuropsychology Geoffrey Karl Aguirre From: T. E. Feinberg & M. J. Farah (Eds.), Behavioral Neurology and Cognitive Neuropsychology . (in press). New York: McGraw Hill. Introduction What can we hope to learn of the physical operation of the central nervous system and the mental processes that result? The fields of behavioral neurology and cognitive neuropsychology survey this relationship, and have at their disposal powerful intellectual and methodological tools. While the terrain of possible models of brain and behavior interaction seems boundless, particular tests of these models may exist beyond the reach of particular methods. These methods fall into two broad categories, and have been around for several centuries. The first category includes manipulations of the neural substrate itself. Such an intervention might inactivate a brain area, perhaps through a lesion, with Paul Broca’s 1861 observation of the link between language and left frontal lobe damage providing a prototypical example. The effects of stimulation of brain areas can also be studied, as Harvey Cushing did with the human sensory cortex in the early 20th century. In contrast, observation techniques relate a measure of neural function to behavior. Hans Berger’s work in the 1920s on the human electroencephalographic response is a good starting point. Impressive refinements and additions to both of these categories have taken place over the last century. For example, beyond the static lesions of “nature’s accidents” that have been the mainstay of cognitive neuropsychology for many years, it is now possible to temporarily and reversibly inactivate areas of human cortex using transcranial magnetic stimulation (see chapter X for additional details). -
Statistical Parametric Mapping (SPM)
Statistical Parametric Mapping (SPM) Finn Arupº Nielsen Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet; Informatics and Mathematical Modelling Technical University of Denmark March 3, 2005 Statistical Parametric Mapping (SPM) What is SPM? A method for processing and anal- Analysis software of first experiment in paper (top of list) SPM96 ysis of neuroimages. SPM99 SPM95 A method for voxel-based analysis AIR SPM of neuroimages using a \general lin- AFNI SPM97 ear model". SPM97d MRIcro In−house The summary images (i.e., result BRAINS Stimulate images) from an analysis: Statisti- SPM99d SPM99b cal parametric maps. SPM97d/SPM99 0 5 10 15 20 25 30 35 A Matlab program for processing Absolute frequency and analysis of functional neuroim- Figure 1: Histogram of used analysis software ages | and molecular neuroimages. as recorded in the Brede Database, see orig- inal at http://hendrix.imm.dtu.dk/services/jerne/- SPM is very dominating in func- brede/index bib stat.html tional neuroimaging Finn Arupº Nielsen 1 March 3, 2005 Statistical Parametric Mapping (SPM) SPM | the program Image registration, seg- mentation, smoothing, al- gebraic operations Analysis with general lin- ear model, random ¯eld theory, dynamic causal modeling Visualization Email list with 2000 » subscribers Figure 2: Image by Mark Schram Christensen. Finn Arupº Nielsen 2 March 3, 2005 Statistical Parametric Mapping (SPM) Data transformations Image data Kernel Design matrix Statistical parametric map 1 0.9 2 0.8 1 4 0.7 0.8 0.6 0.6 6 0.5 0.4 0.4 0.2 8 0.3 0 3 2 10 0.2 3 1 2 0 1 0.1 −1 0 −1 −2 12 −2 −3 −3 0 1 2 3 4 5 6 7 8 Realignment Smoothing General linear Model Spatial Gaussian random field Statistical False discovery rate Normalization Inference Maximum statistics permutation Template Finn Arupº Nielsen 3 March 3, 2005 Statistical Parametric Mapping (SPM) Image registration Image registration: Move and warp brain Motion realignment of consecutive scans (\realign"). -
Revolution of Resting-State Functional Neuroimaging Genetics in Alzheimer's Disease
TINS 1320 No. of Pages 12 Review Revolution of Resting-State Functional Neuroimaging Genetics in Alzheimer’s Disease Patrizia A. Chiesa,1,2,* Enrica Cavedo,1,2,3 Simone Lista,1,2 Paul M. Thompson,4 Harald Hampel,1,2,*[23_TD$IF]and for the Alzheimer Precision Medicine Initiative (APMI) The quest to comprehend genetic, biological, and symptomatic heterogeneity Trends underlying Alzheimer’s disease (AD) requires a deep understanding of mecha- Neural rs-fMRI differences are detect- nisms affecting complex brain systems. Neuroimaging genetics is an emerging able in CN mutation carriers of APOE, field that provides a powerful way to analyze and characterize intermediate PICALM, CLU, and BIN1 genes across biological phenotypes of AD. Here, we describe recent studies showing the the lifespan. differential effect of genetic risk factors for AD on brain functional connectivity CN individuals carrying risk variants of in cognitively normal, preclinical, prodromal,[24_TD$IF] and AD dementia individuals. APOE, PICALM, CLU,orBIN1 and presymptomatic AD individuals Functional neuroimaging genetics holds particular promise for the characteri- showed overlapping rs-fMRI altera- zation of preclinical populations; target populations for disease prevention and tions: decreased functional connectiv- modification trials. To this end, we emphasize the need for a paradigm shift ity in the middle and posterior DMN regions, and increased the frontal towards integrative disease modeling and neuroimaging biomarker-guided and lateral DMN areas. precision medicine for AD and other neurodegenerative diseases. No consistent results were reported in AD dementia, despite findings suggest Pathophysiology, Genetics,[25_TD$IF] and Functional Brain Processing Underlying AD selective alterations in the DMN and in AD is the most prevalent neurodegenerative disease and commonest type of dementia in the executive control network. -
Social Cognitive Neuroscience: a Review of Core Systems
C HAPTER 2 2 SOCIAL COGNITIVE NEUROSCIENCE: A REVIEW OF CORE SYSTEMS Bruce P. Doré, Noam Zerubavel, and Kevin N. Ochsner Descartes famously argued that the mind is both SOCIAL COGNITIVE NEUROSCIENCE everlasting and indivisible (Descartes, 1988). If he APPROACH was right about the first part, he is probably pretty In the past decade, the field of social cognitive neuro- impressed with the advance of human knowledge science (SCN) has attempted to fill this gap, integrat- on the second. Although Descartes’ position on ing the theories and methods of two parent the indivisibility of the mind has been echoed at disciplines: social psychology and cognitive neurosci- times in the history of psychology and neurosci- ence. Stressing the interdependence of brain, mind, ence (Flourens & Meigs, 1846; Lashley, 1929; and social context, SCN seeks to explain psychological Uttal, 2003), the modern field has made steady phenomena at three levels of analysis: the neural level progress in demonstrating that subjective mental of brain systems, the cognitive level of information life can be understood as the product of distinct processing mechanisms, and the social level of the functional systems. Today, largely because of the experiences and actions of social agents (Ochsner & success of cognitive neuroscience models, Lieberman, 2001). In contrast to scientific approaches researchers understand that people’s intellectual that grant near exclusive focus to a single level of anal- faculties emerge from the operation of core ysis (e.g., behaviorism, artificial