Functional Imaging in Behavioral Neurology and Cognitive Neuropsychology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Clinical Neuropsychology What Is Clinical Neuropsychology?
Clinical Neuropsychology What is Clinical Neuropsychology? A Neuropsychologist is a licensed psychologist trained to examine the link between a patient’s brain and behavior. A Neuropsychologist will assess neurological, medical, and genetic disorders, psychiatric illness and behavior problems, developmental disabilities, and complex learning issues. UNC PM&R’s Neuropsychologists work with children, adolescents, and adults. The primary goal of this service is to utilize results of the evaluation to collaborate with the patient and develop a treatment plan and recommendations that best fit the patient’s needs. Patients who may benefit from a Neuropsychological Evaluation include those with: • A neurological disorder such as epilepsy, hydrocephalus, Parkinson’s disease, Alzheimer’s disease and other dementias, multiple sclerosis, or hydrocephalus • An acquired brain injury from concussion or more severe head trauma, stroke, hydrocephalus, lack of oxygen, brain infection, brain tumor, or other cancers • Other medical conditions that may affect brain functioning, such as chronic heart, lung, kidney, or liver problems, diabetes, breathing issues, lupus, or other autoimmune diseases • A neurodevelopmental disorder such as cerebral palsy, spina bifida, intellectual disabilities, learning difficulties, ADHD disorder, or autism spectrum disorder • Problems with or changes in thinking, memory, or behavior with no clear known cause What is the evaluation like? The evaluation will be tailored to The evaluation may last between 3-6 address the patient’s specific concerns hours and typically includes: about functioning, and can address 1. Interview with the patient and the following: possibly family members/caretakers • General intellectual ability and/or problems in 2. Assessment and testing (typically a reading, writing, or math combination of one-on-one tests of • Problems with/changes in attention, memory, thinking involving paper/pencil or a thinking abilities, or language tablet, along with questionnaires) • Changes in emotional or behavioral 3. -
Introduction to Neuroimaging
Introduction to Neuroimaging Janaina Mourao-Miranda • Neuroimaging techniques have changed the way neuroscientists address questions about functional anatomy, especially in relation to behavior and clinical disorders. • Neuroimaging includes the use of various techniques to either directly or indirectly image the structure or function of the brain. • Structural neuroimaging deals with the structure of the brain (e.g. shows contrast between different tissues: cerebrospinal fluid, grey matter, white matter). • Functional neuroimaging is used to indirectly measure brain functions (e.g. neural activity) • Example of Neuroimaging techniques: – Computed Tomography (CT), – Positron Emission Tomography (PET), – Single Photon Emission Computed Tomography (SPECT), – Magnetic Resonance Imaging (MRI), – Functional Magnetic Resonance Imaging (fMRI). • Among other imaging modalities MRI/fMRI became largely used due to its low invasiveness, lack of radiation exposure, and relatively wide availability. • Magnetic Resonance Imaging (MRI) was developed by researchers including Peter Mansfield and Paul Lauterbur, who were awarded the Nobel Prize for Physiology or Medicine in 2003. • MRI uses magnetic fields and radio waves to produce high quality 2D or 3D images of brain structures/functions without use of ionizing radiation (X- rays) or radioactive tracers. • By selecting specific MRI sequence parameters different MR signal can be obtained from different tissue types (structural MRI) or from metabolic changes (functional MRI). MRI/fMRI scanner MRI vs. fMRI -
Current Directions in Social Cognitive Neuroscience Kevin N Ochsner
Current directions in social cognitive neuroscience Kevin N Ochsner Social cognitive neuroscience is an emerging discipline that science (SCN) as a distinct interdisciplinary field that seeks to explain the psychological and neural bases of seeks to understand socioemotional phenomena in terms socioemotional experience and behavior. Although research in of relationships among the social (specifying socioemo- some areas is already well developed (e.g. perception of tionally relevant cues, contexts, experiences, and beha- nonverbal social cues) investigation in other areas has only viors), cognitive (information processing mechanisms), just begun (e.g. social interaction). Current studies are and neural (brain bases) levels of analysis. elucidating; the role of the amygdala in a variety of evaluative and social judgment processes, the role of medial prefrontal Here, I provide a brief synthetic review of selected recent cortex in mental state attribution, how frontally mediated findings organized around types or stages of processing controlled processes can regulate perception and experience, rather than topic domains for the following three reasons. and the way in which these and other systems are recruited First, a process orientation might help to highlight emerg- during social interaction. Future progress will depend upon ing functional principles that cut across topics. Second, the development of programmatic lines of research that SCN encompasses numerous topics, and for many of integrate contemporary social cognitive research with them -
Concepts As Correlates of Lexical Labels. a Cognitivist Perspective
This is a submitted manuscript version. The publisher should be contacted for permission to re-use or reprint the material in any form. Final published version, copyright Peter Lang: https://doi.org/10.3726/978-3-653-05287-9 Sławomir Wacewicz Concepts as Correlates of Lexical Labels. A Cognitivist Perspective. This is a submitted manuscript version. The publisher should be contacted for permission to re-use or reprint the material in any form. Final published version, copyright Peter Lang: https://doi.org/10.3726/978-3-653-05287-9 CONTENTS Introduction………………………………………………………………... 6 PART I INTERNALISTIC PERSPECTIVE ON LANGUAGE IN COGNITIVE SCIENCE Preliminary remarks………………………………………………………… 17 1. History and profile of Cognitive Science……………………………….. 18 1.1. Introduction…………………………………………………………. 18 1.2. Cognitive Science: definitions and basic assumptions ……………. 19 1.3. Basic tenets of Cognitive 22 Science…………………………………… 1.3.1. Cognition……………………………………………………... 23 1.3.2. Representationism and presentationism…………………….... 25 1.3.3. Naturalism and physical character of mind…………………... 28 1.3.4. Levels of description…………………………………………. 30 1.3.5. Internalism (Individualism) ………………………………….. 31 1.4. History……………………………………………………………... 34 1.4.1. Prehistory…………………………………………………….. 35 1.4.2. Germination…………………………………………………... 36 1.4.3. Beginnings……………………………………………………. 37 1.4.4. Early and classical Cognitive Science………………………… 40 1.4.5. Contemporary Cognitive Science……………………………... 42 1.4.6. Methodological notes on interdisciplinarity………………….. 52 1.5. Summary…………………………………………………………. 59 2. Intrasystemic and extrasystemic principles of concept individuation 60 2.1. Existential status of concepts ……………………………………… 60 2 This is a submitted manuscript version. The publisher should be contacted for permission to re-use or reprint the material in any form. Final published version, copyright Peter Lang: https://doi.org/10.3726/978-3-653-05287-9 2.1.1. -
Cognitive and Neuroscience Research on Learning And
The 11th International Conference on Education Research New Educational Paradigm for Learning and Instruction September 29 – October 1, 2010 Cognitive and Neuroscience Research on Learning and Instruction: Recent insights about the impact of non-conscious knowledge on problem solving, higher order thinking skills 12 and interactive cyber-learning environments. Richard E. Clark University of Southern California, USA Abstract There are as least three powerful insights from recent studies of the brain that support cognitive science research findings: First, our brains learn and process two very different types of knowledge; non conscious, automated knowledge and conscious, controllable, declarative knowledge. Evidence also suggests that we believe we control our own learning by conscious choice when in fact nearly all mental operations are highly automated, including learning and problem solving; Second, human beings have a very limited capacity to think during learning and problem solving and when that capacity is exceeded, thinking and learning stop without us being aware. Thus instruction and self managed learning must strive to avoid cognitive overload; and Third, nearly all of our instructional design and cyber learning theories and models fail to account for the influence of non-conscious cognitive processes and therefore are inadequate to deal with complex learning and performance. Evidence for these points will be described and their implications for instruction and the learning of problem solving and higher order thinking skills will be discussed. Models of learning and instruction that appear to help overcome some of these biological and cognitive barriers will be described. In addition, suggestions for new research questions on interactive learning environments that take account of the three insights will also be described. -
Neuropsychology of Facial Expressions. the Role of Consciousness in Processing Emotional Faces
Neuropsychology of facial expressions. The role of consciousness in processing emotional faces Michela Balconi Department of Psychology, Catholic University of the Sacred Heart, Milano, Italy [email protected] Abstract Neuropsychological studies have underlined the significant presence of distinct brain correlates deputed to analyze facial expression of emotion. It was observed that some cerebral circuits were considered as specific for emotional face comprehension as a func- tion of conscious vs. unconscious processing of emotional information. Moreover, the emotional content of faces (i.e. positive vs. negative; more or less arousing) may have an effect in activating specific cortical networks. Between the others, recent studies have explained the contribution of hemispheres in comprehending face, as a function of type of emotions (mainly related to the distinction positive vs. negative) and of specific tasks (comprehending vs. producing facial expressions). Specifically, ERPs (event-related potentials) analysis overview is proposed in order to comprehend how face may be processed by an observer and how he can make face a meaningful construct even in absence of awareness. Finally, brain oscillations is considered in order to explain the synchronization of neural populations in response to emotional faces when a conscious vs. unconscious processing is activated. Keywords: Face; Consciousness; Brain; Brain oscillations; ERPs 1. Face and consciousness Rapid detection of emotional information is highly adaptive, since it pro- vides critical elements on environment and on the attitude of the other people (Darwin, 1872; Eimer & Holmes, 2007). Indeed faces are a critically Neuropsychological Trends – 11/2012 http://www.ledonline.it/neuropsychologicaltrends/ 19 Michela Balconi important source of social information and it appears we are biologically prepared to perceive and respond to faces in an unique manner (Balconi, 2008; Ekman, 1993). -
Vascular Factors and Risk for Neuropsychiatric Symptoms in Alzheimer’S Disease: the Cache County Study
International Psychogeriatrics (2008), 20:3, 538–553 C 2008 International Psychogeriatric Association doi:10.1017/S1041610208006704 Printed in the United Kingdom Vascular factors and risk for neuropsychiatric symptoms in Alzheimer’s disease: the Cache County Study .............................................................................................................................................................................................................................................................................. Katherine A. Treiber,1 Constantine G. Lyketsos,2 Chris Corcoran,3 Martin Steinberg,2 Maria Norton,4 Robert C. Green,5 Peter Rabins,2 David M. Stein,1 Kathleen A. Welsh-Bohmer,6 John C. S. Breitner7 and JoAnn T. Tschanz1 1Department of Psychology, Utah State University, Logan, U.S.A. 2Department of Psychiatry, Johns Hopkins Bayview and School of Medicine, Johns Hopkins University, Baltimore, U.S.A. 3Department of Mathematics and Statistics, Utah State University, Logan, U.S.A. 4Department of Family and Human Development, Utah State University, Logan, U.S.A. 5Departments of Neurology and Medicine, Boston University School of Medicine, Boston, U.S.A. 6Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, U.S.A. 7VA Puget Sound Health Care System, and Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, U.S.A. ABSTRACT Objective: To examine, in an exploratory analysis, the association between vascular conditions and the occurrence -
Criteria for Unconscious Cognition: Three Types of Dissociation
Perception & Psychophysics 2006, 68 (3), 489-504 Criteria for unconscious cognition: Three types of dissociation THOMAS SCHMIDT Universität Gießen, Gießen, Germany and DIRK VORBERG Technische Universität Braunschweig, Braunschweig, Germany To demonstrate unconscious cognition, researchers commonly compare a direct measure (D) of awareness for a critical stimulus with an indirect measure (I) showing that the stimulus was cognitively processed at all. We discuss and empirically demonstrate three types of dissociation with distinct ap- pearances in D–I plots, in which direct and indirect effects are plotted against each other in a shared effect size metric. Simple dissociations between D and I occur when I has some nonzero value and D is at chance level; the traditional requirement of zero awareness is necessary for this criterion only. Sensitivity dissociations only require that I be larger than D; double dissociations occur when some experimental manipulation has opposite effects on I and D. We show that double dissociations require much weaker measurement assumptions than do other criteria. Several alternative approaches can be considered special cases of our framework. [what do you see?/ level and that the indirect measure has some nonzero nothing, absolutely nothing] value. This so-called zero-awareness criterion may seem —Paul Auster, “Hide and Seek” (in Auster, 1997) like a straightforward research strategy, but historically it The traditional way of establishing unconscious percep- has encountered severe difficulties. From the beginning, tion has been to demonstrate that awareness of some criti- the field was plagued with methodological criticism con- cal stimulus is absent, even though the same stimulus af- cerning how to make sure that a stimulus was completely fects behavior (Reingold & Merikle, 1988). -
The Science of Psychology 1
PSY_C01.qxd 1/2/05 3:17 pm Page 2 The Science of Psychology 1 CHAPTER OUTLINE LEARNING OBJECTIVES INTRODUCTION PINNING DOWN PSYCHOLOGY PSYCHOLOGY AND COMMON SENSE: THE GRANDMOTHER CHALLENGE Putting common sense to the test Explaining human behaviour THE BEGINNINGS OF MODERN PSYCHOLOGY Philosophical influences Physiological influences PSYCHOLOGY TODAY Structuralism: mental chemistry Functionalism: mental accomplishment Behaviourism: a totally objective psychology Gestalt psychology: making connections Out of school: the independents The cognitive revolution FINAL THOUGHTS SUMMARY REVISION QUESTIONS FURTHER READING PSY_C01.qxd 1/2/05 3:17 pm Page 3 Learning Objectives By the end of this chapter you should appreciate that: n psychology is much more than ‘common sense’; n psychological knowledge can be usefully applied in many different professions and walks of life; n psychology emerged as a distinct discipline around 150 years ago, from its roots in physiology, physics and philosophy; n there are fundamental differences between different schools of thought in psychology; n psychology is the science of mental life and behaviour, and different schools of thought within psychology place differing degrees of emphasis on understanding these different elements of psychology; n most academic departments in the English-speaking world focus on the teaching of experimental psychology, in which scientific evidence about the structure and function of the mind and behaviour accumulates through the execution of empirical investigations; n in the history of psychology many different metaphors have been used for thinking about the workings of the human mind, and since the Second World War the most influential of these metaphors has been another complex information-processing device – the computer. -
Group Studies in Experimental Neuropsychology
C HAPTER 3 4 GROUP STUDIES IN EXPERIMENTAL NEUROPSYCHOLOGY Lesley K. Fellows WHY NEUROPSYCHOLOGY? individual differences in skull shape (explicitly thought to be a proxy for underlying brain structure) A fundamental assumption of neuropsychology, and in relation to individual differences in behavior. of cognitive neuroscience more generally, is that Complex traits like benevolence and wit were thus behavior has a biological basis—that it results from related to particular parts of the brain. Although the processes that are executed in the nervous system. methods are clearly flawed to the eye of the modern Following from this assumption, emotions, reader, the underlying concept of localization, that thoughts, percepts, and actions can be understood brain structure and function are related, had a major in neurobiological terms. This premise was impact on the development of clinical neurology and advanced by the philosophers of ancient Greece, of experimental neuropsychology. supported, in part, by observations of patients with The work of Broca, Wernicke, and other 19th- brain injury (Gross, 1995). The fact that damage to and early 20th-century neurologists illustrated how the brain could lead to paralysis, disorders of sensa- observation in clinical populations can (a) provide tion, or even disruptions of consciousness suggested insights into how a complex behavior (like lan- that this organ was the seat of such abilities, guage) can be segmented into simpler components although the broad claim that brain function under- (e.g., production and comprehension) and (b) how lies behavior was not without controversy over the such components can be related to specific regions centuries that followed (Crivellato & Ribatti, 2007). -
The Rise of Cognitive Science in the 20Th Century
The Rise of Cognitive Science in the 20th Century Carrie Figdor (forthcoming in Kind, A., ed., Philosophy of Mind in the 20th and 21st Centuries: Routledge) Penultimate Draft Abstract. This chapter describes the conceptual foundations of cognitive science during its establishment as a science in the 20th century. It is organized around the core ideas of individual agency as its basic explanans and information-processing as its basic explanandum. The latter consists of a package of ideas that provide a mathematico- engineering framework for the philosophical theory of materialism. Keywords: cognitive science; psychology; linguistics; computer science; neuroscience; behaviorism; artificial intelligence; computationalism; connectionism Part I. Introduction. Cognitive science is the study of individual agency: its nature, scope, mechanisms, and patterns. It studies what agents are and how they function. This definition is modified from one provided by Bechtel, Abrahamson, and Graham (1998), where cognitive science is defined as “the multidisciplinary scientific study of cognition and its role in intelligent agency.” Several points motivate the modification. First (and least consequential), the multidisciplinarity of cognitive science is an accident of academic history, not a fact about its subject matter (a point also pressed in Gardner 1985). Second, the label “intelligent” is often used as a term of normative assessment, when cognitive science is concerned with behavior by entities (including possibly groups, as individual or collective agents) that are not considered intelligent, as well as unintelligent behavior of intelligent agents, for any intuitive definition of “intelligent”.1 Third and most importantly, the term “cognition” is omitted from the definiens to help emphasize a position of neutrality on a number of contemporary debates. -
The Medical Practice Impact of Functional Neuroimaging Studies in Disorders of Consciousness
The Medical Practice Impact of Functional Neuroimaging Studies in Disorders of Consciousness Fundacio Grífols • Conferències Josep Egozcue Barcelona • November 15, 2016 James L. Bernat, M.D. Louis and Ruth Frank Professor of Neuroscience Professor of Neurology and Medicine Geisel School of Medicine at Dartmouth Hanover, New Hampshire USA Overview • Review of disorders of consciousness • Case reports highlighting “covert cognition” • Diagnosis and prognosis • Communication • Medical decision-making • Treatment • Future directions Disorders of Consciousness • Coma • Vegetative state (VS) • Minimally conscious state (MCS) • Brain death • Locked-in syndrome (LIS) – Not a DoC but may be mistaken for one Giacino JT et al. Nat Rev Neurol 2014;10:99-114 VS: Criteria I • Unawareness of self and environment • No sustained, reproducible, or purposeful voluntary behavioral response to visual, auditory, tactile, or noxious stimuli • No language comprehension or expression Multisociety Task Force. N Engl J Med 1994;330:1499-1508, 1572-1579 VS: Criteria II • Present sleep-wake cycles • Preserved autonomic and hypothalamic function to survive for long intervals with medical/nursing care • Preserved cranial nerve reflexes Multisociety Task Force. N Engl J Med 1994;330:1499-1508, 1572-1579 VS: Behavioral Repertoire • Sleep, wake, yawn, breathe • Blink and move eyes but no sustained visual pursuit • Make sounds but no words • Variable respond to visual threat • Grimacing; chewing movements • Move limbs; startle myoclonus Bernat JL. Lancet 2006;367:1181-1192 VS: Diagnosis • Fulfill “negative” diagnostic criteria • Exam: Coma Recovery Scale – Revised • Have patient gaze at self in hand mirror • Interview nurses and caregivers • False-positive rates of 40% • Consider minimally conscious state Schnakers C et al.