Reproduction and Offspring Sex Ratios Differ Markedly Among Closely Related Hyperparasitoids Living in the Same Microhabitats

Total Page:16

File Type:pdf, Size:1020Kb

Reproduction and Offspring Sex Ratios Differ Markedly Among Closely Related Hyperparasitoids Living in the Same Microhabitats J Insect Behav (2019) 32:243–251 https://doi.org/10.1007/s10905-019-09730-z Reproduction and Offspring Sex Ratios Differ Markedly among Closely Related Hyperparasitoids Living in the Same Microhabitats Jeffrey A. Harvey & Lucas de Haan & Oriol Verdeny-Vilalta & Bertanne Visser & Rieta Gols Received: 2 May 2019 /Revised: 2 October 2019 /Accepted: 12 October 2019 /Published online: 25 October 2019 # The Author(s) 2019 Abstract Closely related species in nature usually ex- times higher in G. proximus than in G. agilis with hibit very similar phylogenetically conserved traits, such G. hortensis producing intermediate numbers of off- as reproduction, behavior and development. Here, we spring. All three species depleted their teneral reserves compared fecundity schedules, lifetime reproductive during their lives. Females of G. proximus and success and offspring sex ratios in three congeneric G. hortensis lived significantly longer than females of facultative hyperparasitoid wasps that exhibit several G. agilis.OffspringsexratiosinyoungG. proximus overlapping traits and which co-occur in the same mothers were female-biased and marginally male- small-scale habitats. Gelis agilis, G. proximus and biased in G. hortensis. As mothers aged, however, the G. hortensis are abundant in meadows and forest edge ratio of male:female progeny produced rapidly in- habitats in the Netherlands. Gelis agilis is asexual (all creased until no daughters emerged later in life. Our female), whereas the other two species reproduce sexu- results reveal significant differences in reproductive ally. Here they developed on cocoons of the primary traits among the three species despite them co- parasitoid Cotesia glomerata.Whenprovidedwithun- occurring in the same microhabitats, being very closely limited hosts, lifetime reproductive success was three related and morphologically similar. The increase in the production of male progeny by Gelis mothers over time suggests a depletion in sperm number or viability with J. A. Harvey (*) Department of Ecological Science, Section Animal Ecology, VU age. This is especially interesting, given that Gelis spe- University Amsterdam, Amsterdam the Netherlands cies are among the least fecund parasitoids thus far e-mail: [email protected] studied. It is likely that in the field most Gelis mothers are probably only able to parasitize a few hosts and to J. A. Harvey : L. de Haan Department of Terrestrial Ecology, Netherlands Institute of maintain the production of female offspring. Ecology, Droevendaalsesteeg 10 6708 PB Wageningen The Netherlands Keywords Realized lifetime fecundity. Longevity. O. Verdeny-Vilalta Gelis . Hymenoptera . Secondary parasitoids Ynsect, Rue Pierre Fontaine 1 Évry France B. Visser Evolutionary Ecology and Genetics Group, Biodiversity Research Introduction Centre, Earth and Life Institute, UC Louvain, Croix du Sud 4 1348 Louvain-la-Neuve Belgium Phylogeny and phylogenetic constraints are central to R. Gols our understanding of ecology and evolutionary biology Laboratory of Entomology, Wageningen University, (McKitrick 1993). Phylogeny describes the evolution- Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands ary history and ecophysiological relationships among 244 J Insect Behav (2019) 32:243–251 groups of organisms (Gould, 1977; Nei and Kumar reproductive capacity by a difficulty in finding many 2000). In nature, closely related species generally ex- food plants and therefore invests more metabolic re- hibit traits that very strongly reflect their phylogeny, sources in maintenance than in egg production, allowing such as morphology, reproduction and development it to extend its lifespan in searching for suitable plants on (Cheverud et al. 1985;Blombergetal.2003). Conse- which to oviposit. quently, closely related species generally exhibit a suite Parasitic wasps, or ‘parasitoids’, are model organ- of traits that overlap and which are functionally special- isms for addressing a range of questions in evolutionary ized (West-Eberhard, 1986). Phylogenetic constraints biology. Parasitoids lay their eggs inside or on the bod- are defined as components or aspects of a lineage that ies of other arthropods (‘hosts’) and their larvae grow prevent or impede any anticipated form of evolution in and develop by feeding on host tissues, whereas the that lineage (McKitrick 1993). In other words, a con- adult stage is free-living (Godfray 1994). The develop- straint affects the potential of a species to evolve radical ment of parasitoid offspring is dependent on resources changes in its biology and/or ecology from its ancestors contained in a single host: because hosts of many para- and close relatives and may hinder a species attempting sitoids are only marginally bigger than the parasitoid to exploit novel resources or colonize novel habitats. For itself, they are under intense selection to optimize the instance, in many families of the Hymenoptera exploitation of limited resources to vital metabolic func- (Aculeata) the ovipositor, which is a specialized egg- tions (Harvey 2005; Jervis et al. 2008). By contrast, laying apparatus, has evolved into a stinger that instead selection for resource allocation to different metabolic of eggs injects venom into potential prey or as a means functions in arthropod predators is generally much more of defense against attackers (Zhao et al. 2015). A stinger relaxed, because they are not restricted to a single prey is of much more utility than an ovipositor for a social item. For this reason, parasitoids exhibit a suite of traits wasp, because the workers are sterile and do not repro- that are adapted for exploiting a narrow range of host duce. In vertebrates, woodpeckers possess sharp, point- species in nature, whereas most predators will attack ed bills for chiseling wood for nest construction and many prey species in order to reach maturity. foraging, and long, barbed tongues made up of cartilage Parasitoids that are closely related and/or exhibit and bone for catching insects embedded in trees (Bock similar host ranges in nature often exhibit a convergence 1999;Zhouetal.2009). These adaptations are specifi- in traits such as host utilization and reproduction (Jervis cally tailored for nesting in forest habitats and would et al. 2008). This is because of both phylogenetic con- clearly be of little utility in grasslands. servatism and overlapping selection pressures on trade- Phylogeny is not the only factor constraining organ- offs such as between maintenance and egg production. isms in nature. All species are also constrained in their One of the best examples on how host ecology drives ability to allocate limited metabolic resources for vital similarities and differences in parasitoid traits is a study functions such as reproduction, foraging and survival by Price (1972), who compared parasitoids attacking (Roff 2002). Under strong selection for the acquisition, different stages of the Jack pine sawfly, Neodiprion utilization and allocation of these resources to different swaineii. He found that parasitoids attacking early host and potentially competing fitness functions, the optimal stages, such as young larvae, exhibited traits such as the phenotype of most organisms is determined by trade- production of large numbers of small eggs that could be offs in life-history traits such as between reproduction oviposited rapidly and adults that had short lifespans. and longevity (van Noordwijk and de Jong 1986). A By contrast, parasitoids attacking older hosts, such as trade-off occurs when two fitness-related traits are lim- pupae, produced small numbers of large eggs that took a ited by the same resource, such as time and/or energy, considerable time to lay and adults that had extended that can only be utilized once (Stearns 1989). For ex- lifespans. He attributed these differences to variation in ample, an organism that invests a disproportionate mortality risks experienced by hosts along their ontoge- amount of metabolic resources towards early reproduc- netic continuum with high fecundity being an adaptive tion will invariably experience a reduction in its life response in parasitoids attacking comparatively abun- expectancy and vice-versa. Trade-offs strongly reflect dant young hosts with high mortality risks, and lower environmental limitations on food, prey, mates and other fecundity for parasitoids attacking scarce older hosts factors. Thus, a specialized herbivore that feeds on a rare with a lower mortality risks (Price 1972; see also or small species of plant may be limited in its Pexton and Mayhew 2002). Differences in reproductive J Insect Behav (2019) 32:243–251 245 investment and longevity also appear to reflect host of primary parasitoids (Cotesia spp.) in the field (Lei abundance (Price 1972). and Hanski 1997; van Nouhuys and Hanski 2000; Sex determination in parasitoids is haplodiploid, Harvey et al. 2014; Heinen and Harvey 2019). Thus where unfertilized (haploid) eggs develop into males far 280 species of Gelis have been described (Catalogue and fertilized (diploid) eggs develop into females. This of Life, 2019), although there are certainly many more gives females the choice of deciding what sex to lay as the genus is not well-studied. during oviposition. In parasitoids, numerous studies We compared fecundity schedules, lifetime reproduc- have shown that mothers prefer to oviposit daughters tive success and offspring sex ratios in the three Gelis on larger hosts of perceived higher quality, and sons on species when reared on cocoons of the gregarious
Recommended publications
  • Coccinellidae)
    ECOLOGY AND BEHAVIOUR OF THE LADYBIRD BEETLES (COCCINELLIDAE) Edited by I. Hodek, H.E van Emden and A. Honek ©WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication CONTENTS Detailed contents, ix 8. NATURAL ENEMIES OF LADYBIRD BEETLES, 375 Contributors, xvii Piotr Ccryngier. Helen E. Roy and Remy L. Poland Preface, xviii 9. COCCINELLIDS AND [ntroduction, xix SEMIOCHEMICALS, 444 ]an Pettcrsson Taxonomic glossary, xx 10. QUANTIFYING THE IMPACT OF 1. PHYLOGENY AND CLASSIFICATION, 1 COCCINELLIDS ON THEIR PREY, 465 Oldrich Nedved and Ivo Kovdf /. P. Mid'laud and James D. Harwood 2. GENETIC STUDIES, 13 11. COCCINELLIDS IN BIOLOGICAL John J. Sloggett and Alois Honek CONTROL, 488 /. P. Midland 3. LIFE HISTORY AND DEVELOPMENT, 54 12. RECENT PROGRESS AND POSSIBLE Oldrkli Nedved and Alois Honek FUTURE TRENDS IN THE STUDY OF COCCINELLIDAE, 520 4. DISTRIBUTION AND HABITATS, 110 Helmut /; van Emden and Ivo Hodek Alois Honek Appendix: List of Genera in Tribes and Subfamilies, 526 5. FOOD RELATIONSHIPS, 141 Ivo Hodek and Edward W. Evans Oldrich Nedved and Ivo Kovdf Subject index. 532 6. DIAPAUSE/DORMANCY, 275 Ivo Hodek Colour plate pages fall between pp. 250 and pp. 251 7. INTRAGUILD INTERACTIONS, 343 Eric Lucas VII DETAILED CONTENTS Contributors, xvii 1.4.9 Coccidulinae. 8 1.4.10 Scymninae. 9 Preface, xviii 1.5 Future Perspectives, 10 References. 10 Introduction, xix Taxonomic glossary, xx 2. GENETIC STUDIES, 13 John J. Sloggett and Alois Honek 1. PHYLOGENY AND CLASSIFICATION, 1 2.1 Introduction, 14 Oldrich Nedved and Ivo Kovdf 2.2 Genome Size. 14 1.1 Position of the Family. 2 2.3 Chromosomes and Cytology.
    [Show full text]
  • Divergent Life History Strategies in Congeneric Hyperparasitoids
    Evol Ecol DOI 10.1007/s10682-016-9819-6 ORIGINAL PAPER Divergent life history strategies in congeneric hyperparasitoids 1,2 3,4 1 Bertanne Visser • Ce´cile Le Lann • Helen Snaas • 5 1,4 Oriol Verdeny-Vilalta • Jeffrey A. Harvey Received: 26 March 2015 / Accepted: 20 January 2016 Ó Springer International Publishing Switzerland 2016 Abstract Life histories can reveal important information on the performance of indi- viduals within their environment and how that affects evolutionary change. Major trait changes, such as trait decay or loss, may lead to pronounced differences in life history strategies when tight correlations between traits exist. Here, we show that three congeneric hyperparasitoids (Gelis agilis, Gelis acarorum and Gelis areator) that have diverged in wing development and reproductive mode employ markedly different life history strate- gies. Potential fecundity of Gelis sp. varied, with the wingless G. acarorum maturing a much higher number of eggs throughout life compared with the other two species. Realized lifetime fecundity, in terms of total offspring number was, however, highest for the winged G. areator. The parthenogenic G. agilis invests its resources solely in females, whilst the sexually reproducing species both invested heavily in males to reduce competitive pres- sures for their female offspring. Longevity also differed between species, as did the direction of the reproduction-longevity trade-off, where reproduction is heavily traded off against longevity only in the asexual G. agilis. Resting metabolic rates also differed between the winged and wingless species, with the highest metabolic rate observed in the winged G. areator. Overall, these geline hyperparasitoids showed considerable divergence in life history strategies, both in terms of timing and investment patterns.
    [Show full text]
  • VU Research Portal
    VU Research Portal Parasitism and the Evolutionary Loss of Lipogenesis Visser, B. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Visser, B. (2012). Parasitism and the Evolutionary Loss of Lipogenesis. Ipskamp B.V. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 06. Oct. 2021 Parasitism and the Evolutionary Loss of Lipogenesis Cover: Symbiose mensuur tussen natuur en cultuur. Cover design: Leendert Verboom Lay-out: Bertanne Visser Printing: Ipskamp Drukkers B.V., Enschede Thesis 2012-1 of the Department of Ecological Science VU University Amsterdam, the Netherlands This research was supported by the Netherlands Organisation for Scientific Research (NWO, Nederlandse organisatie voor Wetenschappelijk Onderzoek), grant nr. 816-03-013. isbn xxx VRIJE UNIVERSITEIT Parasitism and the Evolutionary Loss of Lipogenesis ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr.
    [Show full text]
  • Assemblage of Hymenoptera Arriving at Logs Colonized by Ips Pini (Coleoptera: Curculionidae: Scolytinae) and Its Microbial Symbionts in Western Montana
    University of Montana ScholarWorks at University of Montana Ecosystem and Conservation Sciences Faculty Publications Ecosystem and Conservation Sciences 2009 Assemblage of Hymenoptera Arriving at Logs Colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its Microbial Symbionts in Western Montana Celia K. Boone Diana Six University of Montana - Missoula, [email protected] Steven J. Krauth Kenneth F. Raffa Follow this and additional works at: https://scholarworks.umt.edu/decs_pubs Part of the Ecology and Evolutionary Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Boone, Celia K.; Six, Diana; Krauth, Steven J.; and Raffa, Kenneth F., "Assemblage of Hymenoptera Arriving at Logs Colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its Microbial Symbionts in Western Montana" (2009). Ecosystem and Conservation Sciences Faculty Publications. 33. https://scholarworks.umt.edu/decs_pubs/33 This Article is brought to you for free and open access by the Ecosystem and Conservation Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Ecosystem and Conservation Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. 172 Assemblage of Hymenoptera arriving at logs colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its microbial symbionts in western Montana Celia K. Boone Department of Entomology, University of Wisconsin,
    [Show full text]
  • The Taxonomy of the Side Species Group of Spilochalcis (Hymenoptera: Chalcididae) in America North of Mexico with Biological Notes on a Representative Species
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1984 The taxonomy of the side species group of Spilochalcis (Hymenoptera: Chalcididae) in America north of Mexico with biological notes on a representative species. Gary James Couch University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Couch, Gary James, "The taxonomy of the side species group of Spilochalcis (Hymenoptera: Chalcididae) in America north of Mexico with biological notes on a representative species." (1984). Masters Theses 1911 - February 2014. 3045. Retrieved from https://scholarworks.umass.edu/theses/3045 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THE TAXONOMY OF THE SIDE SPECIES GROUP OF SPILOCHALCIS (HYMENOPTERA:CHALCIDIDAE) IN AMERICA NORTH OF MEXICO WITH BIOLOGICAL NOTES ON A REPRESENTATIVE SPECIES. A Thesis Presented By GARY JAMES COUCH Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1984 Department of Entomology THE TAXONOMY OF THE SIDE SPECIES GROUP OF SPILOCHALCIS (HYMENOPTERA:CHALCIDIDAE) IN AMERICA NORTH OF MEXICO WITH BIOLOGICAL NOTES ON A REPRESENTATIVE SPECIES. A Thesis Presented By GARY JAMES COUCH Approved as to style and content by: Dr. T/M. Peter's, Chairperson of Committee CJZl- Dr. C-M. Yin, Membe D#. J.S. El kin ton, Member ii Dedication To: My mother who taught me that dreams are only worth the time and effort you devote to attaining them and my father for the values to base them on.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • Spiders in a Hostile World (Arachnoidea, Araneae)
    Arachnologische Mitteilungen 40: 55-64 Nuremberg, January 2011 Spiders in a hostile world (Arachnoidea, Araneae) Peter J. van Helsdingen doi: 10.5431/aramit4007 Abstract: Spiders are powerful predators, but the threats confronting them are numerous. A survey is presented of the many different arthropods which waylay spiders in various ways. Some food-specialists among spiders feed exclusively on spiders. Kleptoparasites are found among spiders as well as among Mecoptera, Diptera, Lepidoptera, and Heteroptera. Predators are found within spiders’ own population (cannibalism), among other spider species (araneophagy), and among different species of Heteroptera, Odonata, and Hymenoptera. Parasitoids are found in the orders Hymenoptera and Diptera. The largest insect order, Coleoptera, comprises a few species among the Carabidae which feed on spiders, but beetles are not represented among the kleptoparasites or parasitoids. Key words: aggressive mimicry, araneophagy, cannibalism, kleptoparasitism, parasitoid Spiders are successful predators with important tools for prey capture, ������������������ ������������������������������ viz, venom, diverse types of silk for ������������ ������������������������������ snaring and wrapping, and speed. ����������� ���������������� But spiders are prey for other organ- isms as well. This paper presents a survey of all the threats spiders have to face from other arthropods ������ (excluding mites), based on data from the literature and my own observations. Spiders are often defenceless against the attacks
    [Show full text]
  • Parasitism and Migration in Southern Palaearctic Populations of the Painted Lady Butterfly, Vanessa Cardui (Lepidoptera: Nymphalidae)
    Eur. J. Entomol. 109: 85–94, 2012 http://www.eje.cz/scripts/viewabstract.php?abstract=1683 ISSN 1210-5759 (print), 1802-8829 (online) Parasitism and migration in southern Palaearctic populations of the painted lady butterfly, Vanessa cardui (Lepidoptera: Nymphalidae) CONSTANTÍ STEFANESCU 1, 2, RICHARD R. ASKEW 3,JORDI CORBERA4 and MARK R. SHAW 5 1 Butterfly Monitoring Scheme, Museu de Granollers-Ciències Naturals, Francesc Macià, 51, Granollers, E-08402, Spain; e-mail: [email protected] 2Global Ecology Unit, CREAF-CEAB-CSIC, Edifici C, Campus de Bellaterra, Bellaterra, E-08193, Spain 3 Beeston Hall Mews, Tarporley, Cheshire, CW6 9TZ, England, UK 4 Secció de Ciències Naturals, Museu de Mataró, El Carreró 17-19, Mataró, E-08301, Spain 5 Honorary Research Associate, National Museums of Scotland, Scotland, UK Key words. Lepidoptera, Nymphalidae, population dynamics, seasonal migration, enemy-free space, primary parasitoids, Cotesia vanessae, secondary parasitoids Abstract. The painted lady butterfly (Vanessa cardui) (Lepidoptera: Nymphalidae: Nymphalinae) is well known for its seasonal long-distance migrations and for its dramatic population fluctuations between years. Although parasitism has occasionally been noted as an important mortality factor for this butterfly, no comprehensive study has quantified and compared its parasitoid com- plexes in different geographical areas or seasons. In 2009, a year when this butterfly was extraordinarily abundant in the western Palaearctic, we assessed the spatial and temporal variation in larval parasitism in central Morocco (late winter and autumn) and north-east Spain (spring and late summer). The primary parasitoids in the complexes comprised a few relatively specialized koinobi- onts that are a regular and important mortality factor in the host populations.
    [Show full text]
  • Beiträge Zur Bayerischen Entomofaunistik 13: 67–207
    Beiträge zur bayerischen Entomofaunistik 13:67–207, Bamberg (2014), ISSN 1430-015X Grundlegende Untersuchungen zur vielfältigen Insektenfauna im Tiergarten Nürnberg unter besonderer Betonung der Hymenoptera Auswertung von Malaisefallenfängen in den Jahren 1989 und 1990 von Klaus von der Dunk & Manfred Kraus Inhaltsverzeichnis 1. Einleitung 68 2. Untersuchungsgebiet 68 3. Methodik 69 3.1. Planung 69 3.2. Malaisefallen (MF) im Tiergarten 1989, mit Gelbschalen (GS) und Handfänge 69 3.3. Beschreibung der Fallenstandorte 70 3.4. Malaisefallen, Gelbschalen und Handfänge 1990 71 4. Darstellung der Untersuchungsergebnisse 71 4.1. Die Tabellen 71 4.2. Umfang der Untersuchungen 73 4.3. Grenzen der Interpretation von Fallenfängen 73 5. Untersuchungsergebnisse 74 5.1. Hymenoptera 74 5.1.1. Hymenoptera – Symphyta (Blattwespen) 74 5.1.1.1. Tabelle Symphyta 74 5.1.1.2. Tabellen Leerungstermine der Malaisefallen und Gelbschalen und Blattwespenanzahl 78 5.1.1.3. Symphyta 79 5.1.2. Hymenoptera – Terebrantia 87 5.1.2.1. Tabelle Terebrantia 87 5.1.2.2. Tabelle Ichneumonidae (det. R. Bauer) mit Ergänzungen 91 5.1.2.3. Terebrantia: Evanoidea bis Chalcididae – Ichneumonidae – Braconidae 100 5.1.2.4. Bauer, R.: Ichneumoniden aus den Fängen in Malaisefallen von Dr. M. Kraus im Tiergarten Nürnberg in den Jahren 1989 und 1990 111 5.1.3. Hymenoptera – Apocrita – Aculeata 117 5.1.3.1. Tabellen: Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 117 5.1.3.2. Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 122 5.1.4. Coleoptera 131 5.1.4.1. Tabelle Coleoptera 131 5.1.4.2.
    [Show full text]
  • Host Location by Hyperparasitoids: an Ecogenomic Approach
    Host location by hyperparasitoids: an ecogenomic approach Feng Zhu Thesis committee Promotor Prof. Dr Marcel Dicke Professor of Entomology Wageningen University Co-promoter Dr Erik H. Poelman Assistant professor, Laboratory of Entomology Wageningen University Other members Prof. Dr Niels P. R. Anten, Wageningen University Prof. Dr Monique M. van Oers, Wageningen University Dr T. Martijn Bezemer, Netherlands Institute of Ecology, Wageningen Dr Klaas Vrieling, Leiden University This research was conducted under the auspices of the graduate school Experimental Plant Sciences. Host location by hyperparasitoids: an ecogenomic approach Feng Zhu Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr. A.P.J. Mol in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 2 October 2015 at 1:30 p.m. in the Aula Feng Zhu Host location by hyperparasitoids: an ecogenomic approach, 192 pages. PhD thesis, Wageningen University, Wageningen, NL (2015) With references, with summary in English ISBN 978-94-6257-444-1 To my beloved parents 谨以此书,献给我最亲爱的父母 Abstract It is fascinating that our ecological systems are structured by both direct and indirect spe- cies interactions. In terrestrial ecosystems, plants interact with many species of insects that include both harmful herbivores and beneficial natural enemies of herbivores. During the last 30 years, substantial progress has been made in different plant-insect systems regarding plant trait-mediated species interactions in a tritrophic context. However, plant- based food webs generally consist of more than three trophic levels.
    [Show full text]
  • Evaluating Indirect Ecological Effects of Biological Control
    Color profile: Disabled Composite Default screen EVALUATING INDIRECT ECOLOGICAL EFFECTS OF BIOLOGICAL CONTROL 1 Z:\Customer\CABI\A3873 - Wajnberg - Evaluating Indirect\A3935 - Wajnberg - Evaluating Indirect #G.vp 30 October 2000 16:29:57 A3935: AMA: Wajnberg: First Revise:30-Oct-00 Color profile: Disabled Composite Default screen 2 Z:\Customer\CABI\A3873 - Wajnberg - Evaluating Indirect\A3935 - Wajnberg - Evaluating Indirect #G.vp 30 October 2000 16:29:57 A3935: AMA: Wajnberg: First Revise:30-Oct-00 Color profile: Disabled Composite Default screen Evaluating Indirect Ecological Effects of Biological Control Edited by E. Wajnberg INRA, Antibes, France J.K. Scott CSIRO, Montpellier, France and P.C. Quimby USDA, Montpellier, France CABI Publishing 3 Z:\Customer\CABI\A3873 - Wajnberg - Evaluating Indirect\A3935 - Wajnberg - Evaluating Indirect #G.vp 30 October 2000 16:29:58 A3935: AMA: Wajnberg: First Revise:30-Oct-00 Color profile: Disabled Composite Default screen CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 10 E 40th Street Wallingford Suite 3203 Oxon OX10 8DE New York, NY 10016 UK USA Tel: +44 (0)1491 832111 Tel: +1 212 481 7018 Fax: +44 (0)1491 833508 Fax: +1 212 686 7993 Email: [email protected] Email: [email protected] Web site: http://www.cabi.org © CAB International 2001. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Evaluating indirect ecological effects of biological control / edited by E.
    [Show full text]
  • Trimorphism in the Ichneumonid Parasite Gelis Corruptor by GEORGE SALT Fellow of King's College, Cambridge (From the Zoological Laboratory, Cambridge)
    453 Trimorphism in the Ichneumonid Parasite Gelis corruptor By GEORGE SALT Fellow of King's College, Cambridge (From the Zoological Laboratory, Cambridge) SUMMARY 1. The ichneumonid parasite Gelis corruptor is trimorphic in the development of wings: females are invariably apterous; males may be either macropterous or micro- pterous. 2. Females show no trace of wing-buds in the pupa and are without wing-disks in the late larval stage. The female apteryis a sex-limited character and is of genetic origin. 3. All male larvae have wing-disks and are potentially fully winged males. On a host providing adequate nourishment, the male larva develops into the macropterous form; on a host providing meagre nourishment, it develops into the micropterous form. Eggs or young larvae transferred from a small to a large host develop into macropterous males; larvae removed from large hosts before they have finished feeding develop into micropterous males. The dimorphism of the male sex is therefore controlled by the host viewed as a quantity of food. 4. The two forms of males differ not only in the development of the wings but also in the structure of the thorax, the size of the ocelli, the form of the endoskeleton, and the development, innervation, and tracheal supply of the thoracic muscles. 5. The trimorphism is strict, since all females are apterous and (with the exception of one abnormal specimen) all the males examined belong without intermediates to either the macropterous or the micropterous form. 6. The principal differences observed between the three forms all appear to be bound up with the condition of the wings.
    [Show full text]