VU Research Portal

Total Page:16

File Type:pdf, Size:1020Kb

VU Research Portal VU Research Portal Parasitism and the Evolutionary Loss of Lipogenesis Visser, B. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Visser, B. (2012). Parasitism and the Evolutionary Loss of Lipogenesis. Ipskamp B.V. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 06. Oct. 2021 Parasitism and the Evolutionary Loss of Lipogenesis Cover: Symbiose mensuur tussen natuur en cultuur. Cover design: Leendert Verboom Lay-out: Bertanne Visser Printing: Ipskamp Drukkers B.V., Enschede Thesis 2012-1 of the Department of Ecological Science VU University Amsterdam, the Netherlands This research was supported by the Netherlands Organisation for Scientific Research (NWO, Nederlandse organisatie voor Wetenschappelijk Onderzoek), grant nr. 816-03-013. isbn xxx VRIJE UNIVERSITEIT Parasitism and the Evolutionary Loss of Lipogenesis ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. L.M. Bouter, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der Aard- en Levenswetenschappen op woensdag 25 januari 2012 om 13.45 uur in de aula van de universiteit, De Boelelaan 1105 door Bertanne Visser geboren te Delft promotor: prof.dr. J. Ellers Voor Adriana Visser-Verboom en Hugo Kok Contents Contents 1 1 General introduction 3 2 Lack of lipogenesis in parasitoids: A review of physiological mech- anisms and evolutionary implications 15 3 Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle 29 4 Can host manipulation drive the evolutionary loss of traits in par- asitoids? 49 5 Host exploitation efficiency in a gall wasp community 61 6 Lack of transcription of the key gene in lipid synthesis, fatty acid synthase, reflects loss of lipogenesis in adult parasitic wasps 75 7 Discriminating between energetic content and dietary composition as an explanation for dietary restriction effects 101 8 Effects of a lipid-rich diet on adult parasitoid income resources and survival 115 9 Synthesis 125 Bibliography 141 Summary 179 Samenvatting 183 Acknowledgements 189 Curriculum vitae 195 Publications 197 Affilliation of committee members 199 Affiliation of co-authors 201 1 Chapter 1 General introduction A brief history of evolutionary theory Nowadays some scientists might say that the continued reference to the original theories of evolution has become a cliché and that many theoretical concepts pertaining to evolution have undergone far-reaching conceptual revisions. I agree that science in general should progress toward novel or extended theories and researchers in evolutionary biology should be critical to concepts in evolutionary theory to elucidate the natural world. However, in essence, science can only progress through building on the foundation of knowledge acquired throughout the history of science. Evolutionary biology still relies heavily on the fundamental theories incepted by Alfred Russell Wallace in his seminal paper ‘On the tendency of varieties to depart in- definitely from the original type’ (1858) and Charles Darwin’s book ‘On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life’ (1859). While highly controversial at that time and contradicting contemporary views on inheritance and ob- served variation between organisms, their pivotal work explains the process of descent with modification and natural selection acting on existing herita- ble variation within populations as the main driving force behind adaptive evolution. With the foundation of evolutionary theory in place, another major con- tribution to evolutionary theory was fuelled by the rediscovery of Mendel’s laws of genetics in 1900. Up to that point in time the mechanisms of inheri- tance had remained elusive and its eventual discovery was initially regarded contradictory to theory on the process of natural selection. Rediscovery of Mendel’s laws paved the way for numerous scientists, such as Ronald Fisher (1930), John Haldane (1932) and Sewall Wright (1932), to develop the field of population genetics, concerned with studying changes in allele propor- tions within populations through the processes of natural selection, genetic drift, mutation and gene flow. Within the following decades several other prominent scientists significantly contributed to the development of evo- lutionary theory, in which their considerations reached beyond the realm of genetics to include fields such as ecology, paleontology and botany, as 3 Chapter 1 well as the concept of speciation (Dobzhansky, 1937; Mayr, 1942; Rench, 1959; Simpson, 1944; Stebbins, 1950). These advances in evolutionary biol- ogy were collectively termed the Modern Synthesis (MS) by Julian Huxley (1942). Amongst others, multidisciplinarity of the MS led to a concep- tual framework addressing i) the key importance of genetic diversity within populations; ii) the phenotype as a means for natural selection to act upon within variable environments; and iii) the relationship between micro- and macro-evolutionary changes. Over the last couple of years further extensions of the MS have been propagated (Pigliucci, 2007; Pigliucci & Müller, 2010). Based on a theory originally proposed by Popper (Platnick & Rosen, 1987), these authors and others have argued that evolutionary theory began as a theory of form that through the inception of the MS led to a theory of genes, but that there is a current need to update the initial theory of form (Pigliucci, 2007). This expansion of the MS is referred to as the Extended Evolutionary Synthesis (EES). The EES conceptualizes evolutionary theory through the addition of numerous fields in biology. As summarized by Pigliucci (2007), exten- sions of the MS should embrace developmental biology, a field of research that was completely left out of the original MS, even though developmental biology was already an established field of research at the time the MS was formulated. Another major advancement revolves around incorporation of ecological theory. Despite the inclusion of ecology into the MS, the ecolog- ical settings that bring about evolutionary changes have remained largely unexplored (Maynard Smith & Szathmáry, 1995). Through technological advances during the last few decades, biology has witnessed the rise of other important fields, namely that of genomics, proteomics and metabolomics. These fields provide us with ever-increasing insights to move away from the black box principle that has been a frequent necessity in the concep- tion and extensions of evolutionary theory. Moreover, several important concepts employed in current research in evolutionary biology were not in- corporated in the MS, such as phenotypic plasticity (a norm of reaction or a variable phenotype of a single genotype across environments) and epi- genetic inheritance (changes in gene expression without alterations in the underlying DNA sequences that can be passed on to the next generation). Evolutionary theory has seen major advancements and will certainly un- dergo further extensions in the future. A major advancement formulated in the MS pertains to the importance of genetic variation and its translation into the phenotype for natural selection to act upon. Undeniably, these aspects are of key importance to fuel evolutionary changes. It is becoming 4 General introduction increasingly clear, however, that variables other than standing genetic vari- ation significantly contribute to evolutionary change. In this regard, one important concept is the evolution of novel traits, which is tackled by the EES. Yet the reciprocal process of trait loss continues to be regarded as an inevitable consequence of evolution and with it the notion that it only has a minor contribution to evolutionary change. It has been an area of research that, therefore, received considerably less attention. This thesis focuses on the loss of traits and why and how trait loss occurs during the course of evolution. I will first describe the importance of trait acquisition, how trait acquisition is linked to trait loss and current concepts and theories regarding the loss of traits. I will then outline the importance of ecological conditions and in particular nutrition to trait dynamics and fitness (average contribution of a genotype to the next generation), and last I will introduce the model system employed in the work described in this thesis. Trait acquisition, loss and evolutionary mechanisms Over the last few decades a key objective in evolutionary biology has been to unravel why novel traits arise, which mechanisms underlie trait acquisi- tion and the ways in which novel traits contribute to
Recommended publications
  • Diptera: Calyptratae)
    Systematic Entomology (2020), DOI: 10.1111/syen.12443 Protein-encoding ultraconserved elements provide a new phylogenomic perspective of Oestroidea flies (Diptera: Calyptratae) ELIANA BUENAVENTURA1,2 , MICHAEL W. LLOYD2,3,JUAN MANUEL PERILLALÓPEZ4, VANESSA L. GONZÁLEZ2, ARIANNA THOMAS-CABIANCA5 andTORSTEN DIKOW2 1Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany, 2National Museum of Natural History, Smithsonian Institution, Washington, DC, U.S.A., 3The Jackson Laboratory, Bar Harbor, ME, U.S.A., 4Department of Biological Sciences, Wright State University, Dayton, OH, U.S.A. and 5Department of Environmental Science and Natural Resources, University of Alicante, Alicante, Spain Abstract. The diverse superfamily Oestroidea with more than 15 000 known species includes among others blow flies, flesh flies, bot flies and the diverse tachinid flies. Oestroidea exhibit strikingly divergent morphological and ecological traits, but even with a variety of data sources and inferences there is no consensus on the relationships among major Oestroidea lineages. Phylogenomic inferences derived from targeted enrichment of ultraconserved elements or UCEs have emerged as a promising method for resolving difficult phylogenetic problems at varying timescales. To reconstruct phylogenetic relationships among families of Oestroidea, we obtained UCE loci exclusively derived from the transcribed portion of the genome, making them suitable for larger and more integrative phylogenomic studies using other genomic and transcriptomic resources. We analysed datasets containing 37–2077 UCE loci from 98 representatives of all oestroid families (except Ulurumyiidae and Mystacinobiidae) and seven calyptrate outgroups, with a total concatenated aligned length between 10 and 550 Mb. About 35% of the sampled taxa consisted of museum specimens (2–92 years old), of which 85% resulted in successful UCE enrichment.
    [Show full text]
  • Millichope Park and Estate Invertebrate Survey 2020
    Millichope Park and Estate Invertebrate survey 2020 (Coleoptera, Diptera and Aculeate Hymenoptera) Nigel Jones & Dr. Caroline Uff Shropshire Entomology Services CONTENTS Summary 3 Introduction ……………………………………………………….. 3 Methodology …………………………………………………….. 4 Results ………………………………………………………………. 5 Coleoptera – Beeetles 5 Method ……………………………………………………………. 6 Results ……………………………………………………………. 6 Analysis of saproxylic Coleoptera ……………………. 7 Conclusion ………………………………………………………. 8 Diptera and aculeate Hymenoptera – true flies, bees, wasps ants 8 Diptera 8 Method …………………………………………………………… 9 Results ……………………………………………………………. 9 Aculeate Hymenoptera 9 Method …………………………………………………………… 9 Results …………………………………………………………….. 9 Analysis of Diptera and aculeate Hymenoptera … 10 Conclusion Diptera and aculeate Hymenoptera .. 11 Other species ……………………………………………………. 12 Wetland fauna ………………………………………………….. 12 Table 2 Key Coleoptera species ………………………… 13 Table 3 Key Diptera species ……………………………… 18 Table 4 Key aculeate Hymenoptera species ……… 21 Bibliography and references 22 Appendix 1 Conservation designations …………….. 24 Appendix 2 ………………………………………………………… 25 2 SUMMARY During 2020, 811 invertebrate species (mainly beetles, true-flies, bees, wasps and ants) were recorded from Millichope Park and a small area of adjoining arable estate. The park’s saproxylic beetle fauna, associated with dead wood and veteran trees, can be considered as nationally important. True flies associated with decaying wood add further significant species to the site’s saproxylic fauna. There is also a strong
    [Show full text]
  • Coccinellidae)
    ECOLOGY AND BEHAVIOUR OF THE LADYBIRD BEETLES (COCCINELLIDAE) Edited by I. Hodek, H.E van Emden and A. Honek ©WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication CONTENTS Detailed contents, ix 8. NATURAL ENEMIES OF LADYBIRD BEETLES, 375 Contributors, xvii Piotr Ccryngier. Helen E. Roy and Remy L. Poland Preface, xviii 9. COCCINELLIDS AND [ntroduction, xix SEMIOCHEMICALS, 444 ]an Pettcrsson Taxonomic glossary, xx 10. QUANTIFYING THE IMPACT OF 1. PHYLOGENY AND CLASSIFICATION, 1 COCCINELLIDS ON THEIR PREY, 465 Oldrich Nedved and Ivo Kovdf /. P. Mid'laud and James D. Harwood 2. GENETIC STUDIES, 13 11. COCCINELLIDS IN BIOLOGICAL John J. Sloggett and Alois Honek CONTROL, 488 /. P. Midland 3. LIFE HISTORY AND DEVELOPMENT, 54 12. RECENT PROGRESS AND POSSIBLE Oldrkli Nedved and Alois Honek FUTURE TRENDS IN THE STUDY OF COCCINELLIDAE, 520 4. DISTRIBUTION AND HABITATS, 110 Helmut /; van Emden and Ivo Hodek Alois Honek Appendix: List of Genera in Tribes and Subfamilies, 526 5. FOOD RELATIONSHIPS, 141 Ivo Hodek and Edward W. Evans Oldrich Nedved and Ivo Kovdf Subject index. 532 6. DIAPAUSE/DORMANCY, 275 Ivo Hodek Colour plate pages fall between pp. 250 and pp. 251 7. INTRAGUILD INTERACTIONS, 343 Eric Lucas VII DETAILED CONTENTS Contributors, xvii 1.4.9 Coccidulinae. 8 1.4.10 Scymninae. 9 Preface, xviii 1.5 Future Perspectives, 10 References. 10 Introduction, xix Taxonomic glossary, xx 2. GENETIC STUDIES, 13 John J. Sloggett and Alois Honek 1. PHYLOGENY AND CLASSIFICATION, 1 2.1 Introduction, 14 Oldrich Nedved and Ivo Kovdf 2.2 Genome Size. 14 1.1 Position of the Family. 2 2.3 Chromosomes and Cytology.
    [Show full text]
  • The Taxonomy of Utah Orthoptera
    Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College.
    [Show full text]
  • Divergent Life History Strategies in Congeneric Hyperparasitoids
    Evol Ecol DOI 10.1007/s10682-016-9819-6 ORIGINAL PAPER Divergent life history strategies in congeneric hyperparasitoids 1,2 3,4 1 Bertanne Visser • Ce´cile Le Lann • Helen Snaas • 5 1,4 Oriol Verdeny-Vilalta • Jeffrey A. Harvey Received: 26 March 2015 / Accepted: 20 January 2016 Ó Springer International Publishing Switzerland 2016 Abstract Life histories can reveal important information on the performance of indi- viduals within their environment and how that affects evolutionary change. Major trait changes, such as trait decay or loss, may lead to pronounced differences in life history strategies when tight correlations between traits exist. Here, we show that three congeneric hyperparasitoids (Gelis agilis, Gelis acarorum and Gelis areator) that have diverged in wing development and reproductive mode employ markedly different life history strate- gies. Potential fecundity of Gelis sp. varied, with the wingless G. acarorum maturing a much higher number of eggs throughout life compared with the other two species. Realized lifetime fecundity, in terms of total offspring number was, however, highest for the winged G. areator. The parthenogenic G. agilis invests its resources solely in females, whilst the sexually reproducing species both invested heavily in males to reduce competitive pres- sures for their female offspring. Longevity also differed between species, as did the direction of the reproduction-longevity trade-off, where reproduction is heavily traded off against longevity only in the asexual G. agilis. Resting metabolic rates also differed between the winged and wingless species, with the highest metabolic rate observed in the winged G. areator. Overall, these geline hyperparasitoids showed considerable divergence in life history strategies, both in terms of timing and investment patterns.
    [Show full text]
  • CHEMOTYPIC Variation in Volatiles and Herbivory for Sagebrush
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eScholarship - University of California UC Davis UC Davis Previously Published Works Title CHEMOTYPIC Variation in Volatiles and Herbivory for Sagebrush. Permalink https://escholarship.org/uc/item/3588q130 Journal Journal of chemical ecology, 42(8) ISSN 0098-0331 Authors Karban, Richard Grof-Tisza, Patrick Blande, James D Publication Date 2016-08-15 DOI 10.1007/s10886-016-0741-8 Peer reviewed eScholarship.org Powered by the California Digital Library University of California J Chem Ecol (2016) 42:829–840 DOI 10.1007/s10886-016-0741-8 CHEMOTYPIC Variation in Volatiles and Herbivory for Sagebrush Richard Karban1 & Patrick Grof-Tisza2 & James D. Blande3 Received: 21 June 2016 /Revised: 14 July 2016 /Accepted: 29 July 2016 /Published online: 15 August 2016 # Springer Science+Business Media New York 2016 Abstract Plants that are damaged by herbivores emit com- plants of the thujone type had consistently higher rates of plex blends of volatile compounds that often cause neighbor- damage by chewing herbivores. One galling midge species ing branches to induce resistance. Experimentally clipped was more common on thujone plants, while a second midge sagebrush foliage emits volatiles that neighboring individuals species was more likely to gall plants of the camphor type. recognize and respond to. These volatiles vary among indi- The diversity of preferences of attackers may help to maintain viduals within a population. Two distinct types are most com- the variation in volatile profiles. These chemical compounds mon with either thujone or camphor as the predominate com- that differentiate the types are likely to be informative cues pound, along with other less common types.
    [Show full text]
  • The Morphology of the Egg of Rhinomorinia Sarcophagina
    ANNALES Annales Zoologici (1997) 46: 225-232 ZOOLOGICI The Morphology of the Egg ofRhinomorinia sarcophagina (Schiner, 1862) (Diptera, Rhinophoridae) Agnieszka DRABER-MOŃKO Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland Abstract. Description of the egg of Rhinomorinia sarcophagina (Schin.) illustrated by scanning micrographs is given. A key for the identification of the eggs of eight species of Rhinophoridae is included. Key words: Diptera, Rhinophoridae, Rhinomorinia sarcophagina, egg, morphology, description, key. INTRODUCTION northern Poland forming the northern limits of the range. The species has not been recorded from To date the morphology is known for the eggs of Scandinavia or from the British Isles (Herting 1993). only seven species of Diptera belonging to the family In Poland, the species has been recorded from the Rhinophoridae (Bedding 1973). A key for their iden­ Baltic Coast, Pojezierze Pomorskie and Pojezierze tification was provided by Draber-Mońko (1989). The Mazurskie, Nizina Mazowiecka, Puszcza Białowies­ present paper describes the egg of an additional ka, Wyżyna Krakowsko-Wieluńska and Wyżyna species - Rhinomorinia sarcophagina - and gives an Małopolska including Góry Świętokrzyskie, Wyżyna expanded key to all eggs known from Rhinophoridae. Lubelska, Roztocze, the Eastern Sudeten Mts, the Most are parasites on terrestrial Isopoda and only Pieniny Mts and the Tatra Mts (Draber-Mońko 1966). Rhinomorinia sarcophagina (Schin.) has been reared While working on the Diptera collected in Roztocze from Malacosoma neustria (L.), moth of the family Lasiocampidae (Kolubajiv 1962), but Pape (1986) I found several Rhinomorinia sarcophagina females considered that to be highly questionable breeding with an egg protruding from the ovipositor (Figs 1-5).
    [Show full text]
  • Klicken, Um Den Anhang Zu Öffnen
    Gredleria- VOL. 1 / 2001 Titelbild 2001 Posthornschnecke (Planorbarius corneus L.) / Zeichnung: Alma Horne Volume 1 Impressum Volume Direktion und Redaktion / Direzione e redazione 1 © Copyright 2001 by Naturmuseum Südtirol Museo Scienze Naturali Alto Adige Museum Natöra Südtirol Bindergasse/Via Bottai 1 – I-39100 Bozen/Bolzano (Italien/Italia) Tel. +39/0471/412960 – Fax 0471/412979 homepage: www.naturmuseum.it e-mail: [email protected] Redaktionskomitee / Comitato di Redazione Dr. Klaus Hellrigl (Brixen/Bressanone), Dr. Peter Ortner (Bozen/Bolzano), Dr. Gerhard Tarmann (Innsbruck), Dr. Leo Unterholzner (Lana, BZ), Dr. Vito Zingerle (Bozen/Bolzano) Schriftleiter und Koordinator / Redattore e coordinatore Dr. Klaus Hellrigl (Brixen/Bressanone) Verantwortlicher Leiter / Direttore responsabile Dr. Vito Zingerle (Bozen/Bolzano) Graphik / grafica Dr. Peter Schreiner (München) Zitiertitel Gredleriana, Veröff. Nat. Mus. Südtirol (Acta biol. ), 1 (2001): ISSN 1593 -5205 Issued 15.12.2001 Druck / stampa Gredleriana Fotolito Varesco – Auer / Ora (BZ) Gredleriana 2001 l 2001 tirol Die Veröffentlichungsreihe »Gredleriana« des Naturmuseum Südtirol (Bozen) ist ein Forum für naturwissenschaftliche Forschung in und über Südtirol. Geplant ist die Volume Herausgabe von zwei Wissenschaftsreihen: A) Biologische Reihe (Acta Biologica) mit den Bereichen Zoologie, Botanik und Ökologie und B) Erdwissenschaftliche Reihe (Acta Geo lo gica) mit Geologie, Mineralogie und Paläontologie. Diese Reihen können jährlich ge mein sam oder in alternierender Folge erscheinen, je nach Ver- fügbarkeit entsprechender Beiträge. Als Publikationssprache der einzelnen Beiträge ist Deutsch oder Italienisch vorge- 1 Naturmuseum Südtiro sehen und allenfalls auch Englisch. Die einzelnen Originalartikel erscheinen jeweils Museum Natöra Süd Museum Natöra in der eingereichten Sprache der Autoren und sollen mit kurzen Zusammenfassun- gen in Englisch, Italienisch und Deutsch ausgestattet sein.
    [Show full text]
  • Calyptratae: Diptera)
    BUILDING THE TREE OF LIFE: RECONSTRUCTING THE EVOLUTION OF A RECENT AND MEGADIVERSE BRANCH (CALYPTRATAE: DIPTERA) SUJATHA NARAYANAN KUTTY (B.Tech) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2008 The great tragedy of Science - the slaying of a beautiful hypothesis by an ugly fact. - Thomas H. Huxley ii ACKNOWLEDGEMENTS We don't accomplish anything in this world alone... and whatever happens is the result of the whole tapestry of one's life and all the weavings of individual threads from one to another that creates something - Sandra Day O'Connor. The completion of this project would have been impossible without help from so many different quarters and the few lines of gratitude and acknowledgements written out in this section would do no justice to the actual amount of support and encouragement that I have received and that has contributed to making this study a successful endeavor. I am indebted to Prof. Meier for motivating me to embark on my PhD (at a very confusing point for me) and giving me a chance to explore a field that was quite novel to me. I express my sincere gratitude to him for all the guidance, timely advice, pep talks, and support through all the stages of this project and for always being patient while dealing with my ignorance. He has also been very understanding during all my non- academic distractions in the last two years. Thanks Prof.- your motivation and inspiration in the five years of my graduate study has given me the confidence to push the boundaries of my own capabilities.
    [Show full text]
  • Woodlice and Their Parasitoid Flies: Revision of Isopoda (Crustacea
    A peer-reviewed open-access journal ZooKeys 801: 401–414 (2018) Woodlice and their parasitoid flies 401 doi: 10.3897/zookeys.801.26052 REVIEW ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Woodlice and their parasitoid flies: revision of Isopoda (Crustacea, Oniscidea) – Rhinophoridae (Insecta, Diptera) interaction and first record of a parasitized Neotropical woodlouse species Camila T. Wood1, Silvio S. Nihei2, Paula B. Araujo1 1 Federal University of Rio Grande do Sul, Zoology Department. Av. Bento Gonçalves, 9500, Prédio 43435, 91501-970, Porto Alegre, RS, Brazil 2 University of São Paulo, Institute of Biosciences, Department of Zoology. Rua do Matão, Travessa 14, n.101, 05508-090, São Paulo, SP, Brazil Corresponding author: Camila T Wood ([email protected]) Academic editor: E. Hornung | Received 11 May 2018 | Accepted 26 July 2018 | Published 3 December 2018 http://zoobank.org/84006EA9-20C7-4F75-B742-2976C121DAA1 Citation: Wood CT, Nihei SS, Araujo PB (2018) Woodlice and their parasitoid flies: revision of Isopoda (Crustacea, Oniscidea) – Rhinophoridae (Insecta, Diptera) interaction and first record of a parasitized Neotropical woodlouse species. In: Hornung E, Taiti S, Szlavecz K (Eds) Isopods in a Changing World. ZooKeys 801: 401–414. https://doi. org/10.3897/zookeys.801.26052 Abstract Terrestrial isopods are soil macroarthropods that have few known parasites and parasitoids. All known parasitoids are from the family Rhinophoridae (Insecta: Diptera). The present article reviews the known biology of Rhinophoridae flies and presents the first record of Rhinophoridae larvae on a Neotropical woodlouse species. We also compile and update all published interaction records. The Neotropical wood- louse Balloniscus glaber was parasitized by two different larval morphotypes of Rhinophoridae.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Substrate Color Matching in the Grasshopper, Circotettix Rabula (Orthoptera: Acrididae) George W
    Great Basin Naturalist Volume 34 | Number 1 Article 4 3-31-1974 Substrate color matching in the grasshopper, Circotettix rabula (Orthoptera: Acrididae) George W. Cox San Diego State University Darla G. Cox La Jolla Country Day School, La Jolla, California Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Cox, George W. and Cox, Darla G. (1974) "Substrate color matching in the grasshopper, Circotettix rabula (Orthoptera: Acrididae)," Great Basin Naturalist: Vol. 34 : No. 1 , Article 4. Available at: https://scholarsarchive.byu.edu/gbn/vol34/iss1/4 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. SUBSTRATE COLOR MATCHING IN THE GRASSHOPPER, CIRCOTETTIX RABULA (ORIHOPTERA: ACRIDIDAE) George W. Coxi and Darla G. Cox^ Abstract.— Mechanisms important in maintaining substrate color matching in the grasshopper, Circotettix rabula, were studied near Aspen, Colorado, during the summers of 1968-70. Studies concentrated on populations on gray shale and red sandstone substrates. In both areas, collections revealed appreciable numbers of mismatched phenotypes among all age groups. The possibility of develop- mental homochromy was examined by observation of nymphs held in rearing boxes on matching and contrasting soil colors. The behavioral selection of matching substrate colors was tested by preference experiments. While not negating the possibility of these mechanisms, results suggested that they were of minor importance. Predation experiments, using Sceloporus lizards, demon- strated significant levels of selective predation on mismatched nymphs on both red and gray substrates.
    [Show full text]