Evaluating Indirect Ecological Effects of Biological Control

Total Page:16

File Type:pdf, Size:1020Kb

Evaluating Indirect Ecological Effects of Biological Control Color profile: Disabled Composite Default screen EVALUATING INDIRECT ECOLOGICAL EFFECTS OF BIOLOGICAL CONTROL 1 Z:\Customer\CABI\A3873 - Wajnberg - Evaluating Indirect\A3935 - Wajnberg - Evaluating Indirect #G.vp 30 October 2000 16:29:57 A3935: AMA: Wajnberg: First Revise:30-Oct-00 Color profile: Disabled Composite Default screen 2 Z:\Customer\CABI\A3873 - Wajnberg - Evaluating Indirect\A3935 - Wajnberg - Evaluating Indirect #G.vp 30 October 2000 16:29:57 A3935: AMA: Wajnberg: First Revise:30-Oct-00 Color profile: Disabled Composite Default screen Evaluating Indirect Ecological Effects of Biological Control Edited by E. Wajnberg INRA, Antibes, France J.K. Scott CSIRO, Montpellier, France and P.C. Quimby USDA, Montpellier, France CABI Publishing 3 Z:\Customer\CABI\A3873 - Wajnberg - Evaluating Indirect\A3935 - Wajnberg - Evaluating Indirect #G.vp 30 October 2000 16:29:58 A3935: AMA: Wajnberg: First Revise:30-Oct-00 Color profile: Disabled Composite Default screen CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 10 E 40th Street Wallingford Suite 3203 Oxon OX10 8DE New York, NY 10016 UK USA Tel: +44 (0)1491 832111 Tel: +1 212 481 7018 Fax: +44 (0)1491 833508 Fax: +1 212 686 7993 Email: [email protected] Email: [email protected] Web site: http://www.cabi.org © CAB International 2001. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Evaluating indirect ecological effects of biological control / edited by E. Wajnberg, John K. Scott and Paul C. Quimby. p. cm. A collation of key papers presented at the first international symposium entitled ‘Indirect Ecological Effects in Biological Control’ at Montpellier, France, 17–20 October 1999. Includes bibliographical references (p.). ISBN 0-85199-453-9 (alk. paper) 1. Biological pest control agents--Environmental aspects--Congresses. I. Wajnberg, E. II. Scott, John K. III. Quimby, Paul C. IV. Ecological Effects in Biological Control (1999: Montpellier, France) QH545.B55 E82 2000 577.27--dc21 00-034314 ISBN 0 85199 453 9 Typeset by AMA DataSet Ltd, UK. Printed and bound in the UK by Biddles Ltd, Guildford and King’s Lynn. 4 Z:\Customer\CABI\A3873 - Wajnberg - Evaluating Indirect\A3935 - Wajnberg - Evaluating Indirect #G.vp 30 October 2000 16:29:59 A3935: AMA: Wajnberg: First Revise:30-Oct-00 Color profile: Disabled Composite Default screen Contents Contents Contributors xi Preface xv 1 Indirect Ecological Effects in Biological Control: the Challenge and the Opportunity 1 J.K. Waage Introduction 1 What will happen to biological control in this century? 2 Efficacy and safety of biological control: a historical perspective 6 Recent developments in biological control 7 The role of ecology 9 Conclusion 10 References 11 2 Indirect Interactions, Community Modules and Biological Control: a Theoretical Perspective 13 R.D. Holt and M.E. Hochberg Introduction 14 Classical biological control is deliberate ‘community assembly’ 14 One approach to complexity: community modules 16 Shared predation: identifying extinction risks for non-target prey 18 Disparate impacts of shared predation 19 v 5 Z:\Customer\CABI\A3873 - Wajnberg - Evaluating Indirect\A3935 - Wajnberg - Evaluating Indirect #G.vp 30 October 2000 16:30:00 A3935: AMA: Wajnberg: First Revise:30-Oct-00 Contents Color profile: Disabled Composite Default screen vi Contents Simple messages from theory 21 Message I 21 Message II 23 Message III 24 Indirect interactions influence transient risks during agent establishment 27 Landscape-scale indirect effects: the importance of community openness 28 Transient dynamics in shifting landscapes 30 Indirect interactions and evolution 31 Conclusions 31 References 34 3 Research Needs Concerning Non-target Impacts of Biological Control Introductions 39 K.R. Hopper Introduction 39 Internet workshop on ‘Research needs for assessing and reducing non-target impacts of biological control introductions’ 40 What sorts of non-target impacts should concern us? 40 Host range evaluation 41 Predicting impacts of biological control introductions versus other management options 42 Retrospective studies to assess impacts 43 Montpellier workshop on ‘Evaluating indirect ecological effects of biological control’ 44 Session I: identification of major research questions 45 Session II: approaches to answering selected questions 47 Conclusions 54 References 55 4 Food Webs, Risks of Alien Enemies and Reform of Biological Control 57 D.R. Strong and R.W. Pemberton Introduction 58 Biological control in conservation 58 Food webs, direct and indirect interactions 59 Differences between natural and cultivated systems 63 Risks of biological control 63 Weed biological control 65 Insect biological control 66 Parasitoids and general predators 66 Ladybird beetles 68 The campaign against Russian wheat aphid 69 6 Z:\Customer\CABI\A3873 - Wajnberg - Evaluating Indirect\A3935 - Wajnberg - Evaluating Indirect #G.vp 30 October 2000 16:30:00 A3935: AMA: Wajnberg: First Revise:30-Oct-00 Contents Color profile: Disabled Composite Default screen Contents vii Reform of biological control 70 References 74 5 Evaluation of Non-target Effects of Pathogens Used for Management of Arthropods 81 M.S. Goettel and A.E. Hajek Introduction 82 Types of control 83 Classical biological control 83 Inundative augmentative releases 86 Non-target effects of pest control using entomopathogens 87 Classical biological control 88 Inundative augmentative releases 91 A special case: genetically engineered pathogens 92 Methods for evaluating non-target effects 92 Conclusions 94 References 94 6 Insect Biological Control and Non-target Effects: a European Perspective 99 L.D. Lynch, H.M.T. Hokkanen, D. Babendreier, F. Bigler, G. Burgio, Z.-H. Gao, S. Kuske, A. Loomans, I. Menzler-Hokkanen, M.B. Thomas, G. Tommasini, J.K. Waage, J.C. van Lenteren and Q.-Q. Zeng Introduction: the ERBIC project 100 A retrospective analysis of published and unpublished data 102 Methods 102 Results 104 Database conclusions 112 Case studies in European biological control 113 Case 1: exotic specialist parasitoids 114 Case 2: exotic generalist parasitoids 116 Case 3: generalist exotic predators 118 Case 4: fungi and nematodes as bioinsecticides 120 Mathematical modelling and ecological theory 121 Overview 122 References 123 7 Biological Control in Africa and its Possible Effects on Biodiversity 127 P. Neuenschwander and R. Markham Introduction 128 Case studies 131 Cassava mealybug 131 7 Z:\Customer\CABI\A3873 - Wajnberg - Evaluating Indirect\A3935 - Wajnberg - Evaluating Indirect #G.vp 30 October 2000 16:30:00 A3935: AMA: Wajnberg: First Revise:30-Oct-00 Contents Color profile: Disabled Composite Default screen viii Contents Mango mealybug 133 Spiralling whitefly 134 Cassava green mite 135 Lepidopterous stemborers 136 Cowpea thrips 137 Larger grainborer 138 Water hyacinth 140 Fungal pathogens against grasshoppers 140 Discussion 141 References 144 8 Rhinocyllus conicus: Initial Evaluation and Subsequent Ecological Impacts in North America 147 A. Gassmann and S.M. Louda Introduction 148 Natural history of Rhinocyllus 150 Pre-release studies in Europe (1961–1968) 151 Early field studies 152 Early laboratory studies of host acceptance, preference and performance 153 Early post-release studies (1969–1985) 156 Field studies in Europe 156 Laboratory and greenhouse studies of preference and performance in North America 158 Garden plot and field studies in North America 158 Recent studies of Rhinocyllus (1986–1999) 161 Variation in phenology 161 Phenotypic and genetic variation in host use 161 Non-target feeding on Cirsium species in North America 163 Thistle–insect interactions in prairies of the upper Great Plains 164 Altered ecological interactions in the new environment? 167 Discussion 169 Host specificity: feeding acceptance, oviposition and larval performance 170 Host specificity: larval survival and performance 172 Prediction of quantitative ecological effects 173 Conclusions 174 References 176 9 Risk Analysis and Weed Biological Control 185 W.M. Lonsdale, D.T. Briese and J.M. Cullen Introduction 186 Risk analysis and biological control: some definitions 187 8 Z:\Customer\CABI\A3873 - Wajnberg - Evaluating Indirect\A3935 - Wajnberg - Evaluating Indirect #G.vp 30 October 2000 16:30:01 A3935: AMA: Wajnberg: First Revise:30-Oct-00 Contents Color profile: Disabled Composite Default screen Contents ix Comparative risk analysis (CRA) 188 Risk assessment 188 The NAS model 188 Ecological models of risk assessment 189 Difficulties of prediction 190 Prediction tools 193 Risk scenarios 196 Risk management 200 Risk communication 201 Background 201 Release application procedures in different countries 201 Precautionary principle 202 Good and bad risk communication 203 Monitoring 203 Synthesis 204 References 205 10 Incorporating Biological Control into Ecologically Based Weed Management 211 R.L. Sheley and M.J. Rinella Introduction 211 Management objectives 212 Need for predictive capability 212 Mechanisms and processes directing plant community dynamics 213 Incorporating biological control into ecologically based weed management 215 Modelling and predicting weed management’s influence on community dynamics 215 Successional weed management 215 Designed disturbance 216 Controlled
Recommended publications
  • Capsicum Annuum) Associated with Basil (Ocimum Basilicum) and Marigold (Tagetes Erecta) I
    Brazilian Journal of Biology https://doi.org/10.1590/1519-6984.185417 ISSN 1519-6984 (Print) Original Article ISSN 1678-4375 (Online) Parasitoids diversity in organic Sweet Pepper (Capsicum annuum) associated with Basil (Ocimum basilicum) and Marigold (Tagetes erecta) I. L. Souzaa*, V. B. Tomazellaa, A. J. N. Santosb, T. Moraesc and L. C. P. Silveiraa aLaboratório de Controle Biológico Conservativo, Departamento de Entomologia, Universidade Federal de Lavras – UFLA, Av. Doutor Sylvio Menicucci, 1001, Kennedy, CEP 37200-000, Lavras, MG, Brasil bCompanhia Nacional de Abastecimento – CONAB, Rua Tobias Barreto, s/n, Bebedouro, CEP 57013-000, Maceió, AL, Brasil cLaboratório de Ecologia Molecular de Artrópodes, Departamento de Entomologia, Escola Superior de Agricultura “Luiz de Queiroz” – ESALQ, Av. Pádua Dias, 11, CEP 13418-900, Piracicaba, SP, Brasil *e-mail: [email protected] Received: September 17, 2017 – Accepted: March 26, 2018 – Distributed: November 30, 2019 (With 5 figures) Abstract The sweet pepper (Capsicum annuum L.) is one of the most important crops in Brazilian farming. Many insect are related to this crop, compromising the quantity and quality of the fruit, representing a production problem. Vegetable diversification is one of the main elements that can be managed for suppressing undesirable insect populations in organic production, once that supports the presence of natural enemies. The basil Ocimum basilicum L. and the marigold Tagetes erecta L. are attractive and nutritious plants for parasitoids, being important candidates for diversified crops. This study evaluated the parasitoids attracted by the association of basil and marigold to organic sweet pepper crop. The experiment comprised three treatments: a) sweet pepper monoculture; b) sweet pepper and basil intercropping; c) sweet pepper and marigold intercropping.
    [Show full text]
  • Coccinellidae)
    ECOLOGY AND BEHAVIOUR OF THE LADYBIRD BEETLES (COCCINELLIDAE) Edited by I. Hodek, H.E van Emden and A. Honek ©WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication CONTENTS Detailed contents, ix 8. NATURAL ENEMIES OF LADYBIRD BEETLES, 375 Contributors, xvii Piotr Ccryngier. Helen E. Roy and Remy L. Poland Preface, xviii 9. COCCINELLIDS AND [ntroduction, xix SEMIOCHEMICALS, 444 ]an Pettcrsson Taxonomic glossary, xx 10. QUANTIFYING THE IMPACT OF 1. PHYLOGENY AND CLASSIFICATION, 1 COCCINELLIDS ON THEIR PREY, 465 Oldrich Nedved and Ivo Kovdf /. P. Mid'laud and James D. Harwood 2. GENETIC STUDIES, 13 11. COCCINELLIDS IN BIOLOGICAL John J. Sloggett and Alois Honek CONTROL, 488 /. P. Midland 3. LIFE HISTORY AND DEVELOPMENT, 54 12. RECENT PROGRESS AND POSSIBLE Oldrkli Nedved and Alois Honek FUTURE TRENDS IN THE STUDY OF COCCINELLIDAE, 520 4. DISTRIBUTION AND HABITATS, 110 Helmut /; van Emden and Ivo Hodek Alois Honek Appendix: List of Genera in Tribes and Subfamilies, 526 5. FOOD RELATIONSHIPS, 141 Ivo Hodek and Edward W. Evans Oldrich Nedved and Ivo Kovdf Subject index. 532 6. DIAPAUSE/DORMANCY, 275 Ivo Hodek Colour plate pages fall between pp. 250 and pp. 251 7. INTRAGUILD INTERACTIONS, 343 Eric Lucas VII DETAILED CONTENTS Contributors, xvii 1.4.9 Coccidulinae. 8 1.4.10 Scymninae. 9 Preface, xviii 1.5 Future Perspectives, 10 References. 10 Introduction, xix Taxonomic glossary, xx 2. GENETIC STUDIES, 13 John J. Sloggett and Alois Honek 1. PHYLOGENY AND CLASSIFICATION, 1 2.1 Introduction, 14 Oldrich Nedved and Ivo Kovdf 2.2 Genome Size. 14 1.1 Position of the Family. 2 2.3 Chromosomes and Cytology.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Divergent Life History Strategies in Congeneric Hyperparasitoids
    Evol Ecol DOI 10.1007/s10682-016-9819-6 ORIGINAL PAPER Divergent life history strategies in congeneric hyperparasitoids 1,2 3,4 1 Bertanne Visser • Ce´cile Le Lann • Helen Snaas • 5 1,4 Oriol Verdeny-Vilalta • Jeffrey A. Harvey Received: 26 March 2015 / Accepted: 20 January 2016 Ó Springer International Publishing Switzerland 2016 Abstract Life histories can reveal important information on the performance of indi- viduals within their environment and how that affects evolutionary change. Major trait changes, such as trait decay or loss, may lead to pronounced differences in life history strategies when tight correlations between traits exist. Here, we show that three congeneric hyperparasitoids (Gelis agilis, Gelis acarorum and Gelis areator) that have diverged in wing development and reproductive mode employ markedly different life history strate- gies. Potential fecundity of Gelis sp. varied, with the wingless G. acarorum maturing a much higher number of eggs throughout life compared with the other two species. Realized lifetime fecundity, in terms of total offspring number was, however, highest for the winged G. areator. The parthenogenic G. agilis invests its resources solely in females, whilst the sexually reproducing species both invested heavily in males to reduce competitive pres- sures for their female offspring. Longevity also differed between species, as did the direction of the reproduction-longevity trade-off, where reproduction is heavily traded off against longevity only in the asexual G. agilis. Resting metabolic rates also differed between the winged and wingless species, with the highest metabolic rate observed in the winged G. areator. Overall, these geline hyperparasitoids showed considerable divergence in life history strategies, both in terms of timing and investment patterns.
    [Show full text]
  • VU Research Portal
    VU Research Portal Parasitism and the Evolutionary Loss of Lipogenesis Visser, B. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Visser, B. (2012). Parasitism and the Evolutionary Loss of Lipogenesis. Ipskamp B.V. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 06. Oct. 2021 Parasitism and the Evolutionary Loss of Lipogenesis Cover: Symbiose mensuur tussen natuur en cultuur. Cover design: Leendert Verboom Lay-out: Bertanne Visser Printing: Ipskamp Drukkers B.V., Enschede Thesis 2012-1 of the Department of Ecological Science VU University Amsterdam, the Netherlands This research was supported by the Netherlands Organisation for Scientific Research (NWO, Nederlandse organisatie voor Wetenschappelijk Onderzoek), grant nr. 816-03-013. isbn xxx VRIJE UNIVERSITEIT Parasitism and the Evolutionary Loss of Lipogenesis ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr.
    [Show full text]
  • Constant Neuropilar Ratio in the Insect Brain Alexey A
    www.nature.com/scientificreports OPEN Constant neuropilar ratio in the insect brain Alexey A. Polilov* & Anastasia A. Makarova Revealing scaling rules is necessary for understanding the morphology, physiology and evolution of living systems. Studies of animal brains have revealed both general patterns, such as Haller’s rule, and patterns specifc for certain animal taxa. However, large-scale studies aimed at studying the ratio of the entire neuropil and the cell body rind in the insect brain have never been performed. Here we performed morphometric study of the adult brain in 37 insect species of 26 families and ten orders, ranging in volume from the smallest to the largest by a factor of more than 4,000,000, and show that all studied insects display a similar ratio of the volume of the neuropil to the cell body rind, 3:2. Allometric analysis for all insects shows that the ratio of the volume of the neuropil to the volume of the brain changes strictly isometrically. Analyses within particular taxa, size groups, and metamorphosis types also reveal no signifcant diferences in the relative volume of the neuropil; isometry is observed in all cases. Thus, we establish a new scaling rule, according to which the relative volume of the entire neuropil in insect brain averages 60% and remains constant. Large-scale studies of animal proportions supposedly started with the publication D’Arcy Wentworth Tompson’s book Growth and Forms1. In fact, the frst studies on the subject appeared long before the book (e.g.2), but it was Tomson’s work that laid the foundations for this discipline, which, following the studies of Julian Huxley 3,4, became a major fundamental and applied area of science5–8.
    [Show full text]
  • Chalcid Forum Chalcid Forum
    ChalcidChalcid ForumForum A Forum to Promote Communication Among Chalcid Workers Volume 23. February 2001 Edited by: Michael E. Schauff, E. E. Grissell, Tami Carlow, & Michael Gates Systematic Entomology Lab., USDA, c/o National Museum of Natural History Washington, D.C. 20560-0168 http://www.sel.barc.usda.gov (see Research and Documents) minutes as she paced up and down B. sarothroides stems Editor's Notes (both living and partially dead) antennating as she pro- gressed. Every 20-30 seconds, she would briefly pause to Welcome to the 23rd edition of Chalcid Forum. raise then lower her body, the chalcidoid analog of a push- This issue's masthead is Perissocentrus striatululus up. Upon approaching the branch tips, 1-2 resident males would approach and hover in the vicinity of the female. created by Natalia Florenskaya. This issue is also Unfortunately, no pre-copulatory or copulatory behaviors available on the Systematic Ent. Lab. web site at: were observed. Naturally, the female wound up leaving http://www.sel.barc.usda.gov. We also now have with me. available all the past issues of Chalcid Forum avail- The second behavior observed took place at Harshaw able as PDF documents. Check it out!! Creek, ~7 miles southeast of Patagonia in 1999. Jeremiah George (a lepidopterist, but don't hold that against him) and I pulled off in our favorite camping site near the Research News intersection of FR 139 and FR 58 and began sweeping. I knew that this area was productive for the large and Michael W. Gates brilliant green-blue O. tolteca, a parasitoid of Pheidole vasleti Wheeler (Formicidae) brood.
    [Show full text]
  • Towards Classical Biological Control of Leek Moth
    ____________________________________________________________________________ Ateyyat This project seeks to provide greater coherence for the biocontrol knowledge system for regulators and researchers; create an open access information source for biocontrol re- search of agricultural pests in California, which will stimulate greater international knowl- edge sharing about agricultural pests in Mediterranean climates; and facilitate the exchange of information through a cyberinfrastructure among government regulators, and biocontrol entomologists and practitioners. It seeks broader impacts through: the uploading of previ- ously unavailable data being made openly accessible; the stimulation of greater interaction between the biological control regulation, research, and practitioner community in selected Mediterranean regions; the provision of more coherent and useful information to enhance regulatory decisions by public agency scientists; a partnership with the IOBC to facilitate international data sharing; and progress toward the ultimate goal of increasing the viability of biocontrol as a reduced risk pest control strategy. No Designated Session Theme BIOLOGY OF CIRROSPILUS INGENUUS GAHAN (HYMENOPTERA: EULOPHIDAE), AN ECTOPARASITOID OF THE CITRUS LEAFMINER, PHYLLOCNISTIS CITRELLA STAINTON (LEPIDOPTERA: GRACILLARIIDAE) ON LEMON 99 Mazen A. ATEYYAT Al-Shoubak University College, Al-Balqa’ Applied University, P.O. Box (5), Postal code 71911, Al-Shawbak, Jordan [email protected] The citrus leafminer (CLM), Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) in- vaded the Jordan Valley in 1994 and was able to spread throughout Jordan within a few months of its arrival. It was the most common parasitoid from 1997 to 1999 in the Jordan Valley. An increase in the activity of C. ingenuus was observed in autumn and the highest number of emerged C. ingenuus adults was in November 1999.
    [Show full text]
  • Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea
    Biodiversity Data Journal 4: e8013 doi: 10.3897/BDJ.4.e8013 Taxonomic Paper Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea Natalie Dale-Skey‡, Richard R. Askew§‡, John S. Noyes , Laurence Livermore‡, Gavin R. Broad | ‡ The Natural History Museum, London, United Kingdom § private address, France, France | The Natural History Museum, London, London, United Kingdom Corresponding author: Gavin R. Broad ([email protected]) Academic editor: Pavel Stoev Received: 02 Feb 2016 | Accepted: 05 May 2016 | Published: 06 Jun 2016 Citation: Dale-Skey N, Askew R, Noyes J, Livermore L, Broad G (2016) Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea. Biodiversity Data Journal 4: e8013. doi: 10.3897/ BDJ.4.e8013 Abstract Background A revised checklist of the British and Irish Chalcidoidea and Mymarommatoidea substantially updates the previous comprehensive checklist, dating from 1978. Country level data (i.e. occurrence in England, Scotland, Wales, Ireland and the Isle of Man) is reported where known. New information A total of 1754 British and Irish Chalcidoidea species represents a 22% increase on the number of British species known in 1978. Keywords Chalcidoidea, Mymarommatoidea, fauna. © Dale-Skey N et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Dale-Skey N et al. Introduction This paper continues the series of checklists of the Hymenoptera of Britain and Ireland, starting with Broad and Livermore (2014a), Broad and Livermore (2014b) and Liston et al.
    [Show full text]
  • Forest Health Technology Enterprise Team
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control ASSESSING HOST RANGES FOR PARASITOIDS AND PREDATORS USED FOR CLASSICAL BIOLOGICAL CONTROL: A GUIDE TO BEST PRACTICE R. G. Van Driesche, T. Murray, and R. Reardon (Eds.) Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2004-03 Department of Service September 2004 Agriculture he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ Cover photo: Syngaster lepidus Brullè—Timothy Paine, University of California, Riverside. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S.
    [Show full text]
  • Universidad De Guadalajara Tesis Profesional
    1991.- 8 084454583 UNIVERSIDAD DE GUADALAJARA FACULTAD DE CIENCIAS BIOLOGICAS IDENTIFJCACION DE ENTOMOFAUNA BENEFICA ( HYMENOPTERA : PARASITICA ) PRESENTES EN COL Y MAIZ EN JALISCO. " TESIS PROFESIONAL QUE PARA OBTENER EL TITULO DE ; LICENCIADO EN BIOLOGIA P R E S E N T A: ADRIANA LIVIER OROZCO CORDERO LAS AGUJAS, JAL. MARZO DE 1994. ----------------------------------------------------------------------- Expediente .................. UNIVERSIDAD DE GUADALAJARA Número .................... Facultad de Ciencias Biológicas Sección ..................... ADRIANA L. 0KYLCD a>RDER> P R E S E N T E. - Por medio de este conducto, le informaroos que se acepta el cambio de titulo de la tesis "ENI'(M)FAUNA BENEFICA (Hyrnenoptera Parasitica) DE PLAGAS AGRimLAS EN DIVERSAS LOCALIDADES DE JALISffi" ¡x:>r el titulo de "IDENriFICACION DE ENTCMOFAUNA BENEFICA (Hyrnenoptera: Parasitica) PRESENTES EN ffiL Y MAIZ EN JALISffi". e Sin otro particular por el rromento, le reiterarros .~e nuestra más alta y distinguida consideración. :¡¡ ~ ü .9 ATENTAMENTE ~ "PIENSA Y TRABI\JA" o Las Agujas, Zapopan, Jal., 13 de Abril de 1994 ~ "'.... EL DIRECTOR <ti ;¡; ;:"' o u :!.'~~__...,11'7, < QR. FERNANDO ALFAR:> BUSTAMANTE EL SECRETARIO, .. i1 c.c.p- El Dr. Marcelino Vázquez García, Director de Tesis pte.- FAB/GBC/cglr. Garnpus Las Agujas, Nextipac, Zapopan, Jalisco, México. Tel. celular 90 (3) sn-79-36 FORMA CT-04 C. DR. FERNANDO ALFARO BUSTAMANTE DIRECTOR DE LA FACULTAD DE CIENCIAS BIOLOGICAS DE LA UNIVERSIDAD DE GUADALAJARA P R E S E N T E Por medio de la presente nos permitimos informar a Usted, que habiendo revisado el trabajo de tesis que realizó el (la) Pasante ADRIANA LIVIER OROZCO CORDERO código número 084454583 con el titulo •Identificación de entomofauna benéfica (Hymenoptera:Parasitica) presentes en col y maíz en Jalisco• consideramos que reune los méritos necesarios para la impre - sión de la misma y la realización de los exámenes profesiona­ les respectivos.
    [Show full text]
  • Host Location by Hyperparasitoids: an Ecogenomic Approach
    Host location by hyperparasitoids: an ecogenomic approach Feng Zhu Thesis committee Promotor Prof. Dr Marcel Dicke Professor of Entomology Wageningen University Co-promoter Dr Erik H. Poelman Assistant professor, Laboratory of Entomology Wageningen University Other members Prof. Dr Niels P. R. Anten, Wageningen University Prof. Dr Monique M. van Oers, Wageningen University Dr T. Martijn Bezemer, Netherlands Institute of Ecology, Wageningen Dr Klaas Vrieling, Leiden University This research was conducted under the auspices of the graduate school Experimental Plant Sciences. Host location by hyperparasitoids: an ecogenomic approach Feng Zhu Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr. A.P.J. Mol in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 2 October 2015 at 1:30 p.m. in the Aula Feng Zhu Host location by hyperparasitoids: an ecogenomic approach, 192 pages. PhD thesis, Wageningen University, Wageningen, NL (2015) With references, with summary in English ISBN 978-94-6257-444-1 To my beloved parents 谨以此书,献给我最亲爱的父母 Abstract It is fascinating that our ecological systems are structured by both direct and indirect spe- cies interactions. In terrestrial ecosystems, plants interact with many species of insects that include both harmful herbivores and beneficial natural enemies of herbivores. During the last 30 years, substantial progress has been made in different plant-insect systems regarding plant trait-mediated species interactions in a tritrophic context. However, plant- based food webs generally consist of more than three trophic levels.
    [Show full text]