1 a Draft Genome Sequence of the Miniature Parasitoid Wasp, Megaphragma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wonder Findings of Number of Cells in a Body Including Sexual Cells, Remedy of Corona Virus, Increase of Memory, and Other Cells by Couple System by Nirmalendu Das
Global Journal of Science Frontier Research: C Biological Science Volume 20 Issue 3 Version 1.0 Year 2020 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Online ISSN: 2249-4626 & Print ISSN: 0975-5896 Wonder Findings of Number of Cells in a Body Including Sexual Cells, Remedy of Corona Virus, Increase of Memory, And other Cells by Couple System By Nirmalendu Das Abstract- It is difficult to calculate fixed data of a number of cells in a body. It is varying on time and age of life. The time increasing that cells are increasing, though we can estimate the number of cells in various nerves in a body, brain, sexual platform, etc through a couple system. The coupling system is a new system of the finding of peculiar series of numbers [1], which is applies to many fields. In the cases of Medical Science, it has been observed by calculation that due to disturbing of the couple caused different difficulties in the body. A smooth Coupling cell may produce a healthy body, and it is possible to increase memory by adding particular cells number in a loss position. The coupling system is interesting that, can explain the real mechanism of every cell. There are many types of cells in a living body. Almost all cells follow a couple of system. The coupling system performs coupling between two (say, A, 1st party & B, 2nd party) with keeping relation as 3rd party, denoted by R (Relative Number) mathematically. Keywords: number of cells related to couple system, sexual activity, corona virus, cancer cells, neurons of humans & animals, cause of diseases, memory cells. -
Genomes of the Hymenoptera Michael G
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2-2018 Genomes of the Hymenoptera Michael G. Branstetter U.S. Department of Agriculture Anna K. Childers U.S. Department of Agriculture Diana Cox-Foster U.S. Department of Agriculture Keith R. Hopper U.S. Department of Agriculture Karen M. Kapheim Utah State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Behavior and Ethology Commons, Entomology Commons, and the Genetics and Genomics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/269. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genomes of the Hymenoptera Abstract Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived genomes (71 with ants, reviewed elsewhere), however these genomes do not capture the breadth of this very diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Constant Neuropilar Ratio in the Insect Brain Alexey A
www.nature.com/scientificreports OPEN Constant neuropilar ratio in the insect brain Alexey A. Polilov* & Anastasia A. Makarova Revealing scaling rules is necessary for understanding the morphology, physiology and evolution of living systems. Studies of animal brains have revealed both general patterns, such as Haller’s rule, and patterns specifc for certain animal taxa. However, large-scale studies aimed at studying the ratio of the entire neuropil and the cell body rind in the insect brain have never been performed. Here we performed morphometric study of the adult brain in 37 insect species of 26 families and ten orders, ranging in volume from the smallest to the largest by a factor of more than 4,000,000, and show that all studied insects display a similar ratio of the volume of the neuropil to the cell body rind, 3:2. Allometric analysis for all insects shows that the ratio of the volume of the neuropil to the volume of the brain changes strictly isometrically. Analyses within particular taxa, size groups, and metamorphosis types also reveal no signifcant diferences in the relative volume of the neuropil; isometry is observed in all cases. Thus, we establish a new scaling rule, according to which the relative volume of the entire neuropil in insect brain averages 60% and remains constant. Large-scale studies of animal proportions supposedly started with the publication D’Arcy Wentworth Tompson’s book Growth and Forms1. In fact, the frst studies on the subject appeared long before the book (e.g.2), but it was Tomson’s work that laid the foundations for this discipline, which, following the studies of Julian Huxley 3,4, became a major fundamental and applied area of science5–8. -
Chalcid Forum Chalcid Forum
ChalcidChalcid ForumForum A Forum to Promote Communication Among Chalcid Workers Volume 23. February 2001 Edited by: Michael E. Schauff, E. E. Grissell, Tami Carlow, & Michael Gates Systematic Entomology Lab., USDA, c/o National Museum of Natural History Washington, D.C. 20560-0168 http://www.sel.barc.usda.gov (see Research and Documents) minutes as she paced up and down B. sarothroides stems Editor's Notes (both living and partially dead) antennating as she pro- gressed. Every 20-30 seconds, she would briefly pause to Welcome to the 23rd edition of Chalcid Forum. raise then lower her body, the chalcidoid analog of a push- This issue's masthead is Perissocentrus striatululus up. Upon approaching the branch tips, 1-2 resident males would approach and hover in the vicinity of the female. created by Natalia Florenskaya. This issue is also Unfortunately, no pre-copulatory or copulatory behaviors available on the Systematic Ent. Lab. web site at: were observed. Naturally, the female wound up leaving http://www.sel.barc.usda.gov. We also now have with me. available all the past issues of Chalcid Forum avail- The second behavior observed took place at Harshaw able as PDF documents. Check it out!! Creek, ~7 miles southeast of Patagonia in 1999. Jeremiah George (a lepidopterist, but don't hold that against him) and I pulled off in our favorite camping site near the Research News intersection of FR 139 and FR 58 and began sweeping. I knew that this area was productive for the large and Michael W. Gates brilliant green-blue O. tolteca, a parasitoid of Pheidole vasleti Wheeler (Formicidae) brood. -
Natural Enemies of True Fruit Flies 02/2004-01 PPQ Jeffrey N
United States Department of Agriculture Natural Enemies of Marketing and Regulatory True Fruit Flies Programs Animal and Plant Health (Tephritidae) Inspection Service Plant Protection Jeffrey N. L. Stibick and Quarantine Psyttalia fletcheri (shown) is the only fruit fly parasitoid introduced into Hawaii capable of parasitizing the melon fly (Bactrocera cucurbitae) United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 4700 River Road Riverdale, MD 20737 February, 2004 Telephone: (301) 734-4406 FAX: (301) 734-8192 e-mail: [email protected] Jeffrey N. L. Stibick Introduction Introduction Fruit flies in the family Tephritidae are high profile insects among commercial fruit and vegetable growers, marketing exporters, government regulatory agencies, and the scientific community. Locally, producers face huge losses without some management scheme to control fruit fly populations. At the national and international level, plant protection agencies strictly regulate the movement of potentially infested products. Consumers throughout the world demand high quality, blemish-free produce. Partly to satisfy these demands, the costs to local, state and national governments are quite high and increasing as world trade, and thus risk, increases. Thus, fruit flies impose a considerable resource tax on participants at every level, from producer to shipper to the importing state and, ultimately, to the consumer. (McPheron & Steck, 1996) Indeed, in the United States alone, the running costs per year to APHIS, Plant Protection and Quarantine (PPQ), (the federal Agency responsible) for maintenance of trapping systems, laboratories, and identification are in excess of US$27 million per year and increasing. This figure only accounts for a fraction of total costs throughout the country, as State, County and local governments put in their share as well as the local industry affected. -
Evolution of Gene Regulation Among Drosophila Species
8th Annual ARTHROPOD GENOMICS SYMPOSIUM (AGS) ABSTRACTS | INVITED SPEAKERS EVOLUTION OF GENE REGULATION AMONG DROSOPHILA SPECIES Patricia Wittkopp, University of Michigan Genetic dissection of phenotypic differences within and between species has shown that genetic changes affecting the regulation of gene expression are an important source of phenotypic diversity. We have seen this in our own work investigating the genetic basis of pigmentation differences between closely related Drosophila species. To better understand the genetic mechanisms responsible for the evolution of gene expression, we have been investigating the evolution of a specific gene yellow( ) as well as the evolution of gene expression on a genomic scale. Work on both of these topics, with an emphasis on methods adaptable to non-model systems, will be presented. METAMORPHOSIS AND EVOLUTION OF ARTHROPOD GENOMICS Judith H. Willis, University of Georgia I began work on arthropod genomics 50 years ago. At first, I was only interested in the genetic underpinnings of metamorphic transitions, but I have ended up with an increasing orientation toward arthropod evolution. During those 50 years the field itself has evolved (gaining a name in the process) and metamorphosed (witness this meeting). My talk will address both the biology and the history. I began by testing whether each metamorphic stage was underwritten by a unique set of genes by using cuticular proteins (CPs) as molecular markers. Results, starting with tube gels and progressing to the isolation and characterization of two CP genes and their promoters, demolished that hypothesis. A shift from a giant silkworm to Anopheles gambiae that devotes ~2% of its protein coding genes to structural CPs was accompanied by a larger scale analysis of their activity, including mRNA expression and recovery of authentic CPs from cuticle determined by LC-MS/MS analyses. -
Sequential Divergence and the Multiplicative Origin of Community Diversity
Sequential divergence and the multiplicative origin of community diversity Glen R. Hooda,1, Andrew A. Forbesb, Thomas H. Q. Powella,c, Scott P. Egana,d,e, Gabriela Hamerlinckb, James J. Smithf, and Jeffrey L. Federa,d aDepartment of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556; bDepartment of Biology, University of Iowa, Iowa City, IA 52242; cDepartment of Entomology and Nematology, University of Florida, Gainesville, FL 32611; dEnvironmental Change Initiative and Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556; eDepartment of Biosciences, Anderson Biological Laboratories, Rice University, Houston, TX 77005; and fDepartment of Entomology and Lyman Briggs College, Michigan State University, East Lansing, MI 48824 Edited by Douglas Futuyma, State University of New York, Stony Brook, NY, and approved September 18, 2015 (received for review December 24, 2014) Phenotypic and genetic variation in one species can influence the Such “sequential” or “cascading” divergence events may be composition of interacting organisms within communities and across particularly relevant to understanding why some groups of or- ecosystems. As a result, the divergence of one species may not be an ganisms, like plants, the insects that feed on them, and the para- isolated process, as the origin of one taxon could create new niche sitoids that attack the insects, are more diverse and species-rich than – opportunities for other species to exploit, leading to the genesis of other groups (8, 9, 12 15). Specifically, when phytophagous insects many new taxa in a process termed “sequential divergence.” Here, diversify by adapting to new host plants, they create a new habitat we test for such a multiplicative effect of sequential divergence in a for their parasitoids to exploit (Fig. -
Forest Health Technology Enterprise Team
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control ASSESSING HOST RANGES FOR PARASITOIDS AND PREDATORS USED FOR CLASSICAL BIOLOGICAL CONTROL: A GUIDE TO BEST PRACTICE R. G. Van Driesche, T. Murray, and R. Reardon (Eds.) Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2004-03 Department of Service September 2004 Agriculture he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ Cover photo: Syngaster lepidus Brullè—Timothy Paine, University of California, Riverside. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S. -
Universidad De Guadalajara Tesis Profesional
1991.- 8 084454583 UNIVERSIDAD DE GUADALAJARA FACULTAD DE CIENCIAS BIOLOGICAS IDENTIFJCACION DE ENTOMOFAUNA BENEFICA ( HYMENOPTERA : PARASITICA ) PRESENTES EN COL Y MAIZ EN JALISCO. " TESIS PROFESIONAL QUE PARA OBTENER EL TITULO DE ; LICENCIADO EN BIOLOGIA P R E S E N T A: ADRIANA LIVIER OROZCO CORDERO LAS AGUJAS, JAL. MARZO DE 1994. ----------------------------------------------------------------------- Expediente .................. UNIVERSIDAD DE GUADALAJARA Número .................... Facultad de Ciencias Biológicas Sección ..................... ADRIANA L. 0KYLCD a>RDER> P R E S E N T E. - Por medio de este conducto, le informaroos que se acepta el cambio de titulo de la tesis "ENI'(M)FAUNA BENEFICA (Hyrnenoptera Parasitica) DE PLAGAS AGRimLAS EN DIVERSAS LOCALIDADES DE JALISffi" ¡x:>r el titulo de "IDENriFICACION DE ENTCMOFAUNA BENEFICA (Hyrnenoptera: Parasitica) PRESENTES EN ffiL Y MAIZ EN JALISffi". e Sin otro particular por el rromento, le reiterarros .~e nuestra más alta y distinguida consideración. :¡¡ ~ ü .9 ATENTAMENTE ~ "PIENSA Y TRABI\JA" o Las Agujas, Zapopan, Jal., 13 de Abril de 1994 ~ "'.... EL DIRECTOR <ti ;¡; ;:"' o u :!.'~~__...,11'7, < QR. FERNANDO ALFAR:> BUSTAMANTE EL SECRETARIO, .. i1 c.c.p- El Dr. Marcelino Vázquez García, Director de Tesis pte.- FAB/GBC/cglr. Garnpus Las Agujas, Nextipac, Zapopan, Jalisco, México. Tel. celular 90 (3) sn-79-36 FORMA CT-04 C. DR. FERNANDO ALFARO BUSTAMANTE DIRECTOR DE LA FACULTAD DE CIENCIAS BIOLOGICAS DE LA UNIVERSIDAD DE GUADALAJARA P R E S E N T E Por medio de la presente nos permitimos informar a Usted, que habiendo revisado el trabajo de tesis que realizó el (la) Pasante ADRIANA LIVIER OROZCO CORDERO código número 084454583 con el titulo •Identificación de entomofauna benéfica (Hymenoptera:Parasitica) presentes en col y maíz en Jalisco• consideramos que reune los méritos necesarios para la impre - sión de la misma y la realización de los exámenes profesiona les respectivos. -
Large Scale Genome Reconstructions Illuminate Wolbachia Evolution
ARTICLE https://doi.org/10.1038/s41467-020-19016-0 OPEN Large scale genome reconstructions illuminate Wolbachia evolution ✉ Matthias Scholz 1,2, Davide Albanese 1, Kieran Tuohy 1, Claudio Donati1, Nicola Segata 2 & ✉ Omar Rota-Stabelli 1,3 Wolbachia is an iconic example of a successful intracellular bacterium. Despite its importance as a manipulator of invertebrate biology, its evolutionary dynamics have been poorly studied 1234567890():,; from a genomic viewpoint. To expand the number of Wolbachia genomes, we screen over 30,000 publicly available shotgun DNA sequencing samples from 500 hosts. By assembling over 1000 Wolbachia genomes, we provide a substantial increase in host representation. Our phylogenies based on both core-genome and gene content provide a robust reference for future studies, support new strains in model organisms, and reveal recent horizontal transfers amongst distantly related hosts. We find various instances of gene function gains and losses in different super-groups and in cytoplasmic incompatibility inducing strains. Our Wolbachia- host co-phylogenies indicate that horizontal transmission is widespread at the host intras- pecific level and that there is no support for a general Wolbachia-mitochondrial synchronous divergence. 1 Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy. 2 Department CIBIO, University of Trento, Trento, Italy. ✉ 3Present address: Centre Agriculture Food Environment (C3A), University of Trento, Trento, Italy. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2020) 11:5235 | https://doi.org/10.1038/s41467-020-19016-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19016-0 ature is filled with exemplar cases of symbiotic interaction based on genomic data have found no clear evidence of intras- between bacteria and multicellular eukaryotes. -
Insecta: Neuroptera: Coniopterygidae)
Arthropod Structure & Development 50 (2019) 1e14 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Small, but oh my! Head morphology of adult Aleuropteryx spp. and effects of miniaturization (Insecta: Neuroptera: Coniopterygidae) * Susanne Randolf , Dominique Zimmermann Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010, Vienna, Austria article info abstract Article history: We present the first morphological study of the internal head structures of adults of the coniopterygid Received 15 October 2018 genus Aleuropteryx, which belong to the smallest known lacewings. The head is ventrally closed with a Accepted 1 February 2019 gula, which is unique in adult Neuroptera and otherwise developed in Megaloptera, the sister group of Neuroptera. The dorsal tentorial arms are directed posteriorly and fused, forming an arch that fulfills functions otherwise taken by the tentorial bridge. A newly found maxillary gland is present in both sexes. Keywords: Several structural modifications correlated with miniaturization are recognized: a relative increase in Miniaturization the size of the brain, a reduction in the number of ommatidia and diameter of the facets, a countersunken Brain fi Musculature cone-shaped ocular ridge, and a simpli cation of the tracheal system. The structure of the head differs Maxillary gland strikingly from that of the previously studied species Coniopteryx pygmaea, indicating a greater vari- Tentorium ability in the family Coniopterygidae, which might be another effect of miniaturization. Gula © 2019 Elsevier Ltd. All rights reserved. 1. Introduction With nearly 560 described species, Coniopterygidae are one of the four most speciose neuropteran families, inhabiting all Miniaturization is a common phenomenon in many groups of zoogeographical regions with the exception of extremely cold animals and has major effects not only on the morphology but also areas (Sziraki, 2011).