Introduction to History and Philosophy of Science

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to History and Philosophy of Science Introduction to History and Philosophy of Science Introduction to History and Philosophy of Science Hakob Barseghyan, Nicholas Overgaard, and Gregory Rupik Introduction to History and Philosophy of Science by Hakob Barseghyan, Nicholas Overgaard, and Gregory Rupik is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted. Contents Introduction to History and Philosophy of Science vii Table Of Contents ix 1. Introduction -- Introduction to History and Philosophy of Science 1 2. Absolute Knowledge -- Introduction to History and Philosophy of Science 11 3. Scientific Method -- Introduction to History and Philosophy of Science 31 4. The Laws of Scientific Change -- Introduction to History and Philosophy of Science 49 5. Scientific Progress -- Introduction to History and Philosophy of Science 69 6. Science and Non-Science -- Introduction to History and Philosophy of Science 87 7. Aristotelian-Medieval Worldview -- Introduction to History and Philosophy of Science 99 8. Cartesian Worldview -- Introduction to History and Philosophy of Science 119 9. Newtonian Worldview -- Introduction to History and Philosophy of Science 135 10. Contemporary Worldview -- Introduction to History and Philosophy of Science 151 11. Worldviews: Metaphysical Components -- Introduction to History and Philosophy of Science 171 Introduction to History and Philosophy of Science Hakob Barseghyan, Nicholas Overgaard, and Gregory Rupik Introduction to History and Philosophy of Science by Hakob Barseghyan, Nicholas Overgaard, and Gregory Rupik is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted. This book was produced using Pressbooks.com. vii Table Of Contents Contents • Part I. Chapter 1: Introduction • Part II. Chapter 2: Absolute Knowledge • Part III. Chapter 3: Scientific Method • Part IV. Chapter 4: The Laws of Scientific Change • Part V. Chapter 5: Scientific Progress • Part VI. Chapter 6: Science and Non-Science • Part VII. Chapter 7: Aristotelian-Medieval Worldview • Part VIII. Chapter 8: Cartesian Worldview • Part IX. Chapter 9: Newtonian Worldview • Part X. Chapter 10: Contemporary Worldview • Part XI. Chapter 11: Worldviews: Metaphysical Components ix 1. Introduction -- Introduction to History and Philosophy of Science 1 Chapter 1: Introduction Imagine that you are not reading this textbook. Imagine instead that you are lying on your back in some soft grass on a warm summer night, far from city lights, staring into the vast, dark night sky. As you continue to gaze at the stars, you would likely notice that over the course of hours they all slowly move – in unison – in the same direction. From the Northern Hemisphere, you will always see the constellation Canis Major near Orion, or the constellation of the Celestial Bear flanked by its seven hunters, but all of them will seem to rotate around Polaris, the North Star. If you are incredibly perceptive, however, you may notice that not all points of light in the night sky move together. Some of them follow their own path, wandering through the sky with the stars as a backdrop. The ancient Greeks called them asteres planetai, meaning wandering stars, which is where we get the word planet from. If you were to carefully track the path of a planet over the course of a few nights, you would realize that – even though its movement is different from that of the stars – it is far from random. It follows a certain path through the night sky. Indeed, while different planets follow different paths, you could begin to notice similarities between the motions of all the planets as they wander through the heavens. Observed from the Earth, they all appear to move in an eastward direction, and their paths are roughly on the same plane. But why? What kind of explanation could we give for why planets’ paths differ from those of the stars? Why do planets seem to behave in very similar ways to one another? What are the best scientific theories we have to explain planetary motion? Let’s try a familiar explanation. Those planets are actually no different from the Earth: they are large massive objects, all orbiting around a much more massive object in the centre of our solar system – the Sun. Isaac Newton showed in his law of universal gravitation that the very same force which pulls an apple to the ground, and which causes the parabolic paths of projectiles, also causes planets and moons to take the precise paths they do through space. The speed of the planets and the force of gravity keep planets like the Earth and Mars in orbit around the Sun. From the vantage point of Earth, therefore, planets seem to wander through the night sky because they are following their own, elliptical paths around our nearby Sun. Meanwhile, the constellations and positions of the stars remain relatively fixed because they are so far away from the solar system, and they rotate together due to the rotation of the Earth on its axis. This is the answer you would receive if you were able to travel back to the year 1800 and ask a member of the scientific community at the Royal Society in London, England to give you their best, agreed-upon scientific theories about planetary motion. But what if we were to travel even further back in time, say 500 years? What accepted theories would an astronomer from the University of Paris in the year 1500 use to explain the wandering of the planets? A late-medieval astronomer would explain planetary motion by referencing Aristotelian natural philosophy. This set of theories accounted for the motion of objects by considering the movements that are natural to different elements. It was believed at the time that the universe is made of two completely distinct regions – terrestrial and celestial. Everything in the terrestrial region was thought to be composed of a certain combination of the four terrestrial elements – earth, water, air, and fire. The elements earth and water were believed to be heavy, while the elements air and fire were believed to be light. 3 4 Hakob Barseghyan, Nicholas Overgaard, and Gregory Rupik Each of the four elements was thought to have a natural position to which it is predisposed. For heavy elements, the natural position is the centre of the universe, which explained why everything made of elements earth and water has a tendency to fall down. This is why, they would say, when you drop a rock it goes straight down. This would also suggest that the terrestrial globe, which is predominantly a combination of the elements earth and water, should necessarily be at the centre of the universe. In the celestial region, in contrast, everything, including the planets and the stars, was believed to be made of a completely different element, aether. The natural tendency of aether is to revolve in a circular path around the centre of the universe. The planets, being between the stationary sphere of the Earth and the slowly-rotating stars, naturally follow their own circular paths through the night sky, accounting for their apparent “wandering” in front of the distant stars. Tired of all this hypothetical time travel, let’s say you made an actual voyage to the Mauna Kea Observatories in Hawaii, USA, and – after a relaxing day at the beach – asked a modern-day astronomer to explain planetary motion using the best, agreed-upon scientific theories. The astronomer would not give you the Aristotelian-Medieval answer, nor would they give you the Newtonian answer you may be familiar with from basic physics or astronomy classes. The accepted view today is that the paths of the planets, like the Earth, are best explained by Albert Einstein’s theory of general relativity, not Newton’s law of universal gravitation. Today, the elliptical paths of planets around the sun are not taken to be due to a force called gravity but are rather due to the fact that the mass of our Sun bends the fabric of space-time itself. Imagine a region of space-time without any material objects. Such a region would be completely flat. What this means is that in such a space, light rays would travel along straight lines, and the geometry we learned in secondary school, Euclidean geometry, will hold exactly. Introduction to History and Philosophy of Science 5 Now, let’s add a star to this region of space. According to general relativity, this star will curve the space-time around it, affecting the motion of all other material processes in its vicinity, including light rays. The space will no longer be exactly describable by Euclid’s geometry, but rather by a geometry developed by the German mathematician Herman Minkowski and incorporated by Einstein into his theory. This geometry treats time as a fourth dimension, perpendicular to the familiar three dimensions of length, width, and breadth, which is why we speak of space-time. Even physicists can’t really picture all this. They can represent the situation using mathematical equations and make predictions by solving them. They understand these mathematical models by using analogies that involve fewer dimensions. As an example of such an analogy, let’s imagine a stretched bedsheet with a basketball placed in the middle of it. The basketball will make a dip in the bedsheet. The two-dimensional bedsheet represents four-dimensional space-time. The dip in the bedsheet in the third dimension produced by the ball represents the curvature of four- dimensional space-time produced by an object with mass, like a star. Now, let’s roll a tennis ball across the bedsheet. Because the fabric of the bedsheet is curved by the basketball, the tennis ball will not move in a straight line, but rather will have a curved trajectory along the bedsheet. It will appear as though the tennis ball is attracted by the basketball, while in fact it is merely following the curvature of the bedsheet.
Recommended publications
  • The Social Sciences—How Scientific Are They?
    31 The Social Sciences—How Scientifi c Are They? Manas Sarma or Madame Curie. That is, he social sciences are a very important and amazing in their own way. fi eld of study. A division of science, social sciences Tembrace a wide variety of topics from anthropology A better example of a social to sociology. The social sciences cover a wide range of science than law may be topics that are crucial for understanding human experience/ economics. economics behavior in groups or as individuals. is, in a word, fi nances. Economics is the study By defi nition, social science is the branch of science that deals of how money changes, the rate at which it changes, and with the human facets of the natural world (the other two how it potentially could change and the rate at which it branches of science are natural science and formal science). would. Even though economics does not deal with science Some social sciences are law, economics, and psychology, to directly, it is defi nitely equally scientifi c. About 50-60% of name a few. The social sciences have existed since the time colleges require calculus to study business or economics. of the ancient Greeks, and have evolved ever since. Over Calculus is also required in some science fi elds, like physics time, social sciences have grown and gained a big following. or chemistry. Since economics and science both require Some colleges, like Yale University, have chosen to focus calculus, economics is still a science. more on the social sciences than other subjects. The social sciences are more based on qualitative data and not as Perhaps the most scientifi c of the social sciences is black-and-white as the other sciences, so even though they psychology.
    [Show full text]
  • BRONZE AGE FORMAL SCIENCE? with Additional Remarks on the Historiography of Distant Mathematics
    ROSKILDE UNIVERSITETSCENTER ROSKILDE UNIVERSITY Faggruppen for filosofi og Section for philosophy videnskabsteori and science studies BRONZE AGE FORMAL SCIENCE? With additional remarks on the historiography of distant mathematics JENS HØYRUP FILOSOFI OG VIDENSKABSTEORI PÅ ROSKILDE UNIVERSITETSCENTER 3. Række: Preprints og reprints 2003 Nr. 5 In memoriam Robert Merton 1910–2003 Revised contribution to Foundations of the Formal Sciences IV The History of the Concept of the Formal Sciences Bonn, February 14-17, 2003 I. Past understandings of mathematics .......................... 1 Aristotle and others ............................................ 2 Scribal cultures I: Middle Kingdom Egypt ........................... 4 Scribal cultures II: Old Babylonian epoch ............................ 6 Riddle collections – and a hypothesis ............................... 15 II. Understandings of past mathematics ......................... 16 Second (didactical) thoughts ...................................... 18 Bibliography .............................................. 20 The paper was prepared during a stay at the Max-Planck-Institut für Wissenschaftsgeschichte,Berlin. I use the opportunity to express my sincere gratitude for the hospitality I received. Referee: Aksel Haaning My talk falls in two unequally long parts, each turning around a particular permutation of the same three key words:* – The first, longer and main part treats of past understandings of mathematics. – The second, shorter part takes up understandings of past mathematics. In both parts,
    [Show full text]
  • Outline of Science
    Outline of science The following outline is provided as a topical overview of • Empirical method – science: • Experimental method – The steps involved in order Science – systematic effort of acquiring knowledge— to produce a reliable and logical conclusion include: through observation and experimentation coupled with logic and reasoning to find out what can be proved or 1. Asking a question about a natural phenomenon not proved—and the knowledge thus acquired. The word 2. Making observations of the phenomenon “science” comes from the Latin word “scientia” mean- 3. Forming a hypothesis – proposed explanation ing knowledge. A practitioner of science is called a for a phenomenon. For a hypothesis to be a "scientist". Modern science respects objective logical rea- scientific hypothesis, the scientific method re- soning, and follows a set of core procedures or rules in or- quires that one can test it. Scientists generally der to determine the nature and underlying natural laws of base scientific hypotheses on previous obser- the universe and everything in it. Some scientists do not vations that cannot satisfactorily be explained know of the rules themselves, but follow them through with the available scientific theories. research policies. These procedures are known as the 4. Predicting a logical consequence of the hy- scientific method. pothesis 5. Testing the hypothesis through an experiment – methodical procedure carried out with the 1 Essence of science goal of verifying, falsifying, or establishing the validity of a hypothesis. The 3 types of
    [Show full text]
  • The State of Inclusive Science Communication: a Landscape Study
    The State of Inclusive Science Communication: A Landscape Study Katherine Canfield and Sunshine Menezes Metcalf Institute, University of Rhode Island Graphics by Christine Liu This report was developed for the University of Rhode Island’s Metcalf Institute with generous support from The Kavli Foundation. Cite as: Canfield, K. & Menezes, S. 2020. The State of Inclusive Science Communication: A Landscape Study. Metcalf Institute, University of Rhode Island. Kingston, RI. 77 pp. Executive Summary Inclusive science communication (ISC) is a new and broad term that encompasses all efforts to engage specific audiences in conversations or activities about science, technology, engineering, mathematics, and medicine (STEMM) topics, including, but not limited to, public engagement, informal science learning, journalism, and formal science education. Unlike other approaches toward science communication, however, ISC research and practice is grounded in inclusion, equity, and intersectionality, making these concerns central to the goals, design, implementation, evaluation, and refinement of science communication efforts. Together, the diverse suite of insights and practices that inform ISC comprise an emerging movement. While there is a growing recognition of the value and urgency of inclusive approaches, there is little documented knowledge about the potential catalysts and barriers for this work. Without documentation, synthesis, and critical reflection, the movement cannot proceed as quickly as is warranted. The University of Rhode Island’s Metcalf
    [Show full text]
  • How Science Works
    PB 1 How science works The Scientific Method is traditionally presented in the first chapter of science text- books as a simple recipe for performing scientific investigations. Though many use- ful points are embodied in this method, it can easily be misinterpreted as linear and “cookbook”: pull a problem off the shelf, throw in an observation, mix in a few ques- tions, sprinkle on a hypothesis, put the whole mixture into a 350° experiment—and voila, 50 minutes later you’ll be pulling a conclusion out of the oven! That might work if science were like Hamburger Helper®, but science is complex and cannot be re- duced to a single, prepackaged recipe. The linear, stepwise representation of the process of science is simplified, but it does get at least one thing right. It captures the core logic of science: testing ideas with evidence. However, this version of the scientific method is so simplified and rigid that it fails to accurately portray how real science works. It more accurately describes how science is summarized after the fact—in textbooks and journal articles—than how sci- ence is actually done. The simplified, linear scientific method implies that scientific studies follow an unvarying, linear recipe. But in reality, in their work, scientists engage in many different activities in many different sequences. Scientific investigations often involve repeating the same steps many times to account for new information and ideas. The simplified, linear scientific method implies that science is done by individual scientists working through these steps in isolation. But in reality, science depends on interactions within the scientific community.
    [Show full text]
  • Sellars in Context: an Analysis of Wilfrid Sellars's Early Works Peter Jackson Olen University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Sellars in Context: An Analysis of Wilfrid Sellars's Early Works Peter Jackson Olen University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, and the Philosophy of Science Commons Scholar Commons Citation Olen, Peter Jackson, "Sellars in Context: An Analysis of Wilfrid Sellars's Early Works" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4191 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Sellars in Context: An Analysis of Wilfrid Sellars’s Early Works by Peter Olen A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Philosophy College of Arts and Sciences University of South Florida Co-Major Professor: Stephen Turner, Ph.D. Co-Major Professor: Richard Manning, Ph.D. Rebecca Kukla, Ph.D. Alexander Levine, Ph.D. Willem deVries, Ph.D. Date of Approval: March 20th, 2012 Keywords: Logical Positivism, History of Analytic Philosophy Copyright © 2012, Peter Olen DEDICATION I dedicate this dissertation to the faculty members and fellow graduate students who helped me along the way. ACKNOWLEDGEMENTS I want to thank Rebecca Kukla, Richard Manning, Stephen Turner, Willem deVries, Alex Levine, Roger Ariew, Eric Winsberg, Charles Guigon, Nancy Stanlick, Michael Strawser, and the myriad of faculty members who were instrumental in getting me to this point.
    [Show full text]
  • Implications for Formal Science Learning Anila Asghar, Mcgill University
    Informal Science Contexts: Implications for Formal Science Learning Anila Asghar, McGill University ABSTRACT This article illuminates the affordances of informal science learning to promote scien- tific literacy. It also discusses the ways in which informal learning environments can be creatively employed to enhance science instruction in K-12 as well as university settings. Also offered are various theoretical perspectives that serve as useful analyti- cal tools to understand science learning in formal as well as informal settings. “Children throughout the world, if we are to survive as a planet, will need to have a deep level of scientific literacy.” (Chiu & Duit, 2011, p. 553) romoting a wider public understanding and appreciation of science is an overarching goal of science literacy as underscored in science education policy and curriculum benchmarks (CMEC, 1997; AAAS, 1989; NRC, 1996). PKey goals of scientific literacy encompass: (a) developing a deeper understanding of science concepts; (b) developing scientific reasoning to understand the natural and designed phenomena; (c) understanding scientific research and findings, (d) rec- ognizing scientific ideas and issues underlying socio-scientific issues; (e) formulating scientifically informed views and stances on issues of local and global importance; (e) critically evaluating scientific information from various sources; (f) participating in debates and actions around critical social, economic, scientific, and environmental issues; and (g) pursuing careers in science, engineering, and technology (AAAS, 1993; CMEC, 1997). Contemporary science education reform efforts thus aim to develop scientifically literate citizens who can meaningfully contribute to socio-scientific dis- courses and engage in social and political action around them. A deeper and critical LEARNing Landscapes | Vol.
    [Show full text]
  • Connecting Formal and Informal Science Learning Through School-Community Partnerships
    CTAN RESEARCH BRIEF Connecting Formal and Informal Science Learning through School-Community Partnerships Summary WHY IT MATTERS TO YOU To improve science education for culturally and linguistically diverse students, schools and communities can create “mutual benefit partnerships” to identify This paper’s principles provide a valuable and address local problems. The example of the Chicago River Project illustrates framework for designing mvutual benefit how such partnerships can connect formal learning contexts with the rich ways partnerships that support learning across communities experience science outside of school informal and formal science education contexts. Informal science educators This article addresses the question of how to engage culturally and linguistically may gain insight into how to develop diverse students in rigorous science learning by connecting classroom science collaborations with school educators and with the everyday ways students experience science outside of school. In order community members in order to support to support formal education in incorporating students’ informal science “funds of culturally and linguistically diverse youth knowledge” while helping learners see how school and life learning are related, in developing science skills and identities. the authors call for a “connected science” that unites classroom science with Inquiry-based projects on issues community science through “mutual benefit partnerships.” These partnerships important to youth and the community— have four design principles. They should: projects that connect school and out-of- school spaces—can support meaningful 1. Address a current unsolved but consequential community problem science learning that directly affects local 2. Build partnerships between the school and its community and local worlds. businesses 3. Use inquiry methods of problem-based learning 4.
    [Show full text]
  • Outline of Applied Science
    Outline of applied science The following outline is provided as an overview of and • Sericulture – also called silk farming, is topical guide to applied science, which is the branch of the rearing of silkworms for the produc- science that applies existing scientific knowledge to de- tion of silk. Although there are several velop more practical applications, including inventions commercial species of silkworms, Bom- and other technological advancements. Science itself byx mori is the most widely used and in- is the systematic enterprise that builds and organizes tensively studied. knowledge in the form of testable explanations and pre- • Food science – study concerned with all tech- [1][2][3] dictions about the universe. nical aspects of foods, beginning with harvest- ing or slaughtering, and ending with its cook- ing and consumption, an ideology commonly 1 Branches of applied science referred to as “from field to fork”. It is the discipline in which the engineering, biological, Applied science – application of scientific knowledge and physical sciences are used to study the na- transferred into a physical environment. ture of foods, the causes of deterioration, the principles underlying food processing, and the improvement of foods for the consuming pub- • Agronomy – science and technology of producing lic. and using plants for food, fuel, feed, fiber, and recla- • Forestry – art and science of managing forests, mation. tree plantations, and related natural resources. • Animal husbandry – agricultural practice of • Arboriculture – cultivation, management, breeding and raising livestock. and study of individual trees, shrubs, • Aquaculture – also known as aquafarming, is vines, and other perennial woody plants. the farming of aquatic organisms such as fish, • Silviculture – practice of controlling crustaceans, molluscs and aquatic plants.[4][5] the establishment, growth, composition, health, and quality of forests to meet di- • Algaculture – form of aquaculture involv- verse needs and values.
    [Show full text]
  • What Are the Siblings of Design Science Research?
    WHAT ARE THE SIBLINGS OF DESIGN SCIENCE RESEARCH? Paul Johannesson, Department of Computer and Systems Sciences, Stockholm University, Forum 100, SE-164 40 Kista, Sweden, [email protected] Erik Perjons, Department of Computer and Systems Sciences, Stockholm University, Forum 100, SE-164 40 Kista, Sweden, [email protected] Ilia Bider, Department of Computer and Systems Sciences, Stockholm University, Forum 100, SE-164 40 Kista, Sweden, [email protected] Accepted to the SIG Prag Workshop on IT Artefact Design & Workpractice Improvement, 5 June, 2013, Tilburg, the Netherlands Abstract There is no common agreement on how to characterize and positioning design science research. This makes it difficult for design science researchers to communicate the ideas of design science research to students, young researchers, and researchers outside the design science research community. In this paper, we present an approach for supporting the positioning of design science research in re- spect to key notions such as social science, research strategies, practice research, and action re- search. The approach is based on Wittgenstein’s notion of family resemblance, and the question ad- dressed in the paper is: What are the siblings to design science research? Four sibling groups are presented, and the paper suggests how design science research can be compared and contrasted to its siblings within these groups. Keywords: design science, branch of research, research strategy, practice research, action research, the scientific method, family resemblance 1 1 Introduction Design science research in information systems is still in a process of finding its identity. As noted by Baskerville (2008), there is still not a broad agreement on terminology, theory, methodology, evalua- tion criteria, etc.
    [Show full text]
  • Public Attitudes and Understanding
    National Science Board | Science & Engineering Indicators 2018 7 | 1 CHAPTER 7 Science and Technology: Public Attitudes and Understanding Table of Contents Highlights................................................................................................................................................................................. 7-3 Interest, Information Sources, and Involvement .............................................................................................................. 7-3 Public Knowledge about S&T............................................................................................................................................... 7-3 Public Attitudes about S&T in General ............................................................................................................................... 7-4 Public Attitudes about Specific S&T-Related Issues.......................................................................................................... 7-4 Introduction............................................................................................................................................................................. 7-5 Chapter Overview ................................................................................................................................................................. 7-5 Chapter Organization........................................................................................................................................................
    [Show full text]
  • The Formal Sciences Discover the Philosophers’ Stone
    18 THE FORMAL SCIENCES DISCOVER THE PHILOSOPHERS’ STONE Studies in History and Philosophy of Science Vol. 25, No. 4, pp. 513–533, 1994 Copyright © 1994 Elsevier Science Ltd 1. Introduction IT USED to be that the classification of sciences was clear. There were natural sciences, and there were social sciences. Then there were mathematics and logic, which might or might not be described as sciences, but seemed to be plainly distinguished from the other sciences by their use of proof instead of experiment, measurement and theorising. This neat picture has been disturbed by the appearance in the last fifty years of a number of new sciences, variously called the ‘formal’ or ‘mathematical’ sciences, or the ‘sciences of complexity’1 or ‘sciences of the artificial.’2 The number of these sciences is large, very many people work in them, and even more use their results. It is a pity that philosophers have taken so little notice of them, since they provide exceptional opportunities for the exercise of the arts peculiar to philosophy. Firstly, their formal nature would seem to entitle them to the special consideration mathematics and logic have obtained. Being formal, they should appeal to the Platonist latent in most philosophers, especially those who suspect that most philosophical opinion about quantum mechanics, cosmology and evolution, for example, will probably be rendered obsolete by new scientific discoveries. Not only that, but the knowledge in the formal sciences, with its proofs about network flows, proofs of computer program correctness and the like, gives every appearance of having achieved the philosophers’ stone; a method of transmuting opinion about the base and contingent beings of this world into the necessary knowledge of pure reason.
    [Show full text]