Public Attitudes to Science 2019 Main Report

Total Page:16

File Type:pdf, Size:1020Kb

Public Attitudes to Science 2019 Main Report Public attitudes to science 2019 Main report BEIS Research Paper Number 2020/012 July 2020 Ministerial Foreword I am delighted to present Public Attitudes to Science 2019, the sixth in this series of studies. This survey will help us in understanding how the UK public feel about science, engineering and the new technologies that they increasingly encounter in their daily lives. As well as the main survey, the study uses additional research methods including online dialogues and social media analysis. All of this helps to build a clearer picture of how the public feels about science and engineering, and what they think about key topics like climate change, artificial intelligence and trust in scientific advice. These are crucial areas that will have a growing impact in the coming years. The knowledge we have gained from this research will also help inform the development of policy – both in Government and in scientific institutions across the UK – ensuring that the public’s views can be fed into decision making. If we are to achieve our ambition of increasing investment in Research and Development across the whole of the UK and making the UK a science superpower, we will need more people to take up careers in research, a private sector workforce with the skills and knowledge that meets the demands of the jobs of the future, and a public that feels they are proud to be part of this journey. It is already encouraging that the public is alive to the potential that science and engineering presents to the nation and have a positive view of scientists and engineers. We want to inspire more of our young people to study STEM subjects and to take up STEM careers, while also attracting, developing, and retaining talent from around the globe. Diversity will be at the heart of this, we know it will be particularly important to engage those groups that have been historically underrepresented in science and engineering. Everyone should have the opportunity to realise their potential, so they can break boundaries in research and realise long-lasting benefits to communities across the UK. We want to ensure that the public can understand and appreciate the huge benefits that researchers can bring to society. It is through studies like Public Attitudes to Science that we can begin to maintain and build that understanding, and help spread a simple message – science is for everyone. Amanda Solloway MP, Minister for Science, Research, and Innovation Acknowledgements Kantar would foremost likely to thank all members of the public who took part in the survey and in the online and face-to-face group discussions. We would like to thank Anthony Whitney, Michael Rignall, and Victoria Saul at the Department for Business, Energy and Industrial Strategy (BEIS) for their advice and support during the course of this project. We would also like to thank Dr Kevin Burchell who led on the literature review, and all members of the advisory group: Lesley Miles (Royal Society); Jon Fitzmaurice & Louis Stupple-Harris (British Science Association); Jen DeWitt (independent academic, affiliated to UCL); Jo Trigg (Royal Academy of Engineering); Ethan Greenwood & G Bladon (Wellcome); Lewis Dean (UKRI); Christopher Whitby (Railway museum); Penny Fidler (UK Association for Science and Discovery Centres). We would further like to thank Keith Bolling at Kantar for additional support on the report. Kantar authors: Alice Fitzpatrick, Becky Hamlyn, Sophia Jouahri, Sam Sullivan, Viv Young (survey findings); Amy Busby, Richard Matousek, Sheyi Ogunshakin, Nick Roberts, Mary Suffield, Lauren Wiginton (qualitative findings). © Crown copyright 2020 This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. To view this licence, visit nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected]. Where we have identified any third-party copyright information you will need to obtain permission from the copyright holders concerned. Any enquiries regarding this publication should be sent to us at: [email protected] Public attitudes to science 2019 Contents Executive Summary _________________________________________________________ 5 Introduction ______________________________________________________________ 17 1. Science capital index _____________________________________________________ 25 2. Awareness and knowledge about science _____________________________________ 28 Wave 1: Engaging the public with science _______________________________________ 41 3. Finding out about science _________________________________________________ 42 4. Trust in science reporting __________________________________________________ 50 Wave 1 Social Media Analysis: Attitudes to the veracity of information online ____________ 60 5. Science in people’s lives __________________________________________________ 61 6. Public involvement in science ______________________________________________ 73 7. Trust in scientists and the regulation and funding of science _______________________ 83 8. Perceived benefits and risks of developments in science _________________________ 94 9. Attitudes towards careers in science and engineering ___________________________ 105 10. Ageing Society ________________________________________________________ 115 11. Artificial intelligence, robots and data _______________________________________ 130 Wave 2: Drivers of levels of acceptability of the use of AI in healthcare _______________ 147 Wave 3: Perceptions and acceptability of use of robotics technology, with a focus on the care sector __________________________________________________________________ 148 Wave 2 Social Media Analysis: Public attitudes to the use of artificial intelligence in healthcare _______________________________________________________________________ 149 Wave 3 Social Media Analysis: Public attitudes to the use of robotics technology in the labour market _________________________________________________________________ 151 12. Genome Editing _______________________________________________________ 152 Wave 4: Public attitudes to the use of genome editing and other technological solutions to the issue of food security ______________________________________________________ 164 13. Micro-pollution and plastics ______________________________________________ 165 Wave 4 Social Media Analysis: Public attitudes to ocean plastic pollution ______________ 171 References ______________________________________________________________ 172 4 Public attitudes to science 2019 Executive Summary Background Public Attitudes to Science 2019 (PAS 2019) is the sixth survey in a series of studies tracking attitudes to science, scientists and science policy among the UK public. The study was conducted by Kantar, on behalf of the Department for Business, Energy and Industrial Strategy (BEIS). Several strands of research were included: • A literature review conducted by Dr Kevin Burchell which comprised an independent review and synthesis of existing literature, primarily since 2010 (Burchell, 2019). • A face-to-face survey of 1,749 UK adults aged 16+ carried out in January-April 2019 using a random probability sampling approach. The survey comprised a core section of questions which have been tracked over time, and four topic-focussed modules: ageing society; AI, robots and data; genome editing; micro-pollution and plastics. • Four waves of online qualitative research using a deliberative digital dialogue process, and 16 face-to-face qualitative group discussions with digitally excluded participants, focussed on four science-related topics (trust in science; AI and healthcare; robotics in the care sector; genomics in food production). • Four waves of social listening, to track how four different science topics were discussed online over the last two years (veracity of online information; AI in healthcare; robots in the workplace; ocean plastic pollution). This report primarily provides commentary on the findings of the survey. The full set of publications can be found at Kantar.com/uk-public-attitudes-to-science. This summary first considers changes over time since the PAS 2014 survey, then provides a high-level summary of the 2019 findings by chapter, and finally discusses trends in relation to the variation in attitudes by demographic subgroups. How have public attitudes changed over time? On the whole, between 2014 and 2019, and in some cases over the longer term, people have become more positive in their attitudes towards science and scientists, although there are a few exceptions to this. In summary: There is a shift in how people access science information from print to online Although people still mainly rely on television for science information, there has been a considerable shift between 2014 and 2019 from print to online. In 2019 13% (down from 28%) found out about science from print newspapers, 28% (up from 15%) from online news websites, and 15% (up from 4%) from Facebook. Despite a backdrop of declining levels of trust in media reporting more generally people have become more trusting about science reporting 5 Public attitudes to science 2019 Despite wider evidence of declining levels of trust in the news over recent years, people are now more trusting in media reporting of science. Compared with 2014, fewer people in 2019 think that the media sensationalises science (from 71% to 61%) and that politicians are too easily influenced by
Recommended publications
  • The Social Sciences—How Scientific Are They?
    31 The Social Sciences—How Scientifi c Are They? Manas Sarma or Madame Curie. That is, he social sciences are a very important and amazing in their own way. fi eld of study. A division of science, social sciences Tembrace a wide variety of topics from anthropology A better example of a social to sociology. The social sciences cover a wide range of science than law may be topics that are crucial for understanding human experience/ economics. economics behavior in groups or as individuals. is, in a word, fi nances. Economics is the study By defi nition, social science is the branch of science that deals of how money changes, the rate at which it changes, and with the human facets of the natural world (the other two how it potentially could change and the rate at which it branches of science are natural science and formal science). would. Even though economics does not deal with science Some social sciences are law, economics, and psychology, to directly, it is defi nitely equally scientifi c. About 50-60% of name a few. The social sciences have existed since the time colleges require calculus to study business or economics. of the ancient Greeks, and have evolved ever since. Over Calculus is also required in some science fi elds, like physics time, social sciences have grown and gained a big following. or chemistry. Since economics and science both require Some colleges, like Yale University, have chosen to focus calculus, economics is still a science. more on the social sciences than other subjects. The social sciences are more based on qualitative data and not as Perhaps the most scientifi c of the social sciences is black-and-white as the other sciences, so even though they psychology.
    [Show full text]
  • BRONZE AGE FORMAL SCIENCE? with Additional Remarks on the Historiography of Distant Mathematics
    ROSKILDE UNIVERSITETSCENTER ROSKILDE UNIVERSITY Faggruppen for filosofi og Section for philosophy videnskabsteori and science studies BRONZE AGE FORMAL SCIENCE? With additional remarks on the historiography of distant mathematics JENS HØYRUP FILOSOFI OG VIDENSKABSTEORI PÅ ROSKILDE UNIVERSITETSCENTER 3. Række: Preprints og reprints 2003 Nr. 5 In memoriam Robert Merton 1910–2003 Revised contribution to Foundations of the Formal Sciences IV The History of the Concept of the Formal Sciences Bonn, February 14-17, 2003 I. Past understandings of mathematics .......................... 1 Aristotle and others ............................................ 2 Scribal cultures I: Middle Kingdom Egypt ........................... 4 Scribal cultures II: Old Babylonian epoch ............................ 6 Riddle collections – and a hypothesis ............................... 15 II. Understandings of past mathematics ......................... 16 Second (didactical) thoughts ...................................... 18 Bibliography .............................................. 20 The paper was prepared during a stay at the Max-Planck-Institut für Wissenschaftsgeschichte,Berlin. I use the opportunity to express my sincere gratitude for the hospitality I received. Referee: Aksel Haaning My talk falls in two unequally long parts, each turning around a particular permutation of the same three key words:* – The first, longer and main part treats of past understandings of mathematics. – The second, shorter part takes up understandings of past mathematics. In both parts,
    [Show full text]
  • Outline of Science
    Outline of science The following outline is provided as a topical overview of • Empirical method – science: • Experimental method – The steps involved in order Science – systematic effort of acquiring knowledge— to produce a reliable and logical conclusion include: through observation and experimentation coupled with logic and reasoning to find out what can be proved or 1. Asking a question about a natural phenomenon not proved—and the knowledge thus acquired. The word 2. Making observations of the phenomenon “science” comes from the Latin word “scientia” mean- 3. Forming a hypothesis – proposed explanation ing knowledge. A practitioner of science is called a for a phenomenon. For a hypothesis to be a "scientist". Modern science respects objective logical rea- scientific hypothesis, the scientific method re- soning, and follows a set of core procedures or rules in or- quires that one can test it. Scientists generally der to determine the nature and underlying natural laws of base scientific hypotheses on previous obser- the universe and everything in it. Some scientists do not vations that cannot satisfactorily be explained know of the rules themselves, but follow them through with the available scientific theories. research policies. These procedures are known as the 4. Predicting a logical consequence of the hy- scientific method. pothesis 5. Testing the hypothesis through an experiment – methodical procedure carried out with the 1 Essence of science goal of verifying, falsifying, or establishing the validity of a hypothesis. The 3 types of
    [Show full text]
  • Boundary-Work and the Demarcation of Science from Non-Science: Strains and Interests in Professional Ideologies of Scientists Author(S): Thomas F
    Boundary-Work and the Demarcation of Science from Non-Science: Strains and Interests in Professional Ideologies of Scientists Author(s): Thomas F. Gieryn Source: American Sociological Review, Vol. 48, No. 6 (Dec., 1983), pp. 781-795 Published by: American Sociological Association Stable URL: http://www.jstor.org/stable/2095325 . Accessed: 20/10/2014 20:34 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Sociological Association is collaborating with JSTOR to digitize, preserve and extend access to American Sociological Review. http://www.jstor.org This content downloaded from 128.173.127.127 on Mon, 20 Oct 2014 20:34:19 PM All use subject to JSTOR Terms and Conditions BOUNDARY-WORK AND THE DEMARCATION OF SCIENCE FROM NON-SCIENCE: STRAINS AND INTERESTS IN PROFESSIONAL IDEOLOGIES OF SCIENTISTS* THOMAS F. GIERYN Indiana University The demarcation of science from other intellectual activities-long an analytic problemfor philosophersand sociologists-is here examinedas a practicalproblem for scientists. Construction of a boundary between science and varieties of non-science is useful for scientists' pursuit of professional goals: acquisition of intellectual authority and career opportunities; denial of these resources to "pseudoscientists"; and protection of the autonomy of scientific research from political interference.
    [Show full text]
  • The State of Inclusive Science Communication: a Landscape Study
    The State of Inclusive Science Communication: A Landscape Study Katherine Canfield and Sunshine Menezes Metcalf Institute, University of Rhode Island Graphics by Christine Liu This report was developed for the University of Rhode Island’s Metcalf Institute with generous support from The Kavli Foundation. Cite as: Canfield, K. & Menezes, S. 2020. The State of Inclusive Science Communication: A Landscape Study. Metcalf Institute, University of Rhode Island. Kingston, RI. 77 pp. Executive Summary Inclusive science communication (ISC) is a new and broad term that encompasses all efforts to engage specific audiences in conversations or activities about science, technology, engineering, mathematics, and medicine (STEMM) topics, including, but not limited to, public engagement, informal science learning, journalism, and formal science education. Unlike other approaches toward science communication, however, ISC research and practice is grounded in inclusion, equity, and intersectionality, making these concerns central to the goals, design, implementation, evaluation, and refinement of science communication efforts. Together, the diverse suite of insights and practices that inform ISC comprise an emerging movement. While there is a growing recognition of the value and urgency of inclusive approaches, there is little documented knowledge about the potential catalysts and barriers for this work. Without documentation, synthesis, and critical reflection, the movement cannot proceed as quickly as is warranted. The University of Rhode Island’s Metcalf
    [Show full text]
  • How Science Works
    PB 1 How science works The Scientific Method is traditionally presented in the first chapter of science text- books as a simple recipe for performing scientific investigations. Though many use- ful points are embodied in this method, it can easily be misinterpreted as linear and “cookbook”: pull a problem off the shelf, throw in an observation, mix in a few ques- tions, sprinkle on a hypothesis, put the whole mixture into a 350° experiment—and voila, 50 minutes later you’ll be pulling a conclusion out of the oven! That might work if science were like Hamburger Helper®, but science is complex and cannot be re- duced to a single, prepackaged recipe. The linear, stepwise representation of the process of science is simplified, but it does get at least one thing right. It captures the core logic of science: testing ideas with evidence. However, this version of the scientific method is so simplified and rigid that it fails to accurately portray how real science works. It more accurately describes how science is summarized after the fact—in textbooks and journal articles—than how sci- ence is actually done. The simplified, linear scientific method implies that scientific studies follow an unvarying, linear recipe. But in reality, in their work, scientists engage in many different activities in many different sequences. Scientific investigations often involve repeating the same steps many times to account for new information and ideas. The simplified, linear scientific method implies that science is done by individual scientists working through these steps in isolation. But in reality, science depends on interactions within the scientific community.
    [Show full text]
  • Lessons from the History of UK Science Policy
    Lessons from the History of UK Science Policy August 2019 2 Science Policy History Foreword The British Academy is the UK’s national body for the humanities and social sciences. Our purpose is to deepen understanding of people, societies and cultures, enabling everyone to learn, progress and prosper. The Academy inspires, supports and promotes outstanding achievement and global advances in the humanities and social sciences. We are a fellowship of over 1000 of the most outstanding academics, an international community of leading experts focused on people, culture and societies, and are the voice for the humanities and social sciences.1 The British Academy aims to use insights from the past and the present to help shape the future, by influencing policy and affecting change in the UK and overseas. Given this, the Academy is well-placed to bring humanities and social science insight from the past into policymaking for the present and the future. One way to do this is in using historical insights to inform policymaking – ‘looking back to look forward’. To support these efforts, the Academy’s public policy team in collaboration with the Department for Business, Energy and Industrial Strategy, has undertaken a new programme of work on policy histories. The policy histories series develop historical analyses for individual policy areas. These analyses are used to provide: • a structured, rigorous and objective account of the history of a given policy area and the significance of key milestones in context, • an informed basis for analysis and insights from the timelines as well as dialogue and discussion about what history can tell us about the future.
    [Show full text]
  • Science and Innovation: the Under-Fueled Engine of Prosperity
    Science and Innovation: The Under-Fueled Engine of Prosperity JULY 14, 2021 AUTHOR Benjamin F. Jones* ABSTRACT Science and innovation are central to human progress and national economic success. Currently, the United States invests 2.8% of GDP in research and development, which is supported by a range of public policies. This paper asks whether the United States invests enough. To answer that question, the conceptual case for government intervention and skepticism about that case are reviewed. The paper then turns to systematic evidence, including the very latest evidence, regarding the operation of the science and innovation system and its social returns. This evidence suggests a clear answer: We massively underinvest in science and innovation, with implications for our standards of living, health, national competitiveness, and capacity to respond to crisis. * Kellogg School of Management and National Bureau of Economic Research. Email: [email protected]. 1. Introduction Scientific and technological advances have long been recognized as engines of economic growth and rising prosperity. The fruits of these advances—instantaneous global communications, vaccines, airplanes, heart surgery, computers, skyscrapers, industrial robots, on-demand entertainment, to name a few—might seem almost magical to our ancestors from not-too-many generations ago. The power of this progress has been broadly evident since the Industrial Revolution and was recognized at the time, including by political leaders. As the British Prime Minister Benjamin Disraeli noted in 1873, “How much has happened in these fifty years … I am thinking of those revolutions of science which … have changed the position and prospects of mankind more than all the conquests and all the codes and all the legislators that ever lived.” Disraeli was talking of things like the steam engine, the telegraph, and textile manufacturing.
    [Show full text]
  • Sellars in Context: an Analysis of Wilfrid Sellars's Early Works Peter Jackson Olen University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Sellars in Context: An Analysis of Wilfrid Sellars's Early Works Peter Jackson Olen University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, and the Philosophy of Science Commons Scholar Commons Citation Olen, Peter Jackson, "Sellars in Context: An Analysis of Wilfrid Sellars's Early Works" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4191 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Sellars in Context: An Analysis of Wilfrid Sellars’s Early Works by Peter Olen A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Philosophy College of Arts and Sciences University of South Florida Co-Major Professor: Stephen Turner, Ph.D. Co-Major Professor: Richard Manning, Ph.D. Rebecca Kukla, Ph.D. Alexander Levine, Ph.D. Willem deVries, Ph.D. Date of Approval: March 20th, 2012 Keywords: Logical Positivism, History of Analytic Philosophy Copyright © 2012, Peter Olen DEDICATION I dedicate this dissertation to the faculty members and fellow graduate students who helped me along the way. ACKNOWLEDGEMENTS I want to thank Rebecca Kukla, Richard Manning, Stephen Turner, Willem deVries, Alex Levine, Roger Ariew, Eric Winsberg, Charles Guigon, Nancy Stanlick, Michael Strawser, and the myriad of faculty members who were instrumental in getting me to this point.
    [Show full text]
  • Implications for Formal Science Learning Anila Asghar, Mcgill University
    Informal Science Contexts: Implications for Formal Science Learning Anila Asghar, McGill University ABSTRACT This article illuminates the affordances of informal science learning to promote scien- tific literacy. It also discusses the ways in which informal learning environments can be creatively employed to enhance science instruction in K-12 as well as university settings. Also offered are various theoretical perspectives that serve as useful analyti- cal tools to understand science learning in formal as well as informal settings. “Children throughout the world, if we are to survive as a planet, will need to have a deep level of scientific literacy.” (Chiu & Duit, 2011, p. 553) romoting a wider public understanding and appreciation of science is an overarching goal of science literacy as underscored in science education policy and curriculum benchmarks (CMEC, 1997; AAAS, 1989; NRC, 1996). PKey goals of scientific literacy encompass: (a) developing a deeper understanding of science concepts; (b) developing scientific reasoning to understand the natural and designed phenomena; (c) understanding scientific research and findings, (d) rec- ognizing scientific ideas and issues underlying socio-scientific issues; (e) formulating scientifically informed views and stances on issues of local and global importance; (e) critically evaluating scientific information from various sources; (f) participating in debates and actions around critical social, economic, scientific, and environmental issues; and (g) pursuing careers in science, engineering, and technology (AAAS, 1993; CMEC, 1997). Contemporary science education reform efforts thus aim to develop scientifically literate citizens who can meaningfully contribute to socio-scientific dis- courses and engage in social and political action around them. A deeper and critical LEARNing Landscapes | Vol.
    [Show full text]
  • It STITUTI 7N Harvard Univ.,Cambridge.,,Mass: Program Cr Aciencei
    MD160 4311 51 025. 069 AUTHOR' Shelanski, Vivien.E.,. Ed. TITLE: Newsletter on Science,. Technolegy - Human Values, Number 2.117-J,une 1978. - ; It STITUTI 7N Harvard Univ.,Cambridge.,,Mass: Program cr aciencei. Technology. and Publicjc110. sppms- AGENCY National Endowment for the Humanities (NFIH) , Washington, D.C. PUE.DATE Jun 78 NOTE 75p.; Not available in hard copy due tc copyright restrictions AVAILABLE FROM Newsletter on Science, Technology & Buman Values, Aiken Computation Lab. 232, Harvard Univ., Cambridge, NA/ 02138 (Subscription individual $10.00) E _4ipRICE NF- $0.8.3 Plus Pos hge. EC Not Availatle fret EDES. RIPTORS *Activism;-Ethical_yalues*HUmanisp; *Newsletters; Nuclear Warfare; -*POlitical Attitudes; Politics; Science Education; acience History; Sciences; *Scientists; *Technology; Values ABSTRACT- Two papers ale presented in this mew4 titter: one on thepolitical activity 'Of scientists following, world ar II as a result of the Manhattan Project, and cne cr the politicalactivity of scientists today. These papers are followed by two cestenta:ries which coat:Care the two rrapers. Also included in this iEsuefiare net's items, a calendar of events, a report on a conference on ethical guidelines for research and clinical perspectives en human sexuality,arff annotated bibliography, and an index.ft the previous eight issues or this newsletter. (BE) _** * * * * * * * *x * * * * ** ********* Re produ ionssupplied by EDRS are the best at car Le made ) from the original doctimert. ** * ** * ** ************* SIB DEPARTm OF HEALTH, ,IDUCAtII WElFARE NATION* NSTITOTE OF EDUCATION . THIS DOCUMENT HAS BEEN REPRO- CIUCED EXACTLY AS RECEIVED FROM TOE PdFISON OR ORGANIZATION ORIGIN- ' ATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRE- SENT OFFICIAL NATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY PERMISSION To REPRODUCE THIS,.
    [Show full text]
  • How Academic Science Gave Its Soul to the Publishing Industry
    SCIENCE, THE ENDLESS FRONTIER AT 75 MARK W. NEFF How Academic Science Gave Its Soul to the Publishing Industry Self-governance of science was supposed to mean freedom of inquiry, but it also ended up serving the business model of scientific publishers while undermining the goals of science policy. merica’s globally preeminent university secure social and economic benefits in the postwar period, research enterprise is constructed on two including more and better paying jobs, more productive bedrock principles of self-governance. The first agriculture, and innovative industrial products desired by Ais autonomy: academic scientists should be left free to consumers, “the flow of scientific knowledge must be both determine their own research agendas. The second is continuous and substantial.” To achieve this knowledge internal accountability: the quality of academic science flow he felt that the government should provide generous is best assessed by academic scientists. The commitment funding for the scientific community, as it had during the to scientific self-governance carries with it a policy war. requirement as well: support for research will mostly But counter to the coordinated wartime R&D effort have to come from the federal government; companies he had headed, Bush insisted that scientists must be will never make the necessary investments in undirected allowed to work “on subjects of their own choice, in the research because they cannot capture the economic manner dictated by their curiosity for the exploration of benefits for themselves. the unknown.” Such curiosity-driven basic science would The origin story of how this arrangement came about yield essential but unpredictable benefits at unknowable is a familiar one.
    [Show full text]