The State of Inclusive Science Communication: a Landscape Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Social Sciences—How Scientific Are They?
31 The Social Sciences—How Scientifi c Are They? Manas Sarma or Madame Curie. That is, he social sciences are a very important and amazing in their own way. fi eld of study. A division of science, social sciences Tembrace a wide variety of topics from anthropology A better example of a social to sociology. The social sciences cover a wide range of science than law may be topics that are crucial for understanding human experience/ economics. economics behavior in groups or as individuals. is, in a word, fi nances. Economics is the study By defi nition, social science is the branch of science that deals of how money changes, the rate at which it changes, and with the human facets of the natural world (the other two how it potentially could change and the rate at which it branches of science are natural science and formal science). would. Even though economics does not deal with science Some social sciences are law, economics, and psychology, to directly, it is defi nitely equally scientifi c. About 50-60% of name a few. The social sciences have existed since the time colleges require calculus to study business or economics. of the ancient Greeks, and have evolved ever since. Over Calculus is also required in some science fi elds, like physics time, social sciences have grown and gained a big following. or chemistry. Since economics and science both require Some colleges, like Yale University, have chosen to focus calculus, economics is still a science. more on the social sciences than other subjects. The social sciences are more based on qualitative data and not as Perhaps the most scientifi c of the social sciences is black-and-white as the other sciences, so even though they psychology. -
BRONZE AGE FORMAL SCIENCE? with Additional Remarks on the Historiography of Distant Mathematics
ROSKILDE UNIVERSITETSCENTER ROSKILDE UNIVERSITY Faggruppen for filosofi og Section for philosophy videnskabsteori and science studies BRONZE AGE FORMAL SCIENCE? With additional remarks on the historiography of distant mathematics JENS HØYRUP FILOSOFI OG VIDENSKABSTEORI PÅ ROSKILDE UNIVERSITETSCENTER 3. Række: Preprints og reprints 2003 Nr. 5 In memoriam Robert Merton 1910–2003 Revised contribution to Foundations of the Formal Sciences IV The History of the Concept of the Formal Sciences Bonn, February 14-17, 2003 I. Past understandings of mathematics .......................... 1 Aristotle and others ............................................ 2 Scribal cultures I: Middle Kingdom Egypt ........................... 4 Scribal cultures II: Old Babylonian epoch ............................ 6 Riddle collections – and a hypothesis ............................... 15 II. Understandings of past mathematics ......................... 16 Second (didactical) thoughts ...................................... 18 Bibliography .............................................. 20 The paper was prepared during a stay at the Max-Planck-Institut für Wissenschaftsgeschichte,Berlin. I use the opportunity to express my sincere gratitude for the hospitality I received. Referee: Aksel Haaning My talk falls in two unequally long parts, each turning around a particular permutation of the same three key words:* – The first, longer and main part treats of past understandings of mathematics. – The second, shorter part takes up understandings of past mathematics. In both parts, -
Impacts of a Comprehensive Public Engagement Training and Support Program on Scientists’ Outreach Attitudes and Practices
International Journal of Science Education, Part B Communication and Public Engagement ISSN: 2154-8455 (Print) 2154-8463 (Online) Journal homepage: http://www.tandfonline.com/loi/rsed20 Impacts of a comprehensive public engagement training and support program on scientists’ outreach attitudes and practices Cathlyn Stylinski, Martin Storksdieck, Nicolette Canzoneri, Eve Klein & Anna Johnson To cite this article: Cathlyn Stylinski, Martin Storksdieck, Nicolette Canzoneri, Eve Klein & Anna Johnson (2018): Impacts of a comprehensive public engagement training and support program on scientists’ outreach attitudes and practices, International Journal of Science Education, Part B, DOI: 10.1080/21548455.2018.1506188 To link to this article: https://doi.org/10.1080/21548455.2018.1506188 Published online: 31 Aug 2018. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=rsed20 INTERNATIONAL JOURNAL OF SCIENCE EDUCATION, PART B https://doi.org/10.1080/21548455.2018.1506188 Impacts of a comprehensive public engagement training and support program on scientists’ outreach attitudes and practices Cathlyn Stylinski a, Martin Storksdieck b, Nicolette Canzonerib, Eve Kleinc and Anna Johnson c aUMCES, University of Maryland Center for Environmental Science Appalachian Laboratory, Frostburg, MD, USA; bCenter for Research on Lifelong STEM Learning, Oregon State University, Corvallis, OR, USA; cInstitute for Learning Innovation, Seattle, WA, USA ABSTRACT ARTICLE HISTORY Scientists are increasingly being called upon to play a more prominent role Received 1 November 2017 in the interface of science and society by contributing to science literacy in Accepted 24 July 2018 ways that support two-way exchanges with the public. -
Outline of Science
Outline of science The following outline is provided as a topical overview of • Empirical method – science: • Experimental method – The steps involved in order Science – systematic effort of acquiring knowledge— to produce a reliable and logical conclusion include: through observation and experimentation coupled with logic and reasoning to find out what can be proved or 1. Asking a question about a natural phenomenon not proved—and the knowledge thus acquired. The word 2. Making observations of the phenomenon “science” comes from the Latin word “scientia” mean- 3. Forming a hypothesis – proposed explanation ing knowledge. A practitioner of science is called a for a phenomenon. For a hypothesis to be a "scientist". Modern science respects objective logical rea- scientific hypothesis, the scientific method re- soning, and follows a set of core procedures or rules in or- quires that one can test it. Scientists generally der to determine the nature and underlying natural laws of base scientific hypotheses on previous obser- the universe and everything in it. Some scientists do not vations that cannot satisfactorily be explained know of the rules themselves, but follow them through with the available scientific theories. research policies. These procedures are known as the 4. Predicting a logical consequence of the hy- scientific method. pothesis 5. Testing the hypothesis through an experiment – methodical procedure carried out with the 1 Essence of science goal of verifying, falsifying, or establishing the validity of a hypothesis. The 3 types of -
How Science Works
PB 1 How science works The Scientific Method is traditionally presented in the first chapter of science text- books as a simple recipe for performing scientific investigations. Though many use- ful points are embodied in this method, it can easily be misinterpreted as linear and “cookbook”: pull a problem off the shelf, throw in an observation, mix in a few ques- tions, sprinkle on a hypothesis, put the whole mixture into a 350° experiment—and voila, 50 minutes later you’ll be pulling a conclusion out of the oven! That might work if science were like Hamburger Helper®, but science is complex and cannot be re- duced to a single, prepackaged recipe. The linear, stepwise representation of the process of science is simplified, but it does get at least one thing right. It captures the core logic of science: testing ideas with evidence. However, this version of the scientific method is so simplified and rigid that it fails to accurately portray how real science works. It more accurately describes how science is summarized after the fact—in textbooks and journal articles—than how sci- ence is actually done. The simplified, linear scientific method implies that scientific studies follow an unvarying, linear recipe. But in reality, in their work, scientists engage in many different activities in many different sequences. Scientific investigations often involve repeating the same steps many times to account for new information and ideas. The simplified, linear scientific method implies that science is done by individual scientists working through these steps in isolation. But in reality, science depends on interactions within the scientific community. -
Science Festivals and Fun: Promoting Science and Community Partnerships
Running head: Science Festivals and Fun 1 Science Festivals and Fun: Promoting Science and Community Partnerships University of North Georgia Macey Jarrard and Anthony Sacchitello – Middle Grades Education Faulty Mentors: Gina Childers, Donna Governor, and Lesley Simanton-Coogan Science Festivals and Fun 2 Introduction and Problem Statement Science festivals are informal learning experiences intended to engage the public in science. They provide an opportunity for scientists and the public to connect and interact and are ideal for engaging the public in science by increasing interest, creating a dialogue between scientists and the public, and providing social context for science issues (Jensen & Buckley, 2014). The National Research Council proposes that participation in these type of events can improve science literacy and, “lead to further inquiry, enjoyment, and a sense that science learning can be personally relevant and rewarding” (NRC, 2009, p.12). Building public interest in science, an important desired outcome of informal science education, can result in participants developing an identity, or sense of belonging, as part of the science community (NRC, 2010). Science festivals are planned events, bringing together science experts, local businesses and organizations, and people within the community to provide a physically, socially, and intellectually stimulating environment for informal science learning. On average, approximately 5% of an individual’s life is spent in the formal classroom and only a small fraction of that on science education (Falk & Dierking, 2010). Because of this, informal science learning through science festivals is essential for fostering a scientifically literate community and encouraging youth to pursue science related careers and promoting a sense of community ownership. -
GLOCAL Ization and Sustainability of Science Education Research And
e c i t c a r P d n a h c r a e s e R n o i t a c u d E e c n e i c S f o y it il b a in ta s u S d an n io at Liz CA GLO 11130 Sunrise Valley Drive | Suite 350 | Reston, Virginia 20191 | USA www.narst.org | [email protected] | 703.234.4138 | fax 703.435.4390 Saturday, April 22, 2017 NARST 2017 Annual International Conference Abstracts Pre-Conference Workshop #1: Equity and Ethics Committee (Free – 90 participants max) Glocalization and Sustainability of Science Education Research and Practice 8:00am – 11:45am, Hyatt Lone Star F Organizers: Enrique Lopez Nam-Hwa Kang Tasneem Anwar Senetta Bancroft Phillip Boda Tamra-Kay Alisa Francis Deniz Saribas Azam Saiqa Sheron Mark, University of Louisville ABSTRACT: Globalization and sustainability in science education has increasingly received attention among educators, researchers, and policymakers. Cultivating a scientifically literate citizenry has been tied to the concepts of globalization and sustainability. As highlighted in NARST’s conference theme description, glocalization represents a dual perspective which combines the ideals of globalization with the importance of localization. Pre-conference workshop participants will engage in constructive and meaningful dialogue with leading science education scholars about the influences of glocalization on educators, researchers, and policymakers’ efforts to build and sustain scientific literacy within local contexts for a global citizenry. Through an equity and ethics lens, this workshop will pay special attention to understanding the concepts of glocalization, sustainability, and scientific literacy; exploring how these concepts have been used within science education practice, research, and policy; and critiquing the benefits and limitations glocalization and sustainability offer the science education community. -
Sellars in Context: an Analysis of Wilfrid Sellars's Early Works Peter Jackson Olen University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Sellars in Context: An Analysis of Wilfrid Sellars's Early Works Peter Jackson Olen University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, and the Philosophy of Science Commons Scholar Commons Citation Olen, Peter Jackson, "Sellars in Context: An Analysis of Wilfrid Sellars's Early Works" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4191 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Sellars in Context: An Analysis of Wilfrid Sellars’s Early Works by Peter Olen A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Philosophy College of Arts and Sciences University of South Florida Co-Major Professor: Stephen Turner, Ph.D. Co-Major Professor: Richard Manning, Ph.D. Rebecca Kukla, Ph.D. Alexander Levine, Ph.D. Willem deVries, Ph.D. Date of Approval: March 20th, 2012 Keywords: Logical Positivism, History of Analytic Philosophy Copyright © 2012, Peter Olen DEDICATION I dedicate this dissertation to the faculty members and fellow graduate students who helped me along the way. ACKNOWLEDGEMENTS I want to thank Rebecca Kukla, Richard Manning, Stephen Turner, Willem deVries, Alex Levine, Roger Ariew, Eric Winsberg, Charles Guigon, Nancy Stanlick, Michael Strawser, and the myriad of faculty members who were instrumental in getting me to this point. -
Advancing Science Communication.Pdf
SCIENCETreise, Weigold COMMUNICATION / SCIENCE COMMUNICATORS Scholars of science communication have identified many issues that may help to explain why sci- ence communication is not as “effective” as it could be. This article presents results from an exploratory study that consisted of an open-ended survey of science writers, editors, and science communication researchers. Results suggest that practitioners share many issues of concern to scholars. Implications are that a clear agenda for science communication research now exists and that empirical research is needed to improve the practice of communicating science. Advancing Science Communication A Survey of Science Communicators DEBBIE TREISE MICHAEL F. WEIGOLD University of Florida The writings of science communication scholars suggest twodominant themes about science communication: it is important and it is not done well (Hartz and Chappell 1997; Nelkin 1995; Ziman 1992). This article explores the opinions of science communication practitioners with respect to the sec- ond of these themes, specifically, why science communication is often done poorly and how it can be improved. The opinions of these practitioners are important because science communicators serve as a crucial link between the activities of scientists and the public that supports such activities. To intro- duce our study, we first review opinions as to why science communication is important. We then examine the literature dealing with how well science communication is practiced. Authors’Note: We would like to acknowledge NASA’s Marshall Space Flight Center for provid- ing the funds todothis research. We alsowant tothank Rick Borcheltforhis help with the collec - tion of data. Address correspondence to Debbie Treise, University of Florida, College of Journalism and Communications, P.O. -
The Public-Engaged Scientists: Motivations, Enablers and Barriers
Cerrato, S., Daelli, V., Pertot, H. and Puccioni, O. (2018) ‘The public- engaged scientists: Motivations, enablers and barriers’. Research for All, 2 (2): 313–322. DOI https://doi.org/10.18546/RFA.02.2.09 The public-engaged scientists: Motivations, enablers and barriers Simona Cerrato*, Valentina Daelli, Helena Pertot and Olga Puccioni – SISSA Medilab, Trieste, Italy Abstract Why do scientists volunteer to be involved in public engagement in science? What are the barriers that can prevent them participating in dialogue with society? What can be done to facilitate their participation? In this paper we present a case study of the Children’s University programme of the International School for Advanced Studies (SISSA) (Trieste, Italy), discussing the three-year experience, and reporting the outcomes of a series of focus groups conducted with the young scientists who volunteered in the programme. Two kinds of motivations emerged. The first is personal, for example volunteers’ desire to improve their own communication abilities, or their curiosity for a new activity. The second is related to the perceived role of scientists in society: many volunteers feel a sense of duty and the need to promote science and its importance in society, to have an impact on the public perception of science and to seed the love for science in young people. After the first year of their involvement, volunteers expressed the need to keep improving their communication skills and participating in professional training courses, and agreed that science communication should become part of all standard training programmes of PhDs. In order for the outreach not to remain a sporadic experience, it is essential that a strong institutional commitment exists to promote, recruit, encourage, professionally train and support those involved. -
Evaluating How Universities Engage School Students with Science a Model Based on the Analysis of the Literature
AUSTRALIAN UNIVERSITIES’ REVIEW Evaluating how universities engage school students with science A model based on the analysis of the literature B J Cridge & A G Cridge University of Otago Every year fewer students are electing to take university level science courses, particularly physics. This situation has led universities and employers to try and encourage more students into science subjects through the development of numerous science outreach initiatives such as guest lectures and summer schools. Much of this work is of an ad-hoc nature, with little understanding of the underlying motivations and conditions that guide students’ subject selection. Therefore, we have analysed a range of literature sources to develop a simple model for school student engagement that can help guide university-initiated science outreach programmes. This model takes into account factors such as the different life stages of the student, the myriad influences that affect career decisions, and resource availability. As part of this work we also present an overview of the research around increasing progression into higher education. As experienced practitioners and researchers in science outreach we have developed an easy-to-use set of guidelines that are applicable in the real-world situation of limited budgets, time and staff resources. Keywords: outreach, widening participation, universities, science, marketing, STEM Introduction intervention. In this paper we discuss a model for student recruitment that looks at these approaches and develops Universities around the world invest heavily in student a framework of what interventions are most appropriate recruitment. Often marketing initiatives are run under and when they should be carried out. We describe the multiple budget headings including recruitment, outreach, literature on factors that influence student decision-making equity and diversity programmes. -
Implications for Formal Science Learning Anila Asghar, Mcgill University
Informal Science Contexts: Implications for Formal Science Learning Anila Asghar, McGill University ABSTRACT This article illuminates the affordances of informal science learning to promote scien- tific literacy. It also discusses the ways in which informal learning environments can be creatively employed to enhance science instruction in K-12 as well as university settings. Also offered are various theoretical perspectives that serve as useful analyti- cal tools to understand science learning in formal as well as informal settings. “Children throughout the world, if we are to survive as a planet, will need to have a deep level of scientific literacy.” (Chiu & Duit, 2011, p. 553) romoting a wider public understanding and appreciation of science is an overarching goal of science literacy as underscored in science education policy and curriculum benchmarks (CMEC, 1997; AAAS, 1989; NRC, 1996). PKey goals of scientific literacy encompass: (a) developing a deeper understanding of science concepts; (b) developing scientific reasoning to understand the natural and designed phenomena; (c) understanding scientific research and findings, (d) rec- ognizing scientific ideas and issues underlying socio-scientific issues; (e) formulating scientifically informed views and stances on issues of local and global importance; (e) critically evaluating scientific information from various sources; (f) participating in debates and actions around critical social, economic, scientific, and environmental issues; and (g) pursuing careers in science, engineering, and technology (AAAS, 1993; CMEC, 1997). Contemporary science education reform efforts thus aim to develop scientifically literate citizens who can meaningfully contribute to socio-scientific dis- courses and engage in social and political action around them. A deeper and critical LEARNing Landscapes | Vol.