Molecular Phylogenetic Relationships Within the Subtribe Disinae (Orchidaceae) and Their Taxonomic, Phytogeographic and Evolutionary Implications

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogenetic Relationships Within the Subtribe Disinae (Orchidaceae) and Their Taxonomic, Phytogeographic and Evolutionary Implications Molecular phylogenetic relationships within the subtribe Disinae (Orchidaceae) and their taxonomic, phytogeographic and evolutionary implications Benny Bytebier Dissertation presented for the degree of Doctor of Philosophy (Biochemistry) at Stellenbosch University Supervisors: Prof. Dirk U. Bellstedt, Stellenbosch University Prof. H. Peter Linder, University of Zurich Department of Biochemistry Stellenbosch University March 2007 Declaration I, the undersigned, hereby declare that the work contained in this dissertation is my own original work and that I have not previously in its entirity or in part submitted it at any university for a degree ………………………… …………………… Signature Date ii Abstract Twenty five years after the last major morphological revision, phylogenetic relationships were inferred on the basis of a new DNA dataset for the African orchid subtribe Disinae, which includes the large genus Disa and the small genus Schizodium. One nuclear gene region (ITS) and two plastid gene regions (trnLF and matK) were sequenced for 136 ingroup, representing 70% of all known Disinae species, as well as for 7 outgroup taxa. The combined data matrix contained 4094 characters and was analysed using parsimony and Bayesian inference. The generic status of Schizodium can no longer be supported, as it is deeply embedded within the genus Disa. Furthermore, the currently recognised subgenera do not reflect the phylogenetic relationships. Several of the currently recognised sections are monophyletic, others contain misplaced elements, while some are polyphyletic. These results necessitate a re-classification of the Disinae. A monotypic subtribe Disinae and a subdvision of Disa into eighteen sections is formally proposed. These sections are monophyletic, well-supported, morphologically distinguishable and are delimited to maximize the congruence with the previous classification. All currently known species are enumerated and assigned to sections. Likelihood optimisation onto a dated molecular phylogeny is subsequently used to explore the historical biogeography of Disa, as well as of three other Cape lineages (Irideae p.p., the Pentaschistis clade and Restionaceae), to find out where these lineages originated and how they spread through the Afrotemperate region. Three hypotheses have been proposed: (i) a tropical origin with a southward migration towards the Cape; (ii) a Cape origin with a northward migration into tropical Africa and (iii) vicariance. None of these hypotheses, however, has been thoroughly tested. In all cases, tropical taxa are nested within a predominantly Cape clade and there is unidirectional migration from the Cape into the Drakensberg and from there northwards into tropical Africa. Dating estimates show that the migration into tropical East Africa has occurred in the last 17 million years, consistent with the Mio-Pliocene formation of the mountains in this area. iii The same technique is then utilised to reconstruct the temporal occurrence of ancestral ecological attributes of the genus Disa. The first appearance of species in the grassland and savanna biomes, as well as in the subalpine habitat, are in agreement with the existing, reliable geological and paleontological information. This suggests that phylogenies can be used to date events for which other information is lacking or inconclusive, such as the age of the fynbos biome and the start of the winter rainfall regime in southern Africa. The results indicate that these are much older than what is currently accepted and date back to at least the Oligocene. iv Opsomming Vyf-en-twintig jaar na die laaste groot morfologiese hersiening, is die filogenetiese verwantskappe van die Afrika orgideë subtribus Disinae, wat die groot genus Disa en die klein genus Schizodium insluit, in hierdie studie op grond van ‘n nuwe DNA datastel afgelei. Daar is van 136 binnegroep, wat 70% van alle bekende Disinae spesies verteenwoordig, sowel as sewe buitegroep taksa geenopeenvolgings van een nukleêre geen streek (ITS) en twee plastiedgeen streke (trnLF en matK) bepaal. Die gekombineerde data matriks het 4094 karakters bevat en is met die parsimonie en Bayesian metodes ontleed. Die generiese status van Schizodium kan nie hieruit ondersteun word nie, en is diep ingebed binne die genus Disa. Die huidiglik aanvaarde subgenera word ook nie deur hierdie filogenie ondersteun nie. Verskeie van die huidiglik herkende seksies is bevind om monofileties te wees, ander bevat verkeerd geplaasde spesies, terwyl ander polifileties blyk te wees. ’n Monotipiese subtribus Disinae en ’n onderverdeling van Disa in agtien seksies word formeel voorgestel. Dié seksies is monofilities, goed ondersteun, morfologies onderskeibaar en omskryf om maksimaal ooreen te stem met die vorige klassifikasie. Alle huidiglik bekende spesies word gelys en toegewys aan seksies. Waarskynlikheidsoptimalisering op ’n gedateerde molekulêre filogenie is dan gebruik om die historiese biogeografie van Disa te ondersoek, tesame met drie ander Kaapse groepe (Irideae p.p., die Pentaschistis klade en Restionaceae), om te bepaal waar hierdie groepe hulle oorsprong gevind het en hoe hulle na die “Afrotemperate“ streek versprei het. Drie hipoteses word voorgestel: (i) ’n tropiese oorsprong met ’n suidwaartse migrasie na die Kaap; (ii) ’n Kaapse oorsprong met ’n noordwaartse migrasie na tropiese Afrika, en (iii) vikariansie. Geen van hierdie hipoteses is egter vantevore deeglik getoets nie. In alle gevalle is bevind dat die tropiese taksa oorwegend binne ’n Kaapse klade gesetel is, en dat daar ’n eenrigting migrasie is van die Kaap na die Drakensberge en van daar noordwaarts na tropiese Afrika. Dateringsskattings toon dat die migrasie na tropiese Oos-Afrika in die laaste 17 miljoen jaar plaasgevind het, ooreenstemmend met die Mio-Plioseen vorming van die berge in die area. v Dieselfde tegniek is daarna aangewend om die temporale voorkoms van voorvaderlike ekologiese eienskappe van die genus Disa te rekonstrueer. Die eerste voorkoms van die spesies in die grasveld en savanna biome, sowel as die subalpiene habitat, is in ooreenstemming met bestaande, betroubare geologiese en paleontologiese informasie. Dit suggereer dat filogenieë gebruik kan word om gebeurtenisse te dateer waarvoor daar informasie ontbreek of nie beslissend is nie, soos die ouderdom van die Fynbos bioom en die begin van die winterreënval stelsel in suider-Afrika. Die resultate dui daarop dat dit heelwat ouer is as wat tans aanvaar word en terugdateer na ten minste die Oligoseen. vi Acknowledgments I sincerely thank the following people and organisations who, in one way or another, have all contributed to the making of this thesis. My supervisors, Dirk Bellstedt and Peter Linder, for their unwavering support, unbridled enthusiasm, ceaseless encouragement and the contribution of ideas that have shaped this work. Rauri Bowie, Margaret de Villiers, Leanne Dreyer, Chloe Galley, Julie Hawkins, Eric Knox, Hubert Kurzweil, Muthama Muasya, Ted Oliver, Gail Reeves, Jane Sakwa, Timo van der Niet, Tony Verboom and many others for informative scientific discussions. Annelise Botes, Coral de Villiers and the Bellstedt lab for a stimulating work environment, as well as the Biochemistry Department for hosting me. Curators and staff of the BOL, BR, DSM, EA, GRA, MO, NBG, NU and PRE herbaria. Many people have helped me with fieldwork. With the risk of forgetting some I thank Bruce Anderson, Lalao Andriamahefarivo, Dirk Bellstedt, Mike Bingham, Clinton Carbutt, Jeremy Croudache, Hildegard Crous, Tim Davenport, Louise de Roubaix, Thys de Villiers, Willem de Vlam, Tony Dold, Marc and Caroll Duckitt, Bob Ducksworth, Rika du Plessis, Trevor Edwards, Werner Fibeck, Felix Forest, Berit Gehrke, Malcolm Gemmel, Chris Hardy, Steve Johnson, Mark Johns, Tjeerd Jongeling, Caroline Joubert, Eric Knox, Francois Krige, Hubert Kurzweil, Annelise le Roux, Bill Liltved, Peter Linder, Georgio Lombardi, Mervin Lotter, Quentin Luke, Heiner Lutzeyer, Tony Marshall, Frank Mbago, Cameron McMaster, Doug McMurtry, Philippe Moline, Shelah Morita, Louis Mostert, Muthama Muasya, Ingrid Nanni, Kenneth Oberlander, Ted Oliver, Tessa Oliver, Thierry Pailler, Anton Pauw, Pete Phillipson, Christina Potgieter, Domitilla Raimondo, C Rakotovao, Jane Sakwa, Annelise Schutte, Koos Steenkamp, Kim Steiner, Timo van der Niet, Gerrit van Ede, vii Jan Vlok, Johny Witbooi, Azieb Woldetinsae and various authorities, conservation bodies and land owners for permission to collect plants. I have benefitted greatly from attending several courses and workshops such as the Intensive Course in Molecular Systematics at the University of Reading (courtesy of the South African Big Genera Group), the course in Advanced Cladistics at the University of Cape Town; the Phylogenetics and Viral Molecular Evolution course at the University of the Western Cape, the course on Model Based Phylogenetics at Stellenbosch University, and from a study visit to the Insitute for Systematic Botany at the University of Zurich. I thank the Leopold III Fund for Nature Exploration and Conservation (Belgium), the Foundation for the Advancement of Scientific Research in Africa (Belgium), the New York Botanical Garden (USA), the Chicago Zoological Society (USA), the San Diego County Orchid Council (USA) for financial contributions to the field work; the National Research Foundation of South Africa and Stellenbosch University for financial support to the research(er). Last but not least, I thank my parents and family for their trust and Jane Sakwa for her precious love. viii
Recommended publications
  • Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
    Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld.
    [Show full text]
  • An Asian Orchid, Eulophia Graminea (Orchidaceae: Cymbidieae), Naturalizes in Florida
    LANKESTERIANA 8(1): 5-14. 2008. AN ASIAN ORCHID, EULOPHIA GRAMINEA (ORCHIDACEAE: CYMBIDIEAE), NATURALIZES IN FLORIDA ROBE R T W. PEMBE R TON 1,3, TIMOTHY M. COLLINS 2 & SUZANNE KO P TU R 2 1Fairchild Tropical Botanic Garden, 2121 SW 28th Terrace Ft. Lauderdale, Florida 33312 2Department of Biological Sciences, Florida International University, Miami, FL 33199 3Author for correspondence: [email protected] ABST R A C T . Eulophia graminea, a terrestrial orchid native to Asia, has naturalized in southern Florida. Orchids naturalize less often than other flowering plants or ferns, butE. graminea has also recently become naturalized in Australia. Plants were found growing in five neighborhoods in Miami-Dade County, spanning 35 km from the most northern to the most southern site, and growing only in woodchip mulch at four of the sites. Plants at four sites bore flowers, and fruit were observed at two sites. Hand pollination treatments determined that the flowers are self compatible but fewer fruit were set in selfed flowers (4/10) than in out-crossed flowers (10/10). No fruit set occurred in plants isolated from pollinators, indicating that E. graminea is not autogamous. Pollinia removal was not detected at one site, but was 24.3 % at the other site evaluated for reproductive success. A total of 26 and 92 fruit were found at these two sites, where an average of 6.5 and 3.4 fruit were produced per plant. These fruits ripened and dehisced rapidly; some dehiscing while their inflorescences still bore open flowers. Fruit set averaged 9.2 and 4.5 % at the two sites.
    [Show full text]
  • Phylogeny, Character Evolution and the Systematics of Psilochilus (Triphoreae)
    THE PRIMITIVE EPIDENDROIDEAE (ORCHIDACEAE): PHYLOGENY, CHARACTER EVOLUTION AND THE SYSTEMATICS OF PSILOCHILUS (TRIPHOREAE) A Dissertation Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Erik Paul Rothacker, M.Sc. ***** The Ohio State University 2007 Doctoral Dissertation Committee: Approved by Dr. John V. Freudenstein, Adviser Dr. John Wenzel ________________________________ Dr. Andrea Wolfe Adviser Evolution, Ecology and Organismal Biology Graduate Program COPYRIGHT ERIK PAUL ROTHACKER 2007 ABSTRACT Considering the significance of the basal Epidendroideae in understanding patterns of morphological evolution within the subfamily, it is surprising that no fully resolved hypothesis of historical relationships has been presented for these orchids. This is the first study to improve both taxon and character sampling. The phylogenetic study of the basal Epidendroideae consisted of two components, molecular and morphological. A molecular phylogeny using three loci representing each of the plant genomes including gap characters is presented for the basal Epidendroideae. Here we find Neottieae sister to Palmorchis at the base of the Epidendroideae, followed by Triphoreae. Tropidieae and Sobralieae form a clade, however the relationship between these, Nervilieae and the advanced Epidendroids has not been resolved. A morphological matrix of 40 taxa and 30 characters was constructed and a phylogenetic analysis was performed. The results support many of the traditional views of tribal composition, but do not fully resolve relationships among many of the tribes. A robust hypothesis of relationships is presented based on the results of a total evidence analysis using three molecular loci, gap characters and morphology. Palmorchis is placed at the base of the tree, sister to Neottieae, followed successively by Triphoreae sister to Epipogium, then Sobralieae.
    [Show full text]
  • BFS244 Site Species List
    Species lists based on plot records from DEP (1996), Gibson et al. (1994), Griffin (1993), Keighery (1996) and Weston et al. (1992). Taxonomy and species attributes according to Keighery et al. (2006) as of 16th May 2005. Species Name Common Name Family Major Plant Group Significant Species Endemic Growth Form Code Growth Form Life Form Life Form - aquatics Common SSCP Wetland Species BFS No beel01 (FCT28) beel02 (FCT23a) beel03 (FCT11) Wd? Acacia pulchella Prickly Moses Mimosaceae Dicot WA 3 SH P 244 y y * Aira caryophyllea Silvery Hairgrass Poaceae Monocot 5 G A 244 y y Allocasuarina fraseriana Fraser's Sheoak Casuarinaceae Dicot WA 1 T P 244 y y * Anagallis arvensis var. arvensis Scarlet Pimpernel Primulaceae Dicot 4 H A 244 y Anigozanthos humilis subsp. humilis Catspaw Haemodoraceae Monocot WA 4 H PAB 244 y Astartea aff. fascicularis (Gibson et al. 1994) Astartea Myrtaceae Dicot WA 3 SH P y 244 y Austrodanthonia occidentalis Western Wallaby Grass Poaceae Monocot WA 5 G P 244 y Austrostipa compressa Golden Speargrass Poaceae Monocot WA 5 G P 244 y y y Banksia attenuata Candle Banksia Proteaceae Dicot WA 1 T P 244 y Banksia ilicifolia Hollyleaf Banksia Proteaceae Dicot WA 1 T P 244 y y Banksia menziesii Firewood Banksia Proteaceae Dicot WA 1 T P 244 y y Baumea articulata Jointed Twigrush Cyperaceae Monocot AUST 6 S-C P AQE y 244 y Bossiaea eriocarpa Common Bossiaea Papilionaceae Dicot WA 3 SH P 244 y y Brachyloma preissii Globe Heath Epacridaceae Dicot WA 3 SH P 244 y y * Briza maxima Blowfly Grass Poaceae Monocot 5 G A 244 y y y * Briza minor Shivery Grass Poaceae Monocot 5 G A 244 y y Burchardia congesta Kara Colchicaceae Monocot WA 4 H PAB 244 y Caladenia flava subsp.
    [Show full text]
  • A New Species of Disa (Orchidaceae) from Mpumalanga, South Africa ⁎ D
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector South African Journal of Botany 72 (2006) 551–554 www.elsevier.com/locate/sajb A new species of Disa (Orchidaceae) from Mpumalanga, South Africa ⁎ D. McMurtry a, , T.J. Edwards b, B. Bytebier c a Whyte Thorne, P O Box 218, Carino 1204, South Africa b School of Biological and Conservation Sciences, University of KwaZulu–Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa c Biochemistry Department, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa Received 10 November 2005; accepted 8 March 2006 Abstract A new species, Disa vigilans D. McMurtry and T.J. Edwards, is described from the Mpumalanga Escarpment. The species is a member of the Disa Section Stenocarpa Lindl. Its alliances are discussed in terms of its morphology and its phylogenetic placement is elucidated using molecular data. D. vigilans has previously been considered as an anomalous form of Disa montana Sond. but is more closely allied to Disa amoena H.P. Linder. © 2006 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Disa; Draensberg endemic; New species; Orchidaceae; Section Stenocarpae; South Africa; Mpumalanga province 1. Introduction with 3 main veins, margins thickened and translucent. Inflorescence lax, cylindrical, 40–75 mm long; bracts light green suffused pinkish Disa is the largest genus of Orchidaceae in southern Africa (162 with darker green veins, linear-lanceolate, acuminate, 11–29×2– spp.) and has been the focus of considerable taxonomic investigation 3 mm, scarious at anthesis. Flowers white suffused with carmine- (Linder, 1981a,b, 1986; Linder and Kurzweil, 1994).
    [Show full text]
  • Sistemática Y Evolución De Encyclia Hook
    ·>- POSGRADO EN CIENCIAS ~ BIOLÓGICAS CICY ) Centro de Investigación Científica de Yucatán, A.C. Posgrado en Ciencias Biológicas SISTEMÁTICA Y EVOLUCIÓN DE ENCYCLIA HOOK. (ORCHIDACEAE: LAELIINAE), CON ÉNFASIS EN MEGAMÉXICO 111 Tesis que presenta CARLOS LUIS LEOPARDI VERDE En opción al título de DOCTOR EN CIENCIAS (Ciencias Biológicas: Opción Recursos Naturales) Mérida, Yucatán, México Abril 2014 ( 1 CENTRO DE INVESTIGACIÓN CIENTÍFICA DE YUCATÁN, A.C. POSGRADO EN CIENCIAS BIOLÓGICAS OSCJRA )0 f CENCIAS RECONOCIMIENTO S( JIOI ÚGIC A'- CICY Por medio de la presente, hago constar que el trabajo de tesis titulado "Sistemática y evo­ lución de Encyclia Hook. (Orchidaceae, Laeliinae), con énfasis en Megaméxico 111" fue realizado en los laboratorios de la Unidad de Recursos Naturales del Centro de Investiga­ ción Científica de Yucatán , A.C. bajo la dirección de los Drs. Germán Carnevali y Gustavo A. Romero, dentro de la opción Recursos Naturales, perteneciente al Programa de Pos­ grado en Ciencias Biológicas de este Centro. Atentamente, Coordinador de Docencia Centro de Investigación Científica de Yucatán, A.C. Mérida, Yucatán, México; a 26 de marzo de 2014 DECLARACIÓN DE PROPIEDAD Declaro que la información contenida en la sección de Materiales y Métodos Experimentales, los Resultados y Discusión de este documento, proviene de las actividades de experimen­ tación realizadas durante el período que se me asignó para desarrollar mi trabajo de tesis, en las Unidades y Laboratorios del Centro de Investigación Científica de Yucatán, A.C., y que a razón de lo anterior y en contraprestación de los servicios educativos o de apoyo que me fueron brindados, dicha información, en términos de la Ley Federal del Derecho de Autor y la Ley de la Propiedad Industrial, le pertenece patrimonialmente a dicho Centro de Investigación.
    [Show full text]
  • University of Cape Town
    Phenotypic characterization of rhizobia isolates and distribution of Burkholderia rhizobia in the Core Cape Subregion. by Kolisa Yola Sinyanya SNYKOL001 Thesis presented for the degree of Master of Science In the Department of Biological Sciences University of Cape Town February 2016 Supervisors: Dr. Samson BM Chimphango UniversityA/ Prof. Muthama of Cape Muasya Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I hereby declare that all of the work in the document is my own. The thesis is submitted for the degree of Master of Science in the Department of Botany, University of Cape Town. It has not been for any degree or examination at any other university. __________________ Kolisa Yola Sinyanya i Abstract The Core Cape Subregion (CCR) is well known for its low nutrient and low pH soils, which harbour a variety of alpha and beta- Proteobacteria associated with a diversity of legume species. Soil bacteria are important for ecological processes and are influenced mostly by edaphic factors such as salinity and pH, and climatic conditions such as temperature. Recent studies have shown that nitrogen fixing Burkholderia form associations with legumes members of, among others, tribes Crotalarieae, Podalyrieae and Indigofereae. Selected rhizobia that included Burkholderia and Mesorhizobium, the two largest rhizobia genera in the isolated in the CCR, and representing beta- and alpha- Proteobacteria were phenotypically characterized to determine the tolerances to abiotic conditions.
    [Show full text]
  • Characterisation of Bacteria Associated with the Root Nodules of Hypocalyptus and Related Genera
    Characterisation of bacteria associated with the root nodules of Hypocalyptus and related genera by Chrizelle Winsie Beukes Dissertation submitted in partial fulfilment of the requirements for the degree Magister Scientiae In the Faculty of Natural and Agricultural Sciences, Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa Promoter: Prof. E.T. Steenkamp Co-promoters: Prof. S.N. Venter Dr. I.J. Law August 2011 © University of Pretoria Dedicated to my parents, Hendrik and Lorraine. Thank you for your unwavering support. © University of Pretoria I certify that this dissertation hereby submitted to the University of Pretoria for the degree of Magister Scientiae (Microbiology), has not previously been submitted by me in respect of a degree at any other university. Signature _________________ August 2011 © University of Pretoria Table of Contents Acknowledgements i Preface ii Chapter 1 1 Taxonomy, infection biology and evolution of rhizobia, with special reference to those nodulating Hypocalyptus Chapter 2 80 Diverse beta-rhizobia nodulate legumes in the South African indigenous tribe Hypocalypteae Chapter 3 131 African origins for fynbos associated beta-rhizobia Summary 173 © University of Pretoria Acknowledgements Firstly I want to acknowledge Our Heavenly Father, for granting me the opportunity to obtain this degree and for putting the special people along my way to aid me in achieving it. Then I would like to take the opportunity to thank the following people and institutions: My parents, Hendrik and Lorraine, thank you for your support, understanding and love; Prof. Emma Steenkamp, for her guidance, advice and significant insights throughout this project; My co-supervisors, Prof.
    [Show full text]
  • Pollination and the Evolution of Floral Traits: Selected Studies in the Cape Flora
    -~ Pollination and the evolution of floral traits: selected studies in the Cape flora by STEVEN D. JOHNSON Thesis submitted for the degree of Doctor of Philosophy in the Depart~ent of Botany at the University of Cape Town University of Cape Town September 1994 -~ /~... ~: .. _:•..,:_:_· •.,t--,,;__··_·.;.· ~: -~---· .·· "'--··......... .__,,.,/""/_·(, f·; Ti"~ Ul:-.:w~<iy ,~.j f""·:r· · 7"~'"r) '~as!~-~ ()n ~~i;rc·~l '! (J th~; ri~;;t··~;· ref·;~.;·.~:-.;(: t~;::. ti·Js;'.~--i~:! \:~;,·o;~ , H or in pert. Cc-.;7~yrighL i:> ::::;:;d by tho i:;u:~tc~'. j _ I . I \_:•:::7~""?.:;:.-~~-:f?::.."~:;.<t :"'' '"1:,~~- ;-_._.- ·_::_·:.: ':_:;:_;-::··: ,...~-: o-: .... : c»·-_· -~.c: ~ ' '-' \,j ) The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town -. Statement The conception, planning, execution and writing of this study was entirely my own except in the specific instances mentioned below. Some of the chapters are adapted from published papers which were coauthored with either one of my supervisors, William Bond and Kim Steiner. Their contributions were mainly through discussions and suggestions on how to improve the manuscripts. The cladistic analysis in Chapter 4 was done in collaboration with Peter Linder who is an authority in this field. Appendix B is a paper written by Kim Steiner, with Vin Whitehead and myself as coauthors.
    [Show full text]
  • Rbcl and Legume Phylogeny, with Particular Reference to Phaseoleae, Millettieae, and Allies Tadashi Kajita; Hiroyoshi Ohashi; Yoichi Tateishi; C
    rbcL and Legume Phylogeny, with Particular Reference to Phaseoleae, Millettieae, and Allies Tadashi Kajita; Hiroyoshi Ohashi; Yoichi Tateishi; C. Donovan Bailey; Jeff J. Doyle Systematic Botany, Vol. 26, No. 3. (Jul. - Sep., 2001), pp. 515-536. Stable URL: http://links.jstor.org/sici?sici=0363-6445%28200107%2F09%2926%3A3%3C515%3ARALPWP%3E2.0.CO%3B2-C Systematic Botany is currently published by American Society of Plant Taxonomists. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/aspt.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected].
    [Show full text]
  • Orchidoideae: Orchidaceae) Author(S): H
    The Phylogeny and Classification of the Diseae (Orchidoideae: Orchidaceae) Author(s): H. P. Linder and H. Kurzweil Source: Annals of the Missouri Botanical Garden, Vol. 81, No. 4 (1994), pp. 687-713 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/2399916 Accessed: 27-07-2016 11:10 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Missouri Botanical Garden Press is collaborating with JSTOR to digitize, preserve and extend access to Annals of the Missouri Botanical Garden This content downloaded from 137.158.114.36 on Wed, 27 Jul 2016 11:10:19 UTC All use subject to http://about.jstor.org/terms THE PHYLOGENY AND H. P. Linder2 and H. Kurzweil2'3 CLASSIFICATION OF THE DISEAE (ORCHIDOIDEAE: ORCHIDACEAE)l ABSTRACT The subtribal classification of the Diseae (Orchidoideae) is reviewed in light of the available morphological, leaf anatomical, and palynological data. These data are critically assessed, and the more prominent features are illustrated. The data are analyzed cladistically, and the robustness of the various components of the most parsimonious tree is assessed by a bootstrap analysis. Based on the cladistic analysis and the bootstrap analysis, a new classification is proposed for the Diseae.
    [Show full text]
  • An Investigation of the Floral Morphogenesis of Bonatea Speciosa (Orchidaceae)
    S. Afr.1. Bot., 1989, 55(4): 433--437 433 An investigation of the floral morphogenesis of Bonatea speciosa (Orchidaceae) H. Kurzweil Bolus Herbarium, University of Cape Town, Rondebosch, 7700 Republic of South Africa The flower morphology and ontogeny of Bonatea speciosa are described, and special attention is paid to the early development of the gynostemium. The lateral appendages of the latter ('auricles') are shown to be compound structures, consisting of a filament appendage and a small bulge likely to be a staminode. The median carpel apex is an enormous hood-like structure and lacks a receptive portion, the receptive stigma being entirely confined to the apices of the stigma stalks which correspond to the lateral carpel apices. All important stages are documented by SEM micrographs. Die blommorfologie en ontogenie van Bonatea speciosa word beskryf en spesiale aandag word aan die vroee ontwikkeling van die ginostegium gegee. Die laterale aanhangsels van laasgenoemde ('aurikels') is saamge­ stelde strukture, bestaande uit 'n filament en 'n klein geswolle dee I wat waarskynlik 'n staminodium is. Die mediaan-vrugblaarpunt is 'n groot kappievormige struktuur waarvan die ontvanklike dee I ontbreek, die ontvanklike stempel is geheel en al beperk tot die punte van die stempelsteeltjies wat met die laterale vrug­ blaarpunte ooreenstem. Aile belangrike stadiums word deur aftaselektronmikrograwe gestaaf. Keywords: Bonatea speciosa, floral morphogenesis, Orchidaceae, SEM investigation Introduction Materials and Methods Bonatea is a comparatively small genus of 20 species Flowers and floral buds were collected in the Cape which is distributed from Arabia through East Africa to Peninsula near Cape Town (L1andudno, Kurzwei! HK Cape Town in South Africa with the majority of species 859: voucher in BOL), and immediately fixed and found in South Africa's summer-rainfall area (Stewart preserved in 'Kew Cocktail' (H2 0 :alcohol:formalde­ et.
    [Show full text]