Study of the Whole Celiac Ganglion and of Artery-Projecting and Vein-Projecting Pathways in the Celiac Ganglion

Total Page:16

File Type:pdf, Size:1020Kb

Study of the Whole Celiac Ganglion and of Artery-Projecting and Vein-Projecting Pathways in the Celiac Ganglion STUDY OF THE WHOLE CELIAC GANGLION AND OF ARTERY-PROJECTING AND VEIN-PROJECTING PATHWAYS IN THE CELIAC GANGLION By Amit Harendra Shah A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Neuroscience—Doctor of Philosophy 2014 ABSTRACT STUDY OF THE WHOLE CELIAC GANGLION AND OF ARTERY-PROJECTING AND VEIN-PROJECTING PATHWAYS IN THE CELIAC GANGLION By Amit Harendra Shah The rat celiac ganglion (CG) contains ~10,000 sympathetic postganglionic neurons that innervate abdominal organs and the corresponding splanchnic vascular bed that supplies these organs. Splanchnic circulation holds approximately one-third of total blood volume and is a major source of blood redistribution to other vascular beds. In hypertension, blood from the high- capacitance splanchnic circulation may get redistributed to the low-capacitance central compartment, increasing arterial pressure. Surgical removal of the whole CG attenuates the development of hypertension, which suggests that the sympathetic innervation of the splanchnic circulation functions to regulate systemic arterial pressure. However, the pattern of hypertension- related increase in sympathetic activity of the ganglionic neurons that innervate the splanchnic vasculature is not known. Furthermore, the distribution of postganglionic sympathetic axons to the mesenteric vasculature is not fully understood. The studies reported in this dissertation address these two deficits in our knowledge by 1) comparing the levels of activation of CG neurons in normotensive rats to levels in hypertensive rats; 2) examining the extent and distribution of CG neuron innervation of mesenteric arteries and veins. Collectively, these studies suggest that there is not widespread increased activation of CG neurons in hypertension; in fact, neurons show a reduced sensitivity to activation by nicotine. Also, 72% of neurons that innervate mesenteric arteries and veins distribute their axons to widely separated vessels. This suggests that activation of relatively small number of ganglionic neurons can constrict the entire mesenteric circulation. In Chapters two and three of this dissertation, factors in the whole CG that are influenced by hypertension are studied. In Chapter two, 5-HT was measured in the whole CG as it can activate sympathetic postganglionic neurons. It was found to be synthesized in a substrate- independent manner in the CG. While 5-HT levels were not different between normotensive and hypertensive CGs, lower gene expression was measured for TPH2 and for 5-HT3A in hypertensive compared to normotensive CGs. In Chapter three, higher c-fos expression was observed at 6 Hz than 2 Hz preganglionic nerve stimulation indicating that c-fos expression is a good marker of neuronal activation. Basal levels of neuronal activation were similar between normotensive and hypertensive CGs but following preganglionic nerve stimulation and nicotine treatment, a smaller increase in c-fos expression was observed in hypertensive than normotensive sympathetic ganglia. Thus, these findings together question whether sympathetic activity is higher in the whole ganglion and instead, whether specific pathways in the CG may be overactive in hypertension. Artery-projecting and vein-projecting sympathetic pathways were studied in Chapters four and five using a novel, in vivo preparation where tracers were applied to small segments of adjacent mesenteric arteries and veins. Two PRVs were initially used but control experiments indicated that they competed for productive replication in a given neuron and instead, PRV was used with CTb. A majority of labeled CG neurons (60%) projected to both arteries and veins while the remainder projected to either arteries or veins. Moreover, a majority of labeled neurons (72%) projected widely to either arteries or veins that supplied different segments of the small intestine while the remainder of neurons had narrower projection fields. Hence, arteries and veins can be both separately and jointly regulated and also, different subsets of neurons may project to widely separated blood vessels or to more narrowly spaced targets. Copyright by AMIT HARENDRA SHAH 2014 ACKNOWLEDGEMENTS This endeavor was only possible through a great deal of support from my advisor, Dr. Kreulen, collaborators, family, and friends. I would like to thank Dr. Kreulen for introducing me to the study of autonomic ganglia, which after microscopically researching for several years has led to a better understanding of the broader fields of Neuroscience and Physiology. Also, thank you for encouraging me to find the questions that I found interesting and for guiding me in my pursuit of answers. The individual support, technical guidance, and helpful ideas of all my committee members, Drs. Keith Lookingland, Cynthia Jordan, and Gregory Fink, are also deeply appreciated. I was very privileged to work alongside such excellent colleagues: thank you Dr. Timothy Houchin, Dr. Casey Henley, Bradley Hammond, Dr. Lynnette Gerhold, AnnaLiese Durling, and Amy Porter for your support. In addition, Dr. Timothy Houchin provided invaluable help with anatomy and nerve stimulation of sympathetic ganglia, Dr. Lynnette Gerhold kindly reviewed dissertation chapters, and Bradley Hammond did all cell counts of c-fos immunoreactivity. Work with viral tracers was conducted in collaboration with Drs. Alan Sved, Patrick Card, and Georgina Cano at University of Pittsburgh. My parents, Meena and Harendra Shah, inspire me to challenge myself and to persist through these challenges and I am grateful to them for that. Last, but not least, I would like to thank my dear companion, Aisha, for her continual faith, love, and encouragement that motivate me to move forward and to do better in so many aspects in my life. v TABLE OF CONTENTS LIST OF TABLES .......................................................................................................................... x LIST OF FIGURES ....................................................................................................................... xi KEY TO ABBREVIATIONS ...................................................................................................... xiv CHAPTER ONE: GENERAL INTRODUCTION ......................................................................... 1 SYMPATHETIC NERVOUS SYSTEM .................................................................................... 4 SYMPATHETIC GANGLIA ...................................................................................................... 6 Sympathetic Postganglionic Neurons ...................................................................................... 8 SIF Cells ................................................................................................................................ 10 Satellite Cells ......................................................................................................................... 10 Convergence and Divergence of Preganglionic and Postganglionic Input ........................... 11 Intraganglionic Organization ................................................................................................. 11 SYMPATHETIC GANLGIA: GENERALIZED RELAYS OR SPECIALIZED INTEGRATORS? ..................................................................................................................... 12 Integration of Signals in Sympathetic Ganglia ...................................................................... 13 Distinct Pathways through Sympathetic Ganglia .................................................................. 13 Distinct Pathways through Sympathetic Ganglia to Arteries or Veins ................................. 15 SYMPATHETIC NERVE ACTIVITY IN HYPERTENSION ................................................ 17 ARTERIAL PRESSURE REGULATION ................................................................................ 18 REDISTRIBUTION OF BLOOD ............................................................................................. 19 NEURAL TRACERS ................................................................................................................ 22 Fluorescent Tracers ................................................................................................................ 22 Non-Fluorescent Tracers ....................................................................................................... 22 Viral Tracers .......................................................................................................................... 24 Wild-Type PRV ..................................................................................................................... 25 PRV as a Neural Tracer ......................................................................................................... 27 Wild-Type HSV ..................................................................................................................... 29 HSV as a Neural Tracer ......................................................................................................... 30 Use of Viral With Non-Viral Tracers .................................................................................... 31 RESEARCH AIM ..................................................................................................................... 32 SPECIFIC AIMS AND HYPOTHESES ................................................................................... 32 CHAPTER TWO: ROLE OF SEROTONIN IN SYMPATHETIC
Recommended publications
  • The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
    life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions.
    [Show full text]
  • Communication Center
    2/16/2012 Communication Center Nervous System Regulation •The Neural System is only 3% of your body weight, but is the most complex organ system. •Nervous impulses are fast acting (milliseconds) Neural vs. Hormonal but short lived. Overview •The nervous system includes all neural tissue in the body. Basic units are: Two Anatomical Divisions of The Nervous System a. Neurons (individual nerve cells) 1. CNS: Central Nervous System b. Neuroglia • supporting cells • Brain & Spinal Cord • separate & protect the neurons • Responsible for integrating, processing, & • provide supporting framework coordinatinggy sensory data and motor commands. i.e.- stumble example • act as phagocytes • regulate composition of interstitial fluid • The brain is also the organ responsible for • a.k.a. glial cells intelligence, memory, learning, & emotion • outnumber neurons 1 2/16/2012 2. PNS: Peripheral Nervous System PNS has 2 functional divisions • All nervous tissue outside CNS Afferent Division (Sensory) • Carries sensory data to CNS, carries motor •Bring sensory information to CNS from receptors in commands from the CNS. peripheral nervous tissue & organs. • Bundles of nerve fibers carry impulses in the PNS are known as per ip hera l nerves or jus t “nerves”. Efferent Division (Motor) •Carries motor commands from CNS to muscles & • Nerves attached to the brain are called cranial glands, these target organs are called effectors. nerves. Nerves attached to the spinal cord are called spinal nerves. The Efferent Division is broken into Somatic & The ANS has a: Autonomic Components (SNS) Somatic System: controls skeletal muscle contractions these can be voluntary (conscious) or sympathetic division involuntary (unconscious) {reflexes}. } antagonistic effects parasympathetic (ANS) Au tonom ic Sys tem: * a.k.a.
    [Show full text]
  • P2 Receptor-Mediated Modulation of Neurotransmitter Release—An Update
    Purinergic Signalling (2007) 3:269–284 DOI 10.1007/s11302-007-9080-0 ORIGINAL ARTICLE P2 receptor-mediated modulation of neurotransmitter release—an update Beáta Sperlágh & Attila Heinrich & Cecilia Csölle Received: 13 July 2007 /Accepted: 28 August 2007 / Published online: 9 October 2007 # Springer Science + Business Media B.V. 2007 Abstract Presynaptic nerve terminals are equipped with a ENPP ectonucleotide pyrophosphatase number of presynaptic auto- and heteroreceptors, including EJP excitatory junction potential ionotropic P2X and metabotropic P2Y receptors. P2 recep- ENTPDase ectonucleoside triphosphate diphosphohydro- tors serve as modulation sites of transmitter release by ATP lase and other nucleotides released by neuronal activity and EPP end plate potential pathological signals. A wide variety of P2X and P2Y EPSC excitatory postsynaptic current receptors expressed at pre- and postsynaptic sites as well as EPSP excitatory postsynaptic potential in glial cells are involved directly or indirectly in the GABA +-aminobutyric acid modulation of neurotransmitter release. Nucleotides are GPCR G-protein coupled receptor released from synaptic and nonsynaptic sites throughout the IL-1β interleukin-1β nervous system and might reach concentrations high enough IPSC inhibitory postsynaptic current to activate these receptors. By providing a fine-tuning LC locus coeruleus mechanism these receptors also offer attractive sites for LPS lipopolysaccharide pharmacotherapy in nervous system diseases. Here we mEPP miniature EPP review the rapidly emerging data on the modulation of mEPSC miniature EPSC transmitter release by facilitatory and inhibitory P2 receptors NA noradrenaline and the receptor subtypes involved in these interactions. NMJ neuromuscular junction NT neurotransmitter Keywords Neuromodulation . Presynaptic . P2X receptor . NTS nucleus tractus solitarii P2Y receptors .
    [Show full text]
  • Properties of the Venous and Arterial Innervation in the Mesentery
    J. Smooth Muscle Res. (2003) 39 (6): 269–279 269 Invited Review Properties of the Venous and Arterial Innervation in the Mesentery David L. KREULEN1 1Department of Physiology, Michigan State University, East Lansing, MI 48824-3320, USA Introduction The neural control of arteries and veins involves interactions between several vasoactive neurotransmitters released from the postganglionic sympathetic nerves and spinal sensory nerves. Sympathetic nerves are primarily vasoconstrictor in their action while the sensory nerves are vasodilatory; a result of the neurotransmitters released by these nerves. Thus, the nervous regulation of the vascular component of systemic blood pressure and of regional blood flow is the summation of vasoconstrictor and vasodilatory influences. Also, although the influence of arterial diameter on systemic blood pressure has received the most attention, venous diameter and compliance also are important in the regulation of blood pressure. The nervous regulation of blood flow and blood pressure depends upon the organization of sensory and sympathetic pathways to the vasculature as well as the events at the neuro-effector junctions in artery and vein. The sympathetic and sensory innervation of the mesenteric circulation consists of prevertebral sympathetic ganglion and dorsal root ganglion neurons, respectively. The axons of the neurons travel to the mesenteric arteries and veins in the paravascular nerves, which divide in the adventitia of the blood vessels to form the perivascular nerve plexus. Ultimately these axons divide into terminal axons, lose their Schwann cell sheath, and form neuroeffector junctions with vascular smooth muscle cells (Klemm et al., 1993). Although we know that arteries and veins are innervated by separate sympathetic neurons, all the mechanisms whereby these separate innervations regulate systemic blood pressure are not known.
    [Show full text]
  • Enteric Nervous System (ENS): 1) Myenteric (Auerbach) Plexus & 2
    Enteric Nervous System (ENS): 1) Myenteric (Auerbach) plexus & 2) Submucosal (Meissner’s) plexus à both triggered by sensory neurons with chemo- and mechanoreceptors in the mucosal epithelium; effector motors neurons of the myenteric plexus control contraction/motility of the GI tract, and effector motor neurons of the submucosal plexus control secretion of GI mucosa & organs. Although ENS neurons can function independently, they are subject to regulation by ANS. Autonomic Nervous System (ANS): 1) parasympathetic (rest & digest) – can innervate the GI tract and form connections with ENS neurons that promote motility and secretion, enhancing/speeding up the process of digestion 2) sympathetic (fight or flight) – can innervate the GI tract and inhibit motility & secretion by inhibiting neurons of the ENS Sections and dimensions of the GI tract (alimentary canal): Esophagus à ~ 10 inches Stomach à ~ 12 inches and holds ~ 1-2 L (full) up to ~ 3-4 L (distended) Duodenum à first 10 inches of the small intestine Jejunum à next 3 feet of small intestine (when smooth muscle tone is lost upon death, extends to 8 feet) Ileum à final 6 feet of small intestine (when smooth muscle tone is lost upon death, extends to 12 feet) Large intestine à 5 feet General Histology of the GI Tract: 4 layers – Mucosa, Submucosa, Muscularis Externa, and Serosa Mucosa à epithelium, lamina propria (areolar connective tissue), & muscularis mucosae Submucosa à areolar connective tissue Muscularis externa à skeletal muscle (in select parts of the tract); smooth muscle (at least 2 layers – inner layer of circular muscle and outer layer of longitudinal muscle; stomach has a third layer of oblique muscle under the circular layer) Serosa à superficial layer made of areolar connective tissue and simple squamous epithelium (a.k.a.
    [Show full text]
  • Neuron Types and Neurotransmitters
    Neuron types and Neurotransmitters Faisal I. Mohammed. PhD, MD University of Jordan 1 Objectives Understand synaptic transmission List types of sensory neurons Classify neurotransmitters Explain the mechanism of neurotransmission Judge the types of receptors for the neurotrasmitters University of Jordan 2 Functional Unit (Neuron) 3 Transmission of Receptor Information to the Brain ➢The larger the nerve fiber diameter the faster the rate of transmission of the signal ➢Velocity of transmission can be as fast as 120 m/sec or as slow as 0.5 m/sec ➢Nerve fiber classification ➢type A - myelinated fibers of varying sizes, generally fast transmission speed ➢subdivided into a, b, g, d type B- partially myelinated neurons (3-14m/sec speed) ➢type C - unmyelinated fibers, small with slow transmission speed University of Jordan 4 Types of Nerve Fiber -Myelinated fibers – Type A (types I, II and III) - A α - A β - A γ - A δ -Umyelinated Fibers- Type C (type IV) University of Jordan 5 Neuron Classification University of Jordan 6 Structural Classification of Neurons University of Jordan 7 Neurotransmitters ❖Chemical substances that function as synaptic transmitters 1. Small molecules which act as rapidly acting transmitters ❖acetylcholine, norepinephrine, dopamine, serotonin, GABA, glycine, glutamate, NO 2. Neuropeptides (Neuromodulators) ❖more potent than small molecule transmitters, cause more prolonged actions ❖endorphins, enkephalins, VIP, ect. ❖hypothalamic releasing hormones ❖TRH, LHRH, ect. ❖pituitary peptides ❖ACTH, prolactin, vasopressin,
    [Show full text]
  • 1 the Anatomy and Physiology of the Oesophagus
    111 2 3 1 4 5 6 The Anatomy and Physiology of 7 8 the Oesophagus 9 1011 Peter J. Lamb and S. Michael Griffin 1 2 3 4 5 6 7 8 911 2011 location deep within the thorax and abdomen, 1 Aims a close anatomical relationship to major struc- 2 tures throughout its course and a marginal 3 ● To develop an understanding of the blood supply, the surgical exposure, resection 4 surgical anatomy of the oesophagus. and reconstruction of the oesophagus are 5 ● To establish the normal physiology and complex. Despite advances in perioperative 6 control of swallowing. care, oesophagectomy is still associated with the 7 highest mortality of any routinely performed ● To determine the structure and function 8 elective surgical procedure [1]. of the antireflux barrier. 9 In order to understand the pathophysiol- 3011 ● To evaluate the effect of surgery on the ogy of oesophageal disease and the rationale 1 function of the oesophagus. for its medical and surgical management a 2 basic knowledge of oesophageal anatomy and 3 physiology is essential. The embryological 4 Introduction development of the oesophagus, its anatomical 5 structure and relationships, the physiology of 6 The oesophagus is a muscular tube connecting its major functions and the effect that surgery 7 the pharynx to the stomach and measuring has on them will all be considered in this 8 25–30 cm in the adult. Its primary function is as chapter. 9 a conduit for the passage of swallowed food and 4011 fluid, which it propels by antegrade peristaltic 1 contraction. It also serves to prevent the reflux Embryology 2 of gastric contents whilst allowing regurgita- 3 tion, vomiting and belching to take place.
    [Show full text]
  • Targeting Maladaptive Plasticity After Spinal Cord Injury to Prevent the Development of Autonomic Dysreflexia
    University of Kentucky UKnowledge Theses and Dissertations--Physiology Physiology 2019 TARGETING MALADAPTIVE PLASTICITY AFTER SPINAL CORD INJURY TO PREVENT THE DEVELOPMENT OF AUTONOMIC DYSREFLEXIA Khalid C. Eldahan University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0003-1674-2386 Digital Object Identifier: https://doi.org/10.13023/etd.2019.064 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Eldahan, Khalid C., "TARGETING MALADAPTIVE PLASTICITY AFTER SPINAL CORD INJURY TO PREVENT THE DEVELOPMENT OF AUTONOMIC DYSREFLEXIA" (2019). Theses and Dissertations--Physiology. 41. https://uknowledge.uky.edu/physiology_etds/41 This Doctoral Dissertation is brought to you for free and open access by the Physiology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Physiology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • NROSCI/BIOSC 1070 and MSNBIO 2070 November 15, 2017 Gastrointestinal 1 Functions of the Digestive Tract
    NROSCI/BIOSC 1070 and MSNBIO 2070 November 15, 2017 Gastrointestinal 1 Functions of the Digestive Tract. The digestive system has two primary roles: digestion, or the chemical and mechanical breakdown of foods into small molecules that can absorbed, or moved across the intestinal mucosa into the bloodstream. In order to accomplish these functions, the secretion of enzymes, hormones, mucus, and paracrines by the gastrointestinal organs is needed. Furthermore, motility, or controlled movement of materials through the digestive tract is required. In addition to these primary functions, the gastrointestinal tract faces a number of challenges. Almost 7 liters of fluid must be released into the lumen of the digestive tract per day to allow for digestion and absorption to occur. Clearly, most of this fluid must be reabsorbed or dehydration will occur. Furthermore, the inner surface of the digestive tract is technically in contact with the external environment; for this reason, protective mechanisms are needed. In part, these mechanisms must protect against the secretions of the GI tract, including acid and enzymes. Anatomy of the Gastrointestinal System November 15, 2017 Page 1 GI 1 The anatomy of the GI system is illustrated in the previous 2 figures. The organs involved in digestion and absorption include the salivary glands, esophagus, stomach, small intestine, liver, pancreas, and large intestine. In addition, 7 sphincters control the movement of material and secretions between the organs. The total length of the GI tract is about 15 feet, of which 13 feet are comprised of intestine. The processed material within the GI tract is referred to as chyme.
    [Show full text]
  • Interactions of the Enteric Nervous System with the Gut Microbiome in the Neuroligin-3 R451C Mouse Model of Autism
    Interactions of the enteric nervous system with the gut microbiome in the neuroligin-3R451C mouse model of autism M.H.M. Madusani Herath Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy September 2020 Department of Physiology The University of Melbourne ABSTRACT Autism patients are four times more likely to be hospitalized due to gastrointestinal (GI) dysfunction compared to the general public. However, the exact cause of GI dysfunction in individuals with autism is currently unknown. Genetic predisposition to autism spectrum disorder (ASD) has been highlighted in various studies and mutations in genes that affect nervous system function can drive both behavioural abnormalities and GI dysfunction in autism. Neuroligin-3 (NLGN3) is a postsynaptic membrane protein and the R451C missense mutation in the NLGN3 gene is associated with ASD. Recent studies revealed that the NLGN3 R451C mutation induces GI dysfunction in autism patients as well as in mice but, the cellular localization and the effects of this mutation on NLGN3 production in the enteric nervous system (ENS) have not been reported to date. The intestinal mucosal barrier is the interface separating the external environment from the interior of the body. Mucosal barrier functions are directly regulated by the enteric nervous system. Therefore, ENS dysfunction can induce mucosal barrier impairments. An impaired intestinal barrier has been reported in autism patients, but neurally-mediated barrier dysfunctions have not been assessed in transgenic autism mouse models with an altered nervous system. The intestinal mucus layer is the outermost layer of the mucosa which separates the intestinal microbiota from the intestinal epithelium.
    [Show full text]
  • Activation of Intrinsic Afferent Pathways in Submucosal Ganglia of the Guinea Pig Small Intestine
    The Journal of Neuroscience, May 1, 2000, 20(9):3295–3309 Activation of Intrinsic Afferent Pathways in Submucosal Ganglia of the Guinea Pig Small Intestine Hui Pan and Michael D. Gershon Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032 The enteric nervous system contains intrinsic primary afferent blocked by an antagonist of human calcitonin gene-related neurons that allow mucosal stimulation to initiate reflexes with- peptide (hCGRP8–37). hCGRP8–37 also inhibited the spread of out CNS input. We tested the hypothesis that submucosal excitation in the submucosal plexus, assessed by measuring primary afferent neurons are activated by 5-hydroxytryptamine the uptake of FM2-10 and induction of c-fos. In summary, data (5-HT) released from the stimulated mucosa. Fast and/or slow are consistent with the hypothesis that 5-HT from enterochro- EPSPs were recorded in submucosal neurons after the delivery maffin cells in response to mucosal stimuli initiates reflexes by of exogenous 5-HT, WAY100325 (a 5-HT1P agonist), mechani- stimulating 5-HT1P receptors on submucosal primary afferent cal, or electrical stimuli to the mucosa of myenteric plexus-free neurons. Second-order neurons respond to these cholinergic/ preparations (Ϯ extrinsic denervation). These events were re- CGRP-containing cells with nicotinic fast EPSPs and/or CGRP- sponses of second-order cells to transmitters released by ex- mediated slow EPSPs. Slow EPSPs are necessary for excita- cited primary afferent neurons. After all stimuli, fast and slow tion to spread within the submucosal plexus. Because some EPSPs were abolished by a 5-HT1P antagonist, N-acetyl-5- second-order neurons contain also CGRP,primary afferent neu- hydroxytryptophyl-5-hydroxytryptophan amide, and by 1.0 ␮M rons may be multifunctional and also serve as interneurons.
    [Show full text]
  • Practical Approaches to Dysphagia Caused by Esophageal Motor Disorders Amindra S
    Practical Approaches to Dysphagia Caused by Esophageal Motor Disorders Amindra S. Arora, MB BChir and Jeffrey L. Conklin, MD Address nonspecific esophageal motor disorders (NSMD), diffuse Division of Gastroenterology and Hepatology, Mayo Clinic, esophageal spasm (DES), nutcracker esophagus (NE), 200 First Street SW, Rochester, MN 55905, USA. hypertensive lower esophageal sphincter (hypertensive E-mail: [email protected] LES), and achalasia [1••,3,4••,5•,6]. Out of all of these Current Gastroenterology Reports 2001, 3:191–199 conditions, only achalasia can be recognized by endoscopy Current Science Inc. ISSN 1522-8037 Copyright © 2001 by Current Science Inc. or radiology. In addition, only achalasia has been shown to have an underlying distinct pathologic basis. Recent data suggest that disorders of esophageal motor Dysphagia is a common symptom with which patients function (including LES incompetence) affect nearly present. This review focuses primarily on the esophageal 20% of people aged 60 years or over [7••]. However, the motor disorders that result in dysphagia. Following a brief most clearly defined motility disorder to date is achalasia. description of the normal swallowing mechanisms and the Several studies reinforce the fact that achalasia is a rare messengers involved, more specific motor abnormalities condition [8•,9]. However, no population-based studies are discussed. The importance of achalasia, as the only exist concerning the prevalence of most esophageal motor pathophysiologically defined esophageal motor disorder, disorders, and most estimates are derived from people with is discussed in some detail, including recent developments symptoms of chest pain and dysphagia. A recent review of in pathogenesis and treatment options. Other esophageal the epidemiologic studies of achalasia suggests that the spastic disorders are described, with relevant manometric worldwide incidence of this condition is between 0.03 and tracings included.
    [Show full text]