Philosophical and Historical Reflections on the Artificial-Natural Distinction in the Life Sciences ! ! by ! S

Total Page:16

File Type:pdf, Size:1020Kb

Philosophical and Historical Reflections on the Artificial-Natural Distinction in the Life Sciences ! ! by ! S ! DENATURING NATURE ! Philosophical and Historical Reflections on the Artificial-Natural Distinction in the Life Sciences ! ! by ! S. Andrew Inkpen ! B.Sc. Saint Mary’s University 2008 ! ! ! ! ! A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF ! Doctor of Philosophy ! in ! The Faculty of Graduate and Postdoctoral Studies ! (Philosophy) ! ! ! ! ! THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) ! August 2014 ! © S. Andrew Inkpen, 2014 ! ! ABSTRACT ! ! The philosopher Georges Canguilhem observed that the “physician’s thought and activity are incomprehensible without the concepts of the normal and the pathological.” I argue similarly regarding the biologist, only it is “the artificial” and “the natural” that are indispensable. Whether it is their objects of study, the methods used to investigate those objects, or even fellow researchers, biologists have habitually classified aspects of their discipline in a way that reflects the artificial-natural distinction. Why this way of classifying? What purpose does it serve? What principles guide its application? With what repercussions? Tracing the transformation of these concepts through a series of historical episodes, I explore the reasons why biologists use this distinction and how it has influenced the practices and directions of certain biological fields—specifically evolutionary biology and ecology. The argument of this dissertation is that in biology decisions concerning the choice and evaluation of experimental and evidential practices, objects of study, and even assessments of scientific personas betray the artificial-natural distinction. Invocations of this distinction, like the normal-pathological, code normative contentions about proper biological practice. “The natural,” I argue, often functions as an epistemic authority. The methodology I employ in this dissertation is conceptual and historical. The arguments marshalled are supported by conceptual-philosophical analysis, close readings of primary texts, and archival work. In the end I aim to problematize a set of widely invoked, but heterogeneously used, biological concepts. My arguments undermine a commonplace view according to which the collapse of the artificial-natural distinction is a prerequisite for contemporary science. This distinction is not, I argue, an outdated, pernicious relic; it has continued to exert a significant influence on scientific practice, and should not be ignored. !ii ! PREFACE ! ! This dissertation is original, unpublished, independent work by the author, S. Andrew Inkpen. A shorter version of Chapter 4 has been accepted for publication in the December 2014 issue of Endeavour as “‘The Art Itself is Nature’: Darwin, Domestic Varieties, and the Scientific Revolution.” ! ! ! ! !iii ! TABLE OF CONTENTS ABSTRACT .....................................................................................................................ii PREFACE .......................................................................................................................iii TABLE OF CONTENTS ...................................................................................................iv LIST OF TABLES ............................................................................................................viVI LIST OF FIGURES ..........................................................................................................viiVII ACKNOWLEDGEMENTS ...............................................................................................viiiVIII DEDICATION ...................................................................................................................xX CHAPTER 1 .....................................................................................................................1 The Artificial-Natural Distinction An Introduction CHAPTER 2 ...................................................................................................................32 Art, Nature, and the Scientific Revolution Making Modern Experimental Science CHAPTER 3 ...................................................................................................................57 Denaturing Nature Disturbing Conditions and Classifications CHAPTER 4 ...................................................................................................................84 The Art Itself is Nature Darwin, Domestic Varieties and the Mechanical Philosophy CHAPTER 5 .................................................................................................................112 Selection in the State of Nature Darwin and Wallace on Domestication CHAPTER 6 ................................................................................................................159 Searching for What Nature has Wrought Dobzhansky and the “Natural” Experimental Fruit Fly !iv CHAPTER 7 ................................................................................................................219 Communities, Natural Experiments, and “Soft” Science Jared Diamond’s Community Ecology CHAPTER 8 ................................................................................................................267 Conclusion REFERENCES .............................................................................................................275 APPENDIX 1 ...............................................................................................................305 A Note on the Artificial-Natural Classifications of Persons APPENDIX 2 ...............................................................................................................311 What is a Natural Experiment? APPENDIX 3 ...............................................................................................................316 Diamond on Experimental Tradeoffs ! ! ! ! ! ! !v ! LIST OF TABLES ! ! Table 7.1 Abridged table from Diamond 1986a comparing the advantages and disadvantages of different types of experiments in ecology......................251 Table A3.1 Full table from Diamond 1986a comparing the advantages and disadvantages of different types of experiments in ecology......................318 ! !vi ! LIST OF FIGURES ! ! Figure 2.1 The Mirror of Nature and the Image of Art..........................................43 Figure 2.2 An Air Pump Used by Robert Boyle....................................................45 Figure 4.1 An Elaborate Astronomical Clock in Strasbourg (c. 1875)..................89 Figure 4.2 Clockmaker About to Fix a Clock........................................................92 Figure 4.3 A Mechanical Toy.................................................................................94 Figure 4.4 Victorian’s in Domesticated Nature, “Botanising”...............................95 Figure 4.5 The Polish Pigeon or Polish Cock......................................................102 Figure 5.1 Wallace’s Variation in the State of Nature..........................................128 Figure 5.2 Darwin’s Variation in the State of Domesticity..................................129 Figure 5.3 An Argus Pheasant Sitting on a Branch of a Tree..............................144 Figure 6.1 The Mutant Type: “eyeless”...............................................................171 Figure 6.2 The First Linear Linkage Map............................................................172 Figure 6.3 A Postcard from Dobzhansky to L. C. Dunn......................................204 Figure 7.1 Diamond’s Geometric Principles for Nature Reserve Design............227 Figure 7.2 Distributions of Two Macropygia Cuckoo-Dove Species..................229 Figure 7.3 Experimental Types............................................................................313 !vii ACKNOWLEDGEMENTS ! ! I owe a tremendous debt to two people in particular. First, my supervisor, John Beatty. Some time ago John took a risk on an eager biology undergraduate with little training in philosophy or history and who was, probably unbeknownst to John, predisposed to intellectual wandering. John has seen me through every step of graduate education and has been a good friend as well. The best parts of this project are a result of his insight. The worst parts are of my own doing. I owe him a debt I could not possibly repay. Without him, this project would never have begun. Second, my partner in crime, Dani Hallet. She has unscrambled more drafts and heeded more complaining than anyone should be asked to bear, and through this has remained her marvelous and clever self. Her mark is indelibly left on the pages that follow. Without her, this project would never have concluded. I have accrued less tremendous, but still significant, debts to a number of other people. My transition to philosophy can be blamed on Lisa Gannett and John MacKinnon at Saint Mary’s University. The former has become a close friend and has provided needed feedback on this project. The other members of my dissertation committee, Alan Richardson and Chris Stephens, were helpful throughout course work and with aspects of this project as well. Other members of the UBC philosophy faculty have been influential on the direction I have taken, in particular, Margaret Schabas and Sylvia Berryman. Finally, I would like to thank those members of my dissertation examination committee not mentioned above, Bob Brain (university examiner) and Garland Allen (external examiner). Thanks to all my friends at UBC, particularly Chris French, Taylor Davis, Tyler DesRoches, Alirio Rosales, and Jiwon Byun. You have
Recommended publications
  • Outline of Science
    Outline of science The following outline is provided as a topical overview of • Empirical method – science: • Experimental method – The steps involved in order Science – systematic effort of acquiring knowledge— to produce a reliable and logical conclusion include: through observation and experimentation coupled with logic and reasoning to find out what can be proved or 1. Asking a question about a natural phenomenon not proved—and the knowledge thus acquired. The word 2. Making observations of the phenomenon “science” comes from the Latin word “scientia” mean- 3. Forming a hypothesis – proposed explanation ing knowledge. A practitioner of science is called a for a phenomenon. For a hypothesis to be a "scientist". Modern science respects objective logical rea- scientific hypothesis, the scientific method re- soning, and follows a set of core procedures or rules in or- quires that one can test it. Scientists generally der to determine the nature and underlying natural laws of base scientific hypotheses on previous obser- the universe and everything in it. Some scientists do not vations that cannot satisfactorily be explained know of the rules themselves, but follow them through with the available scientific theories. research policies. These procedures are known as the 4. Predicting a logical consequence of the hy- scientific method. pothesis 5. Testing the hypothesis through an experiment – methodical procedure carried out with the 1 Essence of science goal of verifying, falsifying, or establishing the validity of a hypothesis. The 3 types of
    [Show full text]
  • A Correlation of Cytological and Genetical Crossing-Over in Zea Mays. PNAS 17:492–497
    A CORRELATION OF CYTOLOGICAL AND GENETICAL CROSSING-OVER IN ZEA MAYS HARRIET B. CREIGHTON BARBARA MCCLINTOCK Botany Department Cornell University Ithaca, New York Creighton, H., and McClintock, B. 1931 A correlation of cytological and genetical crossing-over in Zea mays. PNAS 17:492–497. E S P Electronic Scholarly Publishing http://www.esp.org Electronic Scholarly Publishing Project Foundations Series –– Classical Genetics Series Editor: Robert J. Robbins The ESP Foundations of Classical Genetics project has received support from the ELSI component of the United States Department of Energy Human Genome Project. ESP also welcomes help from volunteers and collaborators, who recommend works for publication, provide access to original materials, and assist with technical and production work. If you are interested in volunteering, or are otherwise interested in the project, contact the series editor: [email protected]. Bibliographical Note This ESP edition, first electronically published in 2003 and subsequently revised in 2018, is a newly typeset, unabridged version, based on the 1931 edition published by The National Academy of Sciences. Unless explicitly noted, all footnotes and endnotes are as they appeared in the original work. Some of the graphics have been redone for this electronic version. Production Credits Scanning of originals: ESP staff OCRing of originals: ESP staff Typesetting: ESP staff Proofreading/Copyediting: ESP staff Graphics work: ESP staff Copyfitting/Final production: ESP staff © 2003, 2018 Electronic Scholarly Publishing Project http://www.esp.org This electronic edition is made freely available for educational or scholarly purposes, provided that this copyright notice is included. The manuscript may not be reprinted or redistributed for commercial purposes without permission.
    [Show full text]
  • The Mendel Newsletter
    THE MENDEL NEWSLETTER Archival Resources for the History of Genetics & Allied Sciences ISSUED BY THE LIBRARY OF THE AMERICAN PHILOSOPHICAL SOCIETY New Series, No. 20 June 2015 IN THIS ISSUE John Marius Opitz Papers at the American Philosophical Society — Charles Greifenstein 3 Animal Genetics Collections at Edinburgh University Library Special Collections — Clare Button 6 Rethinking Russian Studies on the Genetics of Natural Populations: Vassily Babkoff’s Papers and the History of the “Evolutionary Brigade,” 1934–1940 — Kirill Rossiianov and Tatiana Avrutskaya 15 Centrum Mendelianum: The Mendel Museum Moved to the Former Premises of Mendel’s Scientific Society — Anna Matalová and Eva Matalová 25 Resident Research Fellowships in Genetics, History of Medicine and Related Disciplines 36 THE AMERICAN PHILOSOPHICAL SOCIETY LIBRARY Philadelphia The Mendel Newsletter June 2015 The Mendel Newsletter American Philosophical Society Library 105 South Fifth Street Philadelphia PA 19106-3386 U.S.A. www.amphilsoc.org/library Editor Managing Editor Michael Dietrich Earle E. Spamer, American Philosophical Society Department of Biological Sciences [email protected] 215 Gilman Hall, HB 6044 Dartmouth College Hanover NH 03755 The Mendel Newsletter [email protected] [email protected] Editorial Board Mark B. Adams, University of Pennsylvania Barbara Kimmelman, Philadelphia University Garland E. Allen, Washington University Martin L. Levitt, American Philosophical Society John Beatty, University of Minnesota Jane Maienschein, Arizona State University Frederick B. Churchill, Indiana University Diane B. Paul, University of Massachusetts, Boston Michael R. Dietrich, Dartmouth College Jan Sapp, York University,Toronto Bernardino Fantini, Institut Louis Jantet d’Histoire Vassiliki Beatty Smocovitis, University of Florida de Medicine, Geneva The Mendel Newsletter, New Series, No.
    [Show full text]
  • Introduction and Historical Perspective
    Chapter 1 Introduction and Historical Perspective “ Nothing in biology makes sense except in the light of evolution. ” modified by the developmental history of the organism, Theodosius Dobzhansky its physiology – from cellular to systems levels – and by the social and physical environment. Finally, behaviors are shaped through evolutionary forces of natural selection OVERVIEW that optimize survival and reproduction ( Figure 1.1 ). Truly, the study of behavior provides us with a window through Behavioral genetics aims to understand the genetic which we can view much of biology. mechanisms that enable the nervous system to direct Understanding behaviors requires a multidisciplinary appropriate interactions between organisms and their perspective, with regulation of gene expression at its core. social and physical environments. Early scientific The emerging field of behavioral genetics is still taking explorations of animal behavior defined the fields shape and its boundaries are still being defined. Behavioral of experimental psychology and classical ethology. genetics has evolved through the merger of experimental Behavioral genetics has emerged as an interdisciplin- psychology and classical ethology with evolutionary biol- ary science at the interface of experimental psychology, ogy and genetics, and also incorporates aspects of neuro- classical ethology, genetics, and neuroscience. This science ( Figure 1.2 ). To gain a perspective on the current chapter provides a brief overview of the emergence of definition of this field, it is helpful
    [Show full text]
  • Computer Science Students' Views on Educational Studies-Pedagogy
    RESEARCH PAPERS COMPUTER SCIENCE STUDENTS' VIEWS ON EDUCATIONAL STUDIES-PEDAGOGY By EFROSYNI-ALKISTI PARASKEVOPOULOU-KOLLIA * GEORGIA SOURSOU ** BILL ZOGOPOULOS *** EVANGELIA OREOPOULOU **** PANAGIOTA KONTOU ***** VASILIKI ZOURA ****** * Adjunct Assistant Professor, Department of Computer Science and Biomedical Informatics, University of Thessaly, School of Science, Papasiopoulou, Lamia, Greece. ** Post-graduate Student in Bioinformatics, University of Crete, Faculty of Medicine, Voutes University Campus, Heraklion-Crete, Greece. ***,****,****** Student, Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou str., Lamia, Greece. ***** Post-doctoral Researcher and Adjunct Lecturer, Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou str., Lamia, Greece. Date Received: 22/02/2018 Date Revised: 06/06/2018 Date Accepted: 24/06/2018 ABSTRACT The present article is based on a small-scale research that took place with the students in the Department of Computer Science and Biomedical Informatics in 2014 and three years later with the students of the same Department and the Department of Computer Science, as well. Students who have enrolled in the Educational science-Pedagogy module, that the Department offers, were asked if the module was beneficial in a Department purely technical (Faculty of Science) and if this theoretical module assisted them in their academic life and generally. Various views are listed reflecting students' perspective of the module Educational science-Pedagogy and come to the conclusion that we present; no module is useless. Keywords: Computer Science, Educational Science-Pedagogy, Greek Educational System, Hard and Soft Science, Students. INTRODUCTION pp. 21-22). Pedagogy is, therefore, an anthropological, The term “Pedagogy” refers to the science of educating intellectual, and applied social science that arose from children, both in terms of upbringing and of academic Philosophy and its aim is to research the entire spectrum development.
    [Show full text]
  • Weighing Falling Bodies. Galileo's Thought Experiment in The
    Weighing Falling Bodies. Galileo’s Thought Experiment in the Development of his Dynamical Thinking. Maarten Van Dyck Centre for Logic and Philosophy of Science Centre for History of Science Ghent University [email protected] {The author is research assistant of the Fund for Scientific Research (FWO) – Flanders} 1 ACKNOWLEDGEMENTS I wish to thank Tim De Mey, without whom I would have never plunged so deep in Galileo’s thought experiment; Paolo Palmieri, who made the invaluable suggestion that I should have a look at the postils to Rocco , and whose comments on a first version of this paper helped to significantly improve both its contents and presentation; and Sabina Leonelli for her much appreciated assistance in translating the Italian fragments from the postils to Rocco. 2 CONTENTS 1. Introduction: The intelligibility of dynamics – the dynamics of intelligibility PART I – Understanding weight as a dynamic factor: Ambiguities 2. La bilancetta : Understanding mixtures and transforming gravities 2.a Solving the crown problem 2.b Balancing mixtures and speeds 3. De motu : Attempts at an Archimedean natural philosophy 3.a The dynamics of De motu 3.b From equal volumes to unit volumes 4. De motu : Introducing the thought experiment 4.a A hidden assumption 4.b The dynamical conundrum 5. Discorso : The impotence of specific gravity as a dynamic factor 5.a Moment and absolute weight 5.b Moment and specific weight 5.c The extrapolation argument PART II – Understanding weight as a dynamic factor: Towards a resolution 6. Postille a Roco : Rethinking the thought experiment 6.a Re-presenting the thought experiment 6.b Resolving the dynamical conundrum 7.
    [Show full text]
  • In the Later Philosophy of Paul Feyerabend
    Durham E-Theses Pluralism and the 'Problem of Reality' in the Later Philosophy of Paul Feyerabend KIDD, IAN,JAMES How to cite: KIDD, IAN,JAMES (2010) Pluralism and the 'Problem of Reality' in the Later Philosophy of Paul Feyerabend, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/864/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Kidd Pluralism and the ‘Problem of Reality’ in the Later Philosophy of Paul Feyerabend Abstract Feyerabend’s later philosophy was a sustained defence of cultural and epistemic diversity. After Against Method (1975) Feyerabend argued that his rejection of methodological monism challenged the presumed unity and superiority of scientific knowledge and practices. His later philosophy was therefore dedicated to a reassessment of the merits of a wide range of ‘non-scientific’ traditions present throughout non-Western indigenous cultures.
    [Show full text]
  • Foundations of Nursing Science 9781284041347 CH01.Indd Page 2 10/23/13 10:44 AM Ff-446 /207/JB00090/Work/Indd
    9781284041347_CH01.indd Page 1 10/23/13 10:44 AM ff-446 /207/JB00090/work/indd © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION PART 1 Foundations of Nursing Science 9781284041347_CH01.indd Page 2 10/23/13 10:44 AM ff-446 /207/JB00090/work/indd © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 9781284041347_CH01.indd Page 3 10/23/13 10:44 AM ff-446 /207/JB00090/work/indd © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION CHAPTER Philosophy of Science: An Introduction 1 E. Carol Polifroni Introduction A philosophy of science is a perspective—a lens, a way one views the world, and, in the case of advanced practice nurses, the viewpoint the nurse acts from in every encounter with a patient, family, or group. A person’s philosophy of science cre- ates the frame on a picture—a message that becomes a paradigm and a point of reference. Each individual’s philosophy of science will permit some things to be seen and cause others to be blocked. It allows people to be open to some thoughts and potentially keeps them closed to others. A philosophy will deem some ideas correct, others inconsistent, and some simply wrong. While philosophy of sci- ence is not meant to be viewed as a black or white proposition, it does provide perspectives that include some ideas and thoughts and, therefore, it must neces- sarily exclude others. The important key is to ensure that the ideas and thoughts within a given philosophy remain consistent with one another, rather than being in opposition.
    [Show full text]
  • Understanding the Progress of Science
    Understanding the Progress of Science C. D. McCoy 30 May 2018 The central problem of epistemology has always been and still is the problem of the growth of knowledge. And the growth of knowledge can be studied best by studying the growth of scientific knowledge. —(Popper, 2002b, xix) Merely fact-minded sciences make merely fact-minded people. —(Husserl, 1970, 6) The growth of human knowledge is realized most dramatically in the growth of scientific knowledge. What we have come to know through science about the workings of our human bodies and the workings of heavenly bodies, among much else, astounds, especially in comparison to our accumulating knowledge of the commonplace and everyday. Impressed by the evident epistemic progress made by science, many philosophers during the 20th century thought that studying how scientific knowledge increases is a crucial task of epistemological inquiry, and, indeed, the progress of science has been a topic of considerable interest. Yet, eventually, late in the century, attention waned and for the most part shifted to other tasks. Recently, however, a provocative article by Bird has re-ignited philosophical interest in the topic of scientific progress (Bird, 2007). Bird criticizes what he takes to have been the most prominent accounts advanced in the 20th century and presses for what he views as a venerable but lately overlooked one. He claims that realist philosophers of science have often presumed that truth is the goal of science and progress to be properly characterized by an accu- mulation of truth or truths, and notes that anti-realists have often rejected truth as a goal of science and characterized progress in terms of, among other things, “problem-solving effectiveness.”1 He criticizes the former for overlooking the relevance of justification to progress and the latter for giving up on truth.
    [Show full text]
  • Chromosomal Theory and Genetic Linkage
    362 Chapter 13 | Modern Understandings of Inheritance 13.1 | Chromosomal Theory and Genetic Linkage By the end of this section, you will be able to do the following: • Discuss Sutton’s Chromosomal Theory of Inheritance • Describe genetic linkage • Explain the process of homologous recombination, or crossing over • Describe chromosome creation • Calculate the distances between three genes on a chromosome using a three-point test cross Long before scientists visualized chromosomes under a microscope, the father of modern genetics, Gregor Mendel, began studying heredity in 1843. With improved microscopic techniques during the late 1800s, cell biologists could stain and visualize subcellular structures with dyes and observe their actions during cell division and meiosis. With each mitotic division, chromosomes replicated, condensed from an amorphous (no constant shape) nuclear mass into distinct X-shaped bodies (pairs of identical sister chromatids), and migrated to separate cellular poles. Chromosomal Theory of Inheritance The speculation that chromosomes might be the key to understanding heredity led several scientists to examine Mendel’s publications and reevaluate his model in terms of chromosome behavior during mitosis and meiosis. In 1902, Theodor Boveri observed that proper sea urchin embryonic development does not occur unless chromosomes are present. That same year, Walter Sutton observed chromosome separation into daughter cells during meiosis (Figure 13.2). Together, these observations led to the Chromosomal Theory of Inheritance, which identified chromosomes as the genetic material responsible for Mendelian inheritance. Figure 13.2 (a) Walter Sutton and (b) Theodor Boveri developed the Chromosomal Theory of Inheritance, which states that chromosomes carry the unit of heredity (genes).
    [Show full text]
  • Bibliometric Evidence for a Hierarchy of the Sciences
    Edinburgh Research Explorer Bibliometric Evidence for a Hierarchy of the Sciences Citation for published version: Fanelli, D & Glanzel, W 2013, 'Bibliometric Evidence for a Hierarchy of the Sciences', PLoS ONE, vol. 8, no. 6, e66938. https://doi.org/10.1371/journal.pone.0066938 Digital Object Identifier (DOI): 10.1371/journal.pone.0066938 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: PLoS ONE Publisher Rights Statement: © 2013 Fanelli, Daniele. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Fanelli, D., & Glanzel, W. (2013). Bibliometric Evidence for a Hierarchy of the Sciences. PLoS One, 8(6), [e66938]doi: 10.1371/journal.pone.0066938 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately
    [Show full text]
  • Alfred Henry Sturtevant (1891–1970) [1]
    Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Alfred Henry Sturtevant (1891–1970) [1] By: Gleason, Kevin Keywords: Thomas Hunt Morgan [2] Drosophila [3] Alfred Henry Sturtevant studied heredity in fruit flies in the US throughout the twentieth century. From 1910 to 1928, Sturtevant worked in Thomas Hunt Morgan’s research lab in New York City, New York. Sturtevant, Morgan, and other researchers established that chromosomes play a role in the inheritance of traits. In 1913, as an undergraduate, Sturtevant created one of the earliest genetic maps of a fruit fly chromosome, which showed the relative positions of genes [4] along the chromosome. At the California Institute of Technology [5] in Pasadena, California, he later created one of the firstf ate maps [6], which tracks embryonic cells throughout their development into an adult organism. Sturtevant’s contributions helped scientists explain genetic and cellular processes that affect early organismal development. Sturtevant was born 21 November 1891 in Jacksonville, Illinois, to Harriet Evelyn Morse and Alfred Henry Sturtevant. Sturtevant was the youngest of six children. During Sturtevant’s early childhood, his father taught mathematics at Illinois College in Jacksonville. However, his father left that job to pursue farming, eventually relocating seven-year-old Sturtevant and his family to Mobile, Alabama. In Mobile, Sturtevant attended a single room schoolhouse until he entered a public high school. In 1908, Sturtevant entered Columbia University [7] in New York City, New York. As a sophomore, Sturtevant took an introductory biology course taught by Morgan, who was researching how organisms transfer observable characteristics, such as eye color, to their offspring.
    [Show full text]