Chapter 1 Philosophy of Science: an Introduction and a Grounding for Your Practice

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1 Philosophy of Science: an Introduction and a Grounding for Your Practice © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © JonesChapter & Bartlett Learning, 1LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Philosophy of Science: © Jones & Bartlett Learning,An Introduction LLC © Jones and & Bartlett a Learning, LLC NOT FOR SALE ORGrounding DISTRIBUTION for NOTYour FOR SALE Practice OR DISTRIBUTION E. Carol Polifroni © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION INTRODUCTION Philosophy of science is a perspective—a lens, a way you see the world, and, in the case © Jonesof &advanced Bartlett practice Learning, nurses, theLLC viewpoint the nurse acts ©from Jones in every & Bartlettencounter Learning,with a LLC patient, family, or group. A person’s philosophy of science creates the frame on a picture—a NOT FORmessage SALE that OR becomes DISTRIBUTION a paradigm and a point of reference.NOT Each individual’sFOR SALE philosophy OR DISTRIBUTION of science will permit some things to be seen and cause others to be blocked. It allows people to be open to some thoughts and potentially keeps them closed to others. A philosophy will deem some ideas correct, others inconsistent, and some simply wrong. While philoso- © Jones & Bartlett Learning,phy of science LLC is not meant to be viewed ©as Jonesa black or& whiteBartlett proposition, Learning, it does LLC provide NOT FOR SALE ORperspectives DISTRIBUTION that include some ideas and thoughts;NOT FOR therefore, SALE it ORmust DISTRIBUTION unavoidably exclude others. The key is to ensure that the ideas and thoughts within a given philosophy remain consistent with one another, rather than being in opposition. Discussions of science, philosophy, and the philosophy of science can fill entire books. This chapter introduces readers to these topics. It is constructed in the form of a survey and is designed© Jones to launch & inquiryBartlett in myriad Learning, ways. TheLLC purpose is to encourage ©you Jones as a nurse & Bartlett Learning, LLC to thinkNOT in ways FOR that SALEyou may OR not DISTRIBUTION yet have discovered and to examine yourNOT assumptions FOR SALE OR DISTRIBUTION and actions in your role as advanced practice nurses. If you leave this chapter without questioning your assumptions, the author has not done her job! One must appreciate the personal assumptions used in everyday professional life. Nurses, for example, must ques- © Jonestion & theirBartlett assumptions Learning, and reaffirm LLC (appreciate and understand)© Jones what & it Bartlett is they believe. Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION • 1 • © Jones & Bartlett Learning, LLC© Jones & Bartlett Learning, LLC.© NOTJones FOR SALE& Bartlett OR DISTRIBUTION Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 9781284112245_CH01.indd 1 29/11/16 6:12 PM © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 2 • CHAPTER 1 PHILOSOPHY OF SCIENCE: AN INTRODUCTION AND A GROUNDING FOR YOUR PRACTICE © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC SCIENCENOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Before the concept of a philosophy of science is examined in greater depth and particular philosophies of science are specifically explored, it is important to begin by developing an appreciation of the meaning of the terms science and philosophy. Science, which comes © Jonesfrom & theBartlett Latin word Learning, scientia, LLCmeaning “knowledge,” traditionally© Jones refers & toBartlett both processes Learning, LLC NOT FORand SALEthe outcomes OR DISTRIBUTION of processes, such as general laws and NOTobservations. FOR SALE General OR laws DISTRIBUTION are the laws of nature that guide physical life, such as the laws of gravity, energy, and motion. Generators of science use these laws in a systematic way to create a body of knowledge about a specific topic. The culmination of using the scientific method (systematic process) provides a set of data (evidence) supported by propositions about an area of study (Boyd, © Jones & Bartlett Learning,Gasper, & Trout, LLC 1991). © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Natural (Hard) Sciences As an outcome, science is a body of knowledge. Physics, mathematics, and chemistry are three examples of scientific disciplines composed of unique bodies of knowledge. These sciences© are Jones often classified & Bartlett as natural Learning, sciences LLC because they employ the general© Jones laws & of Bartlett Learning, LLC nature andNOT begin FOR with SALE the physical OR DISTRIBUTION notion of the world. These natural sciencesNOT FOR (which SALE OR DISTRIBUTION are also sometimes referred to as the physical sciences) are also known as pure sciences. “Pure,” in this context, means a unique definitive body of knowledge. A pure science is independent of others; it is able to stand alone, and it may be developed and furthered © Jonesfor & the Bartlett abstract Learning,cause of the knowledgeLLC itself. Pure science© is Jonesnot pursued & Bartlett for its utility Learning, or LLC value or application per se. NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Natural and pure sciences are based on the assumption that reality is objective, rather than subjective. As a result of this objectivity, natural science is consistent; in other words, it is reproducible and reliable. Natural science further encompasses the assumption that human beings have the capacity to be accurate and consistent in their objectivity. © Jones & Bartlett Learning,Natural scientistsLLC believe that explanations© Jones (obtained & Bartlett using the Learning, method described LLC later NOT FOR SALE ORin DISTRIBUTION this chapter) are present within the naturalNOT or realFOR world. SALE As a ORconsequence, DISTRIBUTION explanations are reasonable, constant and consistent, accurate, objective, discoverable, and understand- able. Owing to its basis in objectivity, natural science is predicated on the belief that there is an external world structure independent of self that is grounded in reliability. Natural physical sciences are referred to as hard science. In recent years, quantum physicists© haveJones begun & toBartlett integrate Learning, the role of the LLC observer into their discipline,© whichJones is still& Bartlett Learning, LLC categorizedNOT as FORa hard SALEscience. ORThis DISTRIBUTIONconundrum will be addressed as part of NOTthe discussion FOR SALE OR DISTRIBUTION of complexity science found later in this chapter. Examples of the physical sciences present in health care include the biophysical and biochemical processes related to diabetes, cardiovascular disease, and cancer. Using the © Jonesphysical & Bartlett sciences Learning, in health care LLC involves assuming a disease© Jones focus, rather & Bartlett than a Learning,person LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC© Jones & Bartlett Learning, LLC.© NOTJones FOR SALE& Bartlett OR DISTRIBUTION Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 9781284112245_CH01.indd 2 29/11/16 6:12 PM © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Science • 3 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC focus. TheNOT science FOR is about SALE diagnosis, OR DISTRIBUTION treatment, and outcomes of treatment.NOT It is about FOR side SALE OR DISTRIBUTION effects and it is about pathology. The concentration is on objectivity, consistent application, and the creation of algorithms of predictability. © Jones &Applied Bartlett (Soft) Learning, Sciences LLC © Jones & Bartlett Learning, LLC NOT FORSociology, SALE psychology, OR DISTRIBUTION and anthropology are three examplesNOT of appliedFOR SALE sciences. OR Applied DISTRIBUTION sciences have their own unique body of knowledge, albeit a different one than is found in the natural sciences category, and in combination with others. They are known as applied sciences because the focus is on the application of related knowledge, usually to meet some human need (and not to generate knowledge for the sake of knowledge). Additionally, © Jones & Bartlett Learning,the word “applied” LLC is used to convey the ©understanding Jones & Bartlett that, in the Learning, development LLC of their NOT FOR SALE ORown DISTRIBUTION knowledge, applied scientists use theNOT knowledge FOR from SALE the ORpure DISTRIBUTIONsciences. Sociologists, who study people and behavior, rely on and use the natural sciences and their inherent assumptions to further their work. Thus sociology is an applied science. Mathematicians and physicists do not use psychology or sociology to add knowledge to their scientific disciplines,© Jones because & mathematics Bartlett Learning, and physics LLCare pure sciences, whereas psychology© Jones and& Bartlett Learning, LLC sociologyNOT are appliedFOR SALE sciences. OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Although applied scientists use what they deem accurate and appropriate from the natural sciences, they do not subscribe to the rigid belief of objectivity and reliability. In applied science, the focus is on human beings and the
Recommended publications
  • What Is That Thing Called Philosophy of Technology? - R
    HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY – Vol. IV - What Is That Thing Called Philosophy of Technology? - R. J. Gómez WHAT IS THAT THING CALLED PHILOSOPHY OF TECHNOLOGY? R. J. Gómez Department of Philosophy. California State University (LA). USA Keywords: Adorno, Aristotle, Bunge, Ellul, Feenberg, Habermas, Heidegger, Horkheimer, Jonas, Latour, Marcuse, Mumford, Naess, Shrader-Frechette, artifact, assessment, determinism, ecosophy, ends, enlightenment, efficiency, epistemology, enframing, ideology, life-form, megamachine, metaphysics, method, naturalistic, fallacy, new, ethics, progress, rationality, rule, science, techno-philosophy Contents 1. Introduction 2. Locating technology with respect to science 2.1. Structure and Content 2.2. Method 2.3. Aim 2.4. Pattern of Change 3. Locating philosophy of technology 4. Early philosophies of technology 4.1. Aristotelianism 4.2. Technological Pessimism 4.3. Technological Optimism 4.4. Heidegger’s Existentialism and the Essence of Technology 4.5. Mumford’s Megamachinism 4.6. Neomarxism 4.6.1. Adorno-Horkheimer 4.6.2. Marcuse 4.6.3. Habermas 5. Recent philosophies of technology 5.1. L. Winner 5.2. A. Feenberg 5.3. EcosophyUNESCO – EOLSS 6. Technology and values 6.1. Shrader-Frechette Claims 6.2. H Jonas 7. Conclusions SAMPLE CHAPTERS Glossary Bibliography Biographical Sketch Summary A philosophy of technology is mainly a critical reflection on technology from the point of view of the main chapters of philosophy, e.g., metaphysics, epistemology and ethics. Technology has had a fast development since the middle of the 20th century , especially ©Encyclopedia of Life Support Systems (EOLSS) HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY – Vol. IV - What Is That Thing Called Philosophy of Technology? - R.
    [Show full text]
  • Outline of Science
    Outline of science The following outline is provided as a topical overview of • Empirical method – science: • Experimental method – The steps involved in order Science – systematic effort of acquiring knowledge— to produce a reliable and logical conclusion include: through observation and experimentation coupled with logic and reasoning to find out what can be proved or 1. Asking a question about a natural phenomenon not proved—and the knowledge thus acquired. The word 2. Making observations of the phenomenon “science” comes from the Latin word “scientia” mean- 3. Forming a hypothesis – proposed explanation ing knowledge. A practitioner of science is called a for a phenomenon. For a hypothesis to be a "scientist". Modern science respects objective logical rea- scientific hypothesis, the scientific method re- soning, and follows a set of core procedures or rules in or- quires that one can test it. Scientists generally der to determine the nature and underlying natural laws of base scientific hypotheses on previous obser- the universe and everything in it. Some scientists do not vations that cannot satisfactorily be explained know of the rules themselves, but follow them through with the available scientific theories. research policies. These procedures are known as the 4. Predicting a logical consequence of the hy- scientific method. pothesis 5. Testing the hypothesis through an experiment – methodical procedure carried out with the 1 Essence of science goal of verifying, falsifying, or establishing the validity of a hypothesis. The 3 types of
    [Show full text]
  • Computer Science Students' Views on Educational Studies-Pedagogy
    RESEARCH PAPERS COMPUTER SCIENCE STUDENTS' VIEWS ON EDUCATIONAL STUDIES-PEDAGOGY By EFROSYNI-ALKISTI PARASKEVOPOULOU-KOLLIA * GEORGIA SOURSOU ** BILL ZOGOPOULOS *** EVANGELIA OREOPOULOU **** PANAGIOTA KONTOU ***** VASILIKI ZOURA ****** * Adjunct Assistant Professor, Department of Computer Science and Biomedical Informatics, University of Thessaly, School of Science, Papasiopoulou, Lamia, Greece. ** Post-graduate Student in Bioinformatics, University of Crete, Faculty of Medicine, Voutes University Campus, Heraklion-Crete, Greece. ***,****,****** Student, Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou str., Lamia, Greece. ***** Post-doctoral Researcher and Adjunct Lecturer, Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou str., Lamia, Greece. Date Received: 22/02/2018 Date Revised: 06/06/2018 Date Accepted: 24/06/2018 ABSTRACT The present article is based on a small-scale research that took place with the students in the Department of Computer Science and Biomedical Informatics in 2014 and three years later with the students of the same Department and the Department of Computer Science, as well. Students who have enrolled in the Educational science-Pedagogy module, that the Department offers, were asked if the module was beneficial in a Department purely technical (Faculty of Science) and if this theoretical module assisted them in their academic life and generally. Various views are listed reflecting students' perspective of the module Educational science-Pedagogy and come to the conclusion that we present; no module is useless. Keywords: Computer Science, Educational Science-Pedagogy, Greek Educational System, Hard and Soft Science, Students. INTRODUCTION pp. 21-22). Pedagogy is, therefore, an anthropological, The term “Pedagogy” refers to the science of educating intellectual, and applied social science that arose from children, both in terms of upbringing and of academic Philosophy and its aim is to research the entire spectrum development.
    [Show full text]
  • Kant's Definition of Science in the Architectonic of Pure Reason And
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Research Information System University of Turin 372DOI 10.1515/kant-2014-0016Gabriele Gava KANT-STUDIEN 2014; 105(3): 372–393 Gabriele Gava Kant’s Definition of Science in the Architectonic of Pure Reason and the Essential Ends of Reason Abstract: The paper analyses the definition of science as an architectonic unity, which Kant gives in the Architectonic of Pure Reason. I will show how this defini- tion is problematic, insofar as it is affected by the various ways in which the rela- tionship of reason to ends is discussed in this chapter of the Critique of Pure Rea- son. Kant sometimes claims that architectonic unity is only obtainable thanks to an actual reference to the essential practical ends of human reason, but he also identifies disciplines that do not make this reference as scientific. In order to find a solution to this apparent contradiction, I will first present Kant’s distinction be- tween a scholastic and a cosmic concept of philosophy. This distinction expresses Kant’s foreshadowing of his later insistence on the priority of practical philos- ophy within a true system of philosophy. Then, I will present a related distinction between technical and architectonic unity and show how Kant seems to use two different conceptions of science, one simply attributing systematic unity to science, the other claiming that science should consider the essential practical ends of human beings. I will propose a solution to this problem by arguing that, if we give a closer look to Kant’s claims, the unity of scientific disciplines can be considered architectonic without taking into consideration the essential practi- cal ends of human reason.
    [Show full text]
  • Philosophy of Science Reading List
    Philosophy of Science Area Comprehensive Exam Reading List Revised September 2011 Exam Format: Students will have four hours to write answers to four questions, chosen from a list of approximately 20-30 questions organized according to topic: I. General Philosophy of Science II. History of Philosophy of Science III. Special Topics a. Philosophy of Physics b. Philosophy of Biology c. Philosophy of Mind / Cognitive Science d. Logic and Foundations of Mathematics Students are required to answer a total of three questions from sections I and II (at least one from each section), and one question from section III. For each section, we have provided a list of core readings—mostly journal articles and book chapters—that are representative of the material with which we expect you to be familiar. Many of these readings will already be familiar to you from your coursework and other reading. Use this as a guide to filling in areas in which you are less well- prepared. Please note, however, that these readings do not constitute necessary or sufficient background to pass the comp. The Philosophy of Science area committee assumes that anyone who plans to write this exam has a good general background in the area acquired through previous coursework and independent reading. Some anthologies There are several good anthologies of Philosophy of Science that will be useful for further background (many of the articles listed below are anthologized; references included in the list below). Richard Boyd, Philip Gasper, and J.D. Trout, eds., The Philosophy of Science (MIT Press, 991). Martin Curd and J.
    [Show full text]
  • Foundations of Nursing Science 9781284041347 CH01.Indd Page 2 10/23/13 10:44 AM Ff-446 /207/JB00090/Work/Indd
    9781284041347_CH01.indd Page 1 10/23/13 10:44 AM ff-446 /207/JB00090/work/indd © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION PART 1 Foundations of Nursing Science 9781284041347_CH01.indd Page 2 10/23/13 10:44 AM ff-446 /207/JB00090/work/indd © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 9781284041347_CH01.indd Page 3 10/23/13 10:44 AM ff-446 /207/JB00090/work/indd © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION CHAPTER Philosophy of Science: An Introduction 1 E. Carol Polifroni Introduction A philosophy of science is a perspective—a lens, a way one views the world, and, in the case of advanced practice nurses, the viewpoint the nurse acts from in every encounter with a patient, family, or group. A person’s philosophy of science cre- ates the frame on a picture—a message that becomes a paradigm and a point of reference. Each individual’s philosophy of science will permit some things to be seen and cause others to be blocked. It allows people to be open to some thoughts and potentially keeps them closed to others. A philosophy will deem some ideas correct, others inconsistent, and some simply wrong. While philosophy of sci- ence is not meant to be viewed as a black or white proposition, it does provide perspectives that include some ideas and thoughts and, therefore, it must neces- sarily exclude others. The important key is to ensure that the ideas and thoughts within a given philosophy remain consistent with one another, rather than being in opposition.
    [Show full text]
  • Bibliometric Evidence for a Hierarchy of the Sciences
    Edinburgh Research Explorer Bibliometric Evidence for a Hierarchy of the Sciences Citation for published version: Fanelli, D & Glanzel, W 2013, 'Bibliometric Evidence for a Hierarchy of the Sciences', PLoS ONE, vol. 8, no. 6, e66938. https://doi.org/10.1371/journal.pone.0066938 Digital Object Identifier (DOI): 10.1371/journal.pone.0066938 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: PLoS ONE Publisher Rights Statement: © 2013 Fanelli, Daniele. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Fanelli, D., & Glanzel, W. (2013). Bibliometric Evidence for a Hierarchy of the Sciences. PLoS One, 8(6), [e66938]doi: 10.1371/journal.pone.0066938 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately
    [Show full text]
  • Introduction to Philosophy of Science
    INTRODUCTION TO PHILOSOPHY OF SCIENCE The aim of philosophy of science is to understand what scientists did and how they did it, where history of science shows that they performed basic research very well. Therefore to achieve this aim, philosophers look back to the great achievements in the evolution of modern science that started with the Copernicus with greater emphasis given to more recent accomplishments. The earliest philosophy of science in the last two hundred years is Romanticism, which started as a humanities discipline and was later adapted to science as a humanities specialty. The Romantics view the aim of science as interpretative understanding, which is a mentalistic ontology acquired by introspection. They call language containing this ontology “theory”. The most successful science sharing in the humanities aim is economics, but since the development of econometrics that enables forecasting and policy, the humanities aim is mixed with the natural science aim of prediction and control. Often, however, econometricians have found that successful forecasting by econometric models must be purchased at the price of rejecting equation specifications based on the interpretative understanding supplied by neoclassical macroeconomic and microeconomic theory. In this context the term “economic theory” means precisely such neoclassical equation specifications. Aside from economics Romanticism has little relevance to the great accomplishments in the history of science, because its concept of the aim of science has severed it from the benefits of the examination of the history of science. The Romantic philosophy of social science is still resolutely practiced in immature sciences such as sociology, where mentalistic description prevails, where quantification and prediction are seldom attempted, and where implementation in social policy is seldom effective and often counterproductive.
    [Show full text]
  • Empirical Inquiry Twenty-Five Years After the Lawyering Process Stefan H
    Maurice A. Deane School of Law at Hofstra University Scholarly Commons at Hofstra Law Hofstra Law Faculty Scholarship 2003 Empirical Inquiry Twenty-Five Years After The Lawyering Process Stefan H. Krieger Maurice A. Deane School of Law at Hofstra University Richard K. Neumann Jr. Maurice A. Deane School of Law at Hofstra University Follow this and additional works at: https://scholarlycommons.law.hofstra.edu/faculty_scholarship Recommended Citation Stefan H. Krieger and Richard K. Neumann Jr., Empirical Inquiry Twenty-Five Years After The Lawyering Process, 10 Clinical L. Rev. 349 (2003) Available at: https://scholarlycommons.law.hofstra.edu/faculty_scholarship/155 This Article is brought to you for free and open access by Scholarly Commons at Hofstra Law. It has been accepted for inclusion in Hofstra Law Faculty Scholarship by an authorized administrator of Scholarly Commons at Hofstra Law. For more information, please contact [email protected]. EMPIRICAL INQUIRY TWENTY-FIVE YEARS AFTER THE LAWYERING PROCESS RICHARD K. NEUMANN, JR. & STEFAN H. KRIEGER* One of the many ways in which The Lawyering Process was a pioneering book was its extensive reliance on empirical research about lawyers, lawyering, and activities analogous to some or another aspect of lawyering. To what extent has the clinical field accepted Gary Bellow and Bea Moulton's invitation to explore empirical stud- ies generated outside legal education and perhaps engage in empirical work ourselves to understand lawyering more deeply? Although some clinicians have done good empirical work, our field as a whole has not really accepted Gary and Bea's invitation. This article ex- plains empirical ways of thinking and working; discusses some of the mistakes law scholars (not only clinicians) make when dealing with empirical work; explores some of the reasons why empiricism has encountered difficulty in law schools; and suggests that empiricism might in some ways improve our teaching in clinics.
    [Show full text]
  • Hard and Soft Science: Physics Vs. Psychology
    THINKING ABOUT SCIENCE MASSIMO PIGLIUCCI Hard and Soft Science: Physics vs. Psychology hile doing research for my results from physics experiments are things: on the one hand, one could next book on the differ- “better” than results from psychological examine theoretical cumulativeness, W ences among so-called hard experiments. But better in what sense? i.e., the advancement of a scientific science, soft science, and pseudoscience, Hedges thought that the difference field in terms of how well its theories I came across a little-known study pub- between the two sciences should be account for how the world is. For lished in 1987 by Larry Hedges, then evident in the “cumulativeness” of their instance, astronomy advanced by a giant at the Department of Education at results: physics should be making prog- leap when it abandoned the Ptolemaic, the University of Chicago. Hedges was ress more steadily and at a faster pace earth-centered view of the solar system empirically addressing the sort of ques- than psychology. This is an important in favor of the Copernican, sun-cen- tion that is usually left to a philosopher criterion because lack of progress, i.e., tered system. Then it made smaller of science: if it is true—as it is often lack of cumulative results over time, but significant advances by realizing claimed—that physics (the queen of the is one of the distinctive features of that the planets move in elliptical, not It turns out that the replicability of research findings in psychology (and therefore, presumably, the resulting empirical cumulativeness of that discipline) is no worse (or better) than the replicability of findings in particle physics.
    [Show full text]
  • A Brief Overview of the Philosophy of Science
    A Brief Overview of the Philosophy of Science NRC 601 Research Concepts in Natural Resources Department of Natural Resources Conservation University of Massachusetts Amherst Fall 2009 Instructor: Stephen DeStefano USGS Massachusetts Cooperative Fish and Wildlife Research Unit Opening premise “The universe is a place filled with wonderful but deeply mysterious structures and processes – [but] these can be understood as behaving in accord with universal laws.” - Anonymous Objectives (1) lay a foundation of philosophy and trace the philosophical roots of science. (2) become familiar with the names and backgrounds of some key philosophers of science. (3) identify some of the ideas and approaches that form the foundations of modern science. Some terminology - empiricism --- all knowledge is derived from experience. - deductivism --- specific observations obtained from generalizations. - inductivism --- generalizations from facts recorded in experience. - materialism --- everything that exists is physical. - metaphysicalism --- related to abstract, intangible, philosophical. - realism --- there is a knowable external world. - scepticism --- the world is unknowable; nothing can be established. - pluralism --- increase alternative H’s to max. chance of falsification. Types of Reasoning (1) analogical “Betty should be able to graduate from college because her identical twin did so . “ “Black spruce require certain levels of nutrients, therefore white spruce should . .” (2) inductive 1,000 apples are red all apples are red (3) deductive “If all men are mortal and Socrates is a man, then Socrates is mortal.” In Ecology . We study a . sample, . and apply what we learn to . the population. Thus we commonly use . inductive reasoning, . based on . empirical data. Sir Francis Bacon (1561-1626) An English lawyer, statesman, essayist, historian, intellectual, reformer, philosopher, and champion of modern science.
    [Show full text]
  • Passmore, J. (1967). Logical Positivism. in P. Edwards (Ed.). the Encyclopedia of Philosophy (Vol. 5, 52- 57). New York: Macmillan
    Passmore, J. (1967). Logical Positivism. In P. Edwards (Ed.). The Encyclopedia of Philosophy (Vol. 5, 52- 57). New York: Macmillan. LOGICAL POSITIVISM is the name given in 1931 by A. E. Blumberg and Herbert Feigl to a set of philosophical ideas put forward by the Vienna circle. Synonymous expressions include "consistent empiricism," "logical empiricism," "scientific empiricism," and "logical neo-positivism." The name logical positivism is often, but misleadingly, used more broadly to include the "analytical" or "ordinary language philosophies developed at Cambridge and Oxford. HISTORICAL BACKGROUND The logical positivists thought of themselves as continuing a nineteenth-century Viennese empirical tradition, closely linked with British empiricism and culminating in the antimetaphysical, scientifically oriented teaching of Ernst Mach. In 1907 the mathematician Hans Hahn, the economist Otto Neurath, and the physicist Philipp Frank, all of whom were later to be prominent members of the Vienna circle, came together as an informal group to discuss the philosophy of science. They hoped to give an account of science which would do justice -as, they thought, Mach did not- to the central importance of mathematics, logic, and theoretical physics, without abandoning Mach's general doctrine that science is, fundamentally, the description of experience. As a solution to their problems, they looked to the "new positivism" of Poincare; in attempting to reconcile Mach and Poincare; they anticipated the main themes of logical positivism. In 1922, at the instigation of members of the "Vienna group," Moritz Schlick was invited to Vienna as professor, like Mach before him (1895-1901), in the philosophy of the inductive sciences. Schlick had been trained as a scientist under Max Planck and had won a name for himself as an interpreter of Einstein's theory of relativity.
    [Show full text]