High Tc: the Mystery That Defies Solution

Total Page:16

File Type:pdf, Size:1020Kb

High Tc: the Mystery That Defies Solution NEWSFOCUS on July 21, 2011 After 2 decades of monumental effort, physicists still cannot explain 100,000 papers on the materials. Several theo- rists claim they have deciphered them— high-temperature superconductivity. But they may have identified the although their explanations clash. Still, high- puzzles they have yet to solve temperature superconductivity has refused to submit to some of the world’s best minds. “The theoretical problem is so hard that there isn’t an obvious criterion for right,” says High T : The Mystery Steven Kivelson, a theorist at Stanford Univer- www.sciencemag.org c sity in Palo Alto, California. Experimenters are producing a flood of highly detailed data, but physicists struggle to piece the results together, That Defies Solution says Joseph Orenstein, an experimenter at the University of California, Berkeley, and TWENTY YEARS AGO, A FIRESTORM OF giddy enthusiasm. “We had prominent people Lawrence Berkeley National Laboratory. “It discovery swept through the world of physics. saying it would all be explained quickly and must be close to unique to have so much infor- Downloaded from German experimenter J. Georg Bednorz and that we would have superconducting power mation and so little consensus on what the his Swiss colleague Karl Alexander Müller lines and levitating trains,” Ashcroft says. questions should be,” Orenstein says. kindled the flames in September 1986 when Ashcroft himself had doubts, however, as The problem is more than a sliver under they reported that an odd ceramic called he told a class of graduate students a few the nail. High-temperature superconductiv- lanthanum barium copper oxide carried elec- months later. (I was a member of the class.) ity has shown that physicists’ conceptual tricity without any resistance at a temperature The materials comprised four and five ele- tools can’t handle materials in which elec- of 35 kelvin—12 degrees above the previous ments and possessed elaborate layer-cake trons shove one another so intensely that it’s record for a superconductor. The blaze ran wild structures. They broke the rules about what impossible to disentangle the motion of one a few months later when Paul Chu of the Uni- should make a good superconductor. In short, from that of the others. Such “strongly cor- versity of Houston, Texas, and colleagues syn- Ashcroft predicted, high-temperature super- related” electrons pop up in nanodevices thesized yttrium barium copper oxide, a com- conductivity would remain the outstanding and novel magnets, organic conductors and pound that lost resistance at an unthinkable problem in condensed matter physics for the other exotic superconductors. “High- 93 K—conveniently warmer than liquefied air. next 25 years. temperature superconductivity is the A frenzy of slapdash experimenting and That prognostication is coming true. Two stumbling block of the whole discipline of sensational claims ensued, says Neil Ashcroft, decades after high-temperature super- condensed matter physics,” says Peter a theorist at Cornell University. He organized a conductors were discovered, physicists still do Abbamonte, an experimenter at the Univer- session on the new high-temperature super- not agree on how electrons within them pair sity of Illinois, Urbana-Champaign. conductors at the meeting of the American to glide through the materials effortlessly at In spite of the difficulty of the puzzle, many Physical Society in New York City the follow- temperatures as high as 138 K. Researchers physicists say they are closing in on a solution. ing March. The “Woodstock of physics” haven’t failed for lack of trying. According to Most now agree on certain key properties of stretched until 4 a.m. and bubbled over with some estimates, they have published more than the materials. Precision experiments are AND M. O. JONES/UNIVERSITY OF OXFORD EDWARDS CREDITS (TOP TO BOTTOM): P. 1072 17 NOVEMBER 2006 VOL 314 SCIENCE www.sciencemag.org Published by AAAS HIGH-TEMPERATURE SUPERCONDUCTIVITY TURNS 20 NEWSFOCUS Hot stuff. The structure of mercury barium calcium conductors shove one another so mightily High Tc Superconductivity copper oxide, a superconductor at 138 K. that they tend to jam up with one electron on each copper ion, like gridlocked commuters. revealing surprising details of the compounds. That impasse can be broken only by tweaking And computer simulations—and perhaps even the material’s chemical composition to siphon mockups fashioned of ultracold atoms and away some of the electrons to create positively laser light—could soon show physicists charged “holes,” a process called doping. whether their basic model of the problem is cor- The challenge then is to explain how elec- rect. “If I had to make a prediction,” Kivelson trons that fiercely repel each other manage to says, “I would say that in 10 years time the pair anyway. Some researchers argue that problem will be solved.” waves of magnetism play a similar role to the Conventional Superconductivity one phonons play in conventional supercon- The ultimate chess game ductors. Others focus solely on how the elec- Even “conventional” superconductivity, which trons shuffle past one another in a quantum- was discovered in 1911, is mind-bending. Elec- mechanical game of chess. Still others say that trons in a metal move in quantum waves of dis- patterns of charge or current, or even phonons, tinct energies. Quantum mechanics prohibits play a crucial role. Pairing might even require two electrons from occupying the same wave or all of these things in combination, which “state,” so they stack into the states from the would be many physicists’nightmare scenario. lowest energy on up. But when metals such as lead and niobium are cooled to near absolute Familiar solutions zero, the electrons in them can lower their total Some of the theories being refined today Copper Oxygen Electron Niobium energy by pairing like ballroom dancers. That emerged soon after Bednorz and Müller’s partnership produces superconductivity, as discovery, and the dividing lines that run Shall we dance? Instead of the motion of ions, the on July 21, 2011 explained in 1957 by theorists John Bardeen, through the field were drawn in those heady subtle waltz of electrons along atomic planes may Leon Cooper, and John Robert Schrieffer. days. For example, as early as 1987 some cause pairing in high-temperature materials. The pairing alters the spacing of the rungs theorists argued that high-temperature super- on the energy ladder, creating a gap near the top conductivity arose not from phonons but tions, creating an up-down-up-down pattern of the stack. To break from its partner, an elec- from the interaction of the electrons alone. known as antiferromagnetism. The electrons tron must jump the gap to an empty state. There But even those who agree on that principle can tilt and flip, and waves of wobble coursing isn’t enough energy around to allow that, so the often disagree on the details. through this arrangement can provide the glue pairs glide along unperturbed. Something must The idea that waves of magnetism drive for pairing, says David Pines, a theorist at Los glue the pairs together, and according to the the superconductivity is based on the fact that Alamos National Laboratory in New Mexico www.sciencemag.org Bardeen-Cooper-Schrieffer (BCS) theory, the electrons act like little magnets. Those on and the University of California, Davis. adhesive is quantized vibrations of the crys- adjacent copper ions point in opposite direc- But Philip Anderson, a theorist at Princeton talline material, or “phonons.” A University, says that no glue is necessary. Just passing electron attracts the slower- “The theoretical problem is so months after the discovery of high-temperature moving ions in the crystal lattice, hard that there isn’t an obvious superconductors, he proposed a scheme known which squeeze together to produce a as the resonating valence bond (RVB) theory, knot of positive charge that attracts criterion for right.” which focuses on subtle quantum connections Downloaded from another electron (see diagram). —Steven Kivelson, Stanford University between electrons on neighboring copper ions. High-temperature materials lit- In the theory, no waves of any kind pass erally take superconductivity to a between electrons, Anderson says. new plane. The compounds con- Thanks to the weird rules of quantum tain planes of copper and oxygen mechanics, each electron can point both up ions that resemble chess boards, and down simultaneously. Moreover, neigh- with a copper ion at every corner of boring electrons can join in an odd quantum a square and an oxygen ion along state called a singlet in which both electrons each side. Electrons hop from cop- point both up and down at once, but the two per ion to copper ion. Between the electrons always point in opposite direc- planes lie elements such as lan- tions—either down-up or up-down. When ; LINDA A. CICERO/STANFORD NEWS SERVICE ; LINDA A. CICERO/STANFORD thanum, strontium, yttrium, bis- enough holes open in the plane, singlets form SCIENCE muth, and thalium. But it is along and begin to slide freely past one another, the copper-and-oxygen planes that eventually producing superconductivity. the electrons pair and glide. Others contend that both the magnetic Just how that happens is any- fluctuation and RVB theories leave out some thing but clear. The electrons in an essential piece of physics. Stanford’s Kivelson ordinary metal hardly notice one believes stripes of electric charge on the planes, another and interact mainly with which have been seen in some materials, may phonons. In contrast, the electrons be necessary to trigger the pairing. Chandra in high-temperature super- Varma, a theorist at the University of California, CREDITS (TOP TO BOTTOM): P. HUEY/ CREDITS (TOP TO BOTTOM): P. www.sciencemag.org SCIENCE VOL 314 17 NOVEMBER 2006 1073 Published by AAAS NEWSFOCUS Riverside, proposes that loops of leagues present data online in Science this week current flowing inside each copper- (www.sciencemag.org/cgi/content/abstract/ and-oxygen square are key.
Recommended publications
  • A DIALOGUE on the THEORY of HIGH Tc
    A DIALOGUE ON THE THEORY OF HIGH Tc Superconducting Bi2Sr2CaCu2O,, as seen with reflected differential interference contrast microscopy. This view of the ab plane surface of a platelet of the ceramic material shows this high-temperature superconductor's strong planar structure. (Photomicrograph by Michael W. Davidson, W. Jack Rink and Joseph B. Schlenoff, Florida State University.) Figure 1 5 4 PHYSICS TODAY JUNE 1991 The give-and-take between two solid-state theorists offers insight into materials with high superconducting transition temperatures and illustrates the kind of thinking that goes into developing a new theory. Philip W. Anderson and Robert Schrieffer Although ideas that would explain the behavior of the formalism to do their calculations.' I believe they are high-temperature superconducting materials have been wrong. I'd like to hear your opinion, but first let me say a offered almost since their discovery, high-Tt. theory is still couple of things that bear on this question. In the first very much in flux. Two of the leading figures in condensed place, I think few people realize that we now know of at matter theory are Philip Anderson, the Joseph Henry least six different classes of electron superconductors, and Professor of Physics at Princeton University, and Robert two other BCS fluids as well. Out of these only one obeys Schrieffer, Chancellor's Professor at the University of the so-called conventional theory—that is, BCS with California, Santa Barbara. Anderson's ideas have fo- phonons that fit unmodified versions of Eliashberg's cused, in his own words, "on a non-Fermi-liquid normal equations.
    [Show full text]
  • K. Alex Müller Nobel Prize in Physics 1987
    K. Alex Müller Nobel Prize in Physics 1987 is convinced that he at last has a water- no one took him seriously. “Exactly tight explanation for the phenomenon that motivated me. I wanted to swim that he and J. Georg Bednorz discovered against the current.” 28 years ago: High-temperature super- He says that he owes his persistence conductivity in copper oxides. This and his desire to think outside the box should bring a decades-long dispute to his childhood, which was not easy, to a happy end, at least from Müller’s as Müller explains. The son of a sales- perspective. With his explanation, how- man and grandson of a chocolate man- ever, Müller has launched a new debate ufacturer, Karl Alex spent part of his on the distribution of matter in the uni- childhood in Lugano. After the early verse. But more of that later. death of his mother, when he was just Erice, Sicily, summer 1983: K. Alex eleven, he went to boarding school in Müller is sitting on a bench in the cas- Schiers. Holidays were spent with his Nobel Prize in Physics 1987 “for the tle grounds and enjoying the view. As pioneering discovery of super- he gazes into the distance, his mind K. Alex Müller was 56 when conductivity in ceramic materials” buzzes with ideas. He had just listened he decided to take on a new to a lecture by Harry Thomas which * 20 April 1927 in Basel challenge – researching dealt with the possible existence of superconductors. 1962–1970 Privatdozent Jahn-Teller polarons – “quasi-parti- 1970–1987 Adjunct Professor cles” that occur when electrons move 1987–1994 Professor of Solid-State Physics through a crystal lattice.
    [Show full text]
  • From the President New Program to Boost Membership
    July August 2011 · Volume 20, Number 4 New Program to From the President Boost Membership igma Xi’s new Member-Get-A-Member Dear Colleagues and Companions in Zealous Research program gives all active Sigma Xi It is indeed an honor for me to have been elected president of our Smembers a chance to earn a free year international honor society for scientists and engineers. Sigma Xi of membership by was created 125 years ago with high ideals, a worthy mission and recommending five an inspiring vision that remain critical to science and engineering in the 21st Century. new members during As incoming president, I will seek to further the mission of Sigma Xi. a one-year period. Public confidence in the fundamental truths derived from application of science is Active Sigma Xi members should perhaps more critical now than at any time in the history of our honor society. From recommend their qualified friends, students, openness in research to accuracy in conducting and reporting research to integrity in colleagues and fellow scientists and engineers the peer review process and authorship, we have an obligation to our members and the to the honor of Sigma Xi membership. Any public to focus on these issues. active Sigma Xi member who recommends I applaud my friend and colleague, our immediate past-president, Joe Whitaker. Dr. five new members who are then approved Whitaker deserves our gratitude for providing outstanding leadership and initiating for membership between now and June 30, a new hope for the evolution of our esteemed honor society. My intention will be to 2012 will receive one free year of Sigma Xi build upon the spark Joe ignited during his tenure, and implement an enabling strategy membership.
    [Show full text]
  • History of Physics (10) History of Crystallography in Switzerland
    SPG Mitteilungen Nr. 42 History of Physics (10) History of Crystallography in Switzerland Hans Grimmer, Paul Scherrer Institute Introduction who was Professor of Mineralogy at ETH from 1856 and at Crystallography evolved from the study of the form of min- the University of Zürich (UZ) from 1857 until his retirement eral crystals and of the anisotropy of their physical proper- in 1893. The main activities of his successor Ulrich Gruben- ties. After the discovery of X-ray diffraction by Laue (1912), mann (1893-1920) were in petrography, where he made use the focus of crystallography shifted to structure analysis; of polarisation microscopy and chemical analytic methods. chemists became the main users of crystallographic meth- He was succeeded by Paul Niggli (1920-1953). All three ods. Crystallographic institutes at universities were estab- were strong personalities and served the ETH as rectors, lished first in Zürich, 1949 in Bern, in the 1970s in Geneva, Niggli became rector also of UZ [4]. Lausanne, Neuchâtel and Basel. In the beginning, the main focus in Switzerland was on methods and general princi- When Max von Laue was "Privatdozent" in Munich un- ples. Due to the increasing demand of chemistry and biol- der Arnold Sommerfeld, he had in the beginning of 1912 ogy institutes and the materials sciences, the focus shifted the idea that X-rays might show interference effects with to the determination of ever more complicated structures, crystals. Paul Knipping and Walter Friedrich performed the to disorder in crystals and to their dynamic properties. Crys- experiments, showing interference spots compatible with tallography laboratories were established also in institutes the cubic symmetry of ZnS crystals.
    [Show full text]
  • Institute Lecture High Tc Superconductivity
    Institute Lecture High Tc Superconductivity – after A quarter Century A technology is ready to take off Dr. J.Georg Bednorz IBM Fellow Emeritus IBM Research – Zurich Säumerstrasse 4, 8803 Rüschlikon, Switzerland Tuesday, 17th June 2014, Time: 5.00 PM Venue: Outreach Auditorium Abstract The scientific community just celebrated the centennial of the discovery of superconductivity and the 25th anniversary of the discovery of high-Tc superconductivity three years ago, and finally the field is ready to present a broad spectrum of large-scale applications. Many of these have been envisaged since the early days of superconductivity. However, only with the new cuprate superconductors and as a result of a concentrated, worldwide scientific and engineering effort with efficient international collaborations over the past two decades, does it now become possible – after one century – to finally realize these ideas. Specific segments in applications for power generation, transportation and network reliability are gaining attraction because of the increased importance of using renewable energy. Energy-efficient solutions for industrial processes are being provided by new and surprising concepts that led to the realization of the first commercial high-Tc superconductor products. Large-scale applications, which will need large quantities of superconducting wires, will however have to overcome the usual problems of a new technology – but superconductivity will definitively become a key technology for the 21st century. About the speaker J. Georg Bednorz was born in 1950 at Neuenkirchen, North Rhine-Westphalia, Germany. In 1968, Bednorz was enrolled at the University of Münster for studying chemistry but subsequently he opted to switch to the subject of crystallography.
    [Show full text]
  • Superconductivity: There’S Plenty of Cream at the Bottom P.J
    Superconductivity: there’s plenty of cream at the bottom P.J. Hirschfeld, U. Florida SESAPS, 6 November 2020 Superconductivity B Shivaram U Chatterjee S Johnston T Maier E Dagotto A Moreo N Manella L Kemper D Kumah C DeMelo, HB Schuettler, M Geller T. C l ay I Vekhter S Sarker P Adams G Boebinger, D Larbalestier, K Yang, G Stewart, J Hamlin, O Vafek, Y Wang, D. Maslov, L Greene, L. Steinke, D. Laroche, D Popovic, A. Biswas, HP Cheng, PJH L Balicas Collaborators SC theory from rest of world: from U. Florida Dept. of Physics: Roser Valenti Brian Andersen (Frankfurt) (Niels Bohr) Doug Scalapino Thomas Maier UCSB ORNL Vivek Mishra Maxim Korshunov Lex Kemper Hai-Ping Tom Berlijn (ORNL) (Krasnoyarsk) (NC State) Cheng (ORNL) Andrey Chubukov Igor Mazin, GMU U. Minn. Saurabh Maiti Peayush Shinibali Andreas Kreisel YanWang (Concordia U.) Choubey Bhattacharyya Indranil Paul, Ilya Eremin, (Leipzig) (ORNL) (Bochum) Paris-VII Bochum Discovery of superconductivity Heike Kammerling Onnes (1911) Conventional superconductors •During 46 years, from 1911 to 1957, superconductivity is recognized as one of the most important problems in theoretical physics - Search for a theory of superconductivity: series of failures (see J. Schmalian in 50 Years of BCS) Richard Feynman: “No one is brilliant enough to figure it out” Fail: F Fail: F Fail: F Fail: F Fail: F Heisenberg Bohr Landau Feynman Einstein Conventional superconductors BCS theory (1957) Quantum mechanical behavior at the macroscopic scale Leon Cooper Nobel prize : 1972 John Bardeen Robert Schrieffer Macro. Quantum State uvcc |0 BCS k k kk k i s-wave symmetry Vc-k ck ~ e SC Ground State Superconducting Normal State (Metal) Low Temp.
    [Show full text]
  • S-1100-0025-02-00025.Pdf
    THE SECRETARY-GENERAL 27 March 2002 Excellency, I write to thank you for your letter of 21 March 2002 conveying a statement signed by over 100 Nobel Laureates and the article from Science. I was most grateful to receive a copy of this important statement, and the interesting accompanying commentary. With my best regards, Yours sincerely, His Excellency Mr. Paul Heinbecker Permanent Representative of Canada to the United Nations New York 'Pernrait.imi One Dag Hammarskjold Plaza 885 Second Avenue, 14th Floor New York, N.Y. 10017 ,, March 21,2002 H.E. Mr. Kofi Annan Secretary General of EXECUTIVE UFFiCE The United Nations OF7HESECEEWSENERAI Room S-3800A United Nations Plaza New York, N.Y. 10017 Excellency, At the request of Mr.. JohnPglanyi, Canadian Nobel Laureate (Chemistry, 198^Tam hereby conveymg abatement signed by in excess of 100 of your Mow Nobel Laureates, thit^as publishedin early December. Also attached is an excerptfrorn Science magazine which discusses the assertion ofhe Laureates' statement that "the most profound danger to world peace m Ae coming years will stem not from the irrational acts of states or individuals, but from the legitimate demands of the world's dispossessed.1' Yours sincerely, Paul Heinbecker Ambassador and Permanent Representative NEWS OF THE WEEK NOBEL STATEMENT the world's dispossessed. ... If, then, we per- mit the devastating power of modern Laureates Plead for weaponry to spread through this combustible human landscape, we invite a conflagration Laws, Not War that can engulf both rich and poor." Healthy
    [Show full text]
  • The Role of Theory in Control Practice.Pdf
    The Role of Theory" in Control Practice! Manfred Morari! ! ! Automatic Control Laboratory, ETH Zürich! UTC BUSINESSES Commercial Aerospace 3 PERFORMANCESales: Type & Geography 2012 net sales $57.7 billion TYPE Commercial Commercial Aftermarket Aerospace 28% & Industrial 51% 57% 43% Military Aerospace 21% Original & Space Equipment Manufacturing GEOGRAPHY Europe 26% United States 40% 20% 14% Asia Pacific Other 4 2013 ENGINEERING POPULATION ! ! ! ! ! ! PHD Other AS MS UTC Global population > 24,000 BS UTC Engineering presence engineers ! US Engineering Degrees ETH Zurich at a glance Founded 1855 " Driving force of industrialisation in Switzerland ETH Zurich today " One of the leading international universities for technology and the natural sciences " Place of study, research and employment for approximately 25,000 people from over 100 different countries Some Numbers: " 8500 BS + 4800 MS + 3900 PhD = 18200 " 500 Professors " 8000 Personnel " Budget CHF 1.5 (370 Mill third party) Placeholder for logo/lettering | | (Can be modified in the Slide Master, opened via «View» > «Slide Master») 29.04.2014 6 21 Nobel Laureates 1901 Physics Wilhelm Conrad Röntgen 1912 Chemistry Alfred Werner 1915 Chemistry Richard Willstätter 1918 Chemistry Fritz Haber 1920 Physics Charles-Edouard Guillaume 1921 Physics Albert Einstein 1936 Chemistry Peter Debye 1938 Chemistry Richard Kuhn 1939 Chemistry Leopold Ruzicka Albert Leopold Wolfgang 1943 Physics Otto Stern Einstein Ruzicka Pauli 1945 Physics Wolfgang Pauli 1950 Medicine Tadeusz Reichstein 1952 Physics Felix Bloch 1953 Chemistry Hermann Staudinger 1975 Chemistry Vladimir Prelog 1978 Medicine Werner Arber 1986 Physics Heinrich Rohrer 1987 Physics Georg Bednorz / Alexander Müller 1991 Chemistry Richard Ernst Vladimir Richard Kurt 2002 Chemistry Kurt Wüthrich Prelog Ernst Wüthrich Placeholder for logo/lettering | | (Can be modified in the Slide Master, opened via «View» > «Slide Master») 29.04.2014 7 John Houbolt! NASA Innovator Behind Lunar Module, Dies at 95! Dr.
    [Show full text]
  • User:Guy Vandegrift/Timeline of Quantum Mechanics (Abridged)
    User:Guy vandegrift/Timeline of quantum mechanics (abridged) • 1895 – Wilhelm Conrad Röntgen discovers X-rays in experiments with electron beams in plasma.[1] • 1896 – Antoine Henri Becquerel accidentally dis- covers radioactivity while investigating the work of Wilhelm Conrad Röntgen; he finds that uranium salts emit radiation that resembled Röntgen’s X- rays in their penetrating power, and accidentally dis- covers that the phosphorescent substance potassium uranyl sulfate exposes photographic plates.[1][3] • 1896 – Pieter Zeeman observes the Zeeman split- ting effect by passing the light emitted by hydrogen through a magnetic field. Wikiversity: • 1896–1897 Marie Curie investigates uranium salt First Journal of Science samples using a very sensitive electrometer device that was invented 15 years before by her husband and his brother Jacques Curie to measure electrical Under review. Condensed from Wikipedia’s Timeline of charge. She discovers that the emitted rays make the quantum mechanics at 13:07, 2 September 2015 (oldid surrounding air electrically conductive. [4] 679101670) • 1897 – Ivan Borgman demonstrates that X-rays and This abridged “timeline of quantum mechancis” shows radioactive materials induce thermoluminescence. some of the key steps in the development of quantum me- chanics, quantum field theories and quantum chemistry • 1899 to 1903 – Ernest Rutherford, who later became that occurred before the end of World War II [1][2] known as the “father of nuclear physics",[5] inves- tigates radioactivity and coins the terms alpha and beta rays in 1899 to describe the two distinct types 1 19th century of radiation emitted by thorium and uranium salts. [6] • 1859 – Kirchhoff introduces the concept of a blackbody and proves that its emission spectrum de- pends only on its temperature.[1] 2 20th century • 1860–1900 – Ludwig Eduard Boltzmann produces a 2.1 1900–1909 primitive diagram of a model of an iodine molecule that resembles the orbital diagram.
    [Show full text]
  • The Reason for Beam Cooling: Some of the Physics That Cooling Allows
    The Reason for Beam Cooling: Some of the Physics that Cooling Allows Eagle Ridge, Galena, Il. USA September 18 - 23, 2005 Walter Oelert IKP – Forschungszentrum Jülich Ruhr – Universität Bochum CERN obvious: cooling and control of cooling is the essential reason for our existence, gives us the opportunity to do and talk about physics that cooling allows • 1961 – 1970 • 1901 – 1910 1961 – Robert Hofstadter (USA) 1901 – Wilhelm Conrad R¨ontgen (Deutschland) 1902 – Hendrik Antoon Lorentz (Niederlande) und Rudolf M¨ossbauer (Deutschland) Pieter (Niederlande) 1962 – Lev Landau (UdSSR) 1903 – Antoine Henri Becquerel (Frankreich) 1963 – Eugene Wigner (USA) und Marie Curie (Frankreich) Pierre Curie (Frankreich) Maria Goeppert-Mayer (USA) und J. Hans D. Jensen (Deutschland) 1904 – John William Strutt (Großbritannien und Nordirland) 1964 – Charles H. Townes (USA) , 1905 – Philipp Lenard (Deutschland) Nikolai Gennadijewitsch Bassow (UdSSR) und 1906 – Joseph John Thomson (Großbritannien-und-Nordirland) Alexander Michailowitsch Prochorow (UdSSR) und 1907 – Albert Abraham Michelson (USA) 1965 – Richard Feynman (USA), Julian Schwinger (USA) Shinichiro Tomonaga (Japan) 1908 – Gabriel Lippmann (Frankreich) 1966 – Alfred Kastler (Frankreich) 1909 – Ferdinand Braun (Deutschland) und Guglielmo Marconi (Italien) 1967 – Hans Bethe (USA) 1910 – Johannes Diderik van der Waals (Niederlande) 1968 – Luis W. Alvarez (USA) 1969 – Murray Gell-Mann (USA) 1970 – Hannes AlfvAn¨ (Schweden) • 1911 – 1920 Louis N¨oel (Frankreich) 1911 – Wilhelm Wien (Deutschland) 1912 – Gustaf
    [Show full text]
  • Image-Brochure-LNLM-2020-LQ.Pdf
    NOBEL LAUREATES PARTICIPATING IN LINDAU EVENTS SINCE 1951 Peter Agre | George A. Akerlof | Kurt Alder | Zhores I. Alferov | Hannes Alfvén | Sidney Altman | Hiroshi Amano | Philip W. Anderson | Christian B. Anfinsen | Edward V. Appleton | Werner Arber | Frances H. Arnold | Robert J. Aumann | Julius Axelrod | Abhijit Banerjee | John Bardeen | Barry C. Barish | Françoise Barré-Sinoussi | Derek H. R. Barton | Nicolay G. Basov | George W. Beadle | J. Georg Bednorz | Georg von Békésy |Eric Betzig | Bruce A. Beutler | Gerd Binnig | J. Michael Bishop | James W. Black | Elizabeth H. Blackburn | Patrick M. S. Blackett | Günter Blobel | Konrad Bloch | Felix Bloch | Nicolaas Bloembergen | Baruch S. Blumberg | Niels Bohr | Max Born | Paul Boyer | William Lawrence Bragg | Willy Brandt | Walter H. Brattain | Bertram N. Brockhouse | Herbert C. Brown | James M. Buchanan Jr. | Frank Burnet | Adolf F. Butenandt | Melvin Calvin Thomas R. Cech | Martin Chalfie | Subrahmanyan Chandrasekhar | Pavel A. Cherenkov | Steven Chu | Aaron Ciechanover | Albert Claude | John Cockcroft | Claude Cohen- Tannoudji | Leon N. Cooper | Carl Cori | Allan M. Cormack | John Cornforth André F. Cournand | Francis Crick | James Cronin | Paul J. Crutzen | Robert F. Curl Jr. | Henrik Dam | Jean Dausset | Angus S. Deaton | Gérard Debreu | Petrus Debye | Hans G. Dehmelt | Johann Deisenhofer Peter A. Diamond | Paul A. M. Dirac | Peter C. Doherty | Gerhard Domagk | Esther Duflo | Renato Dulbecco | Christian de Duve John Eccles | Gerald M. Edelman | Manfred Eigen | Gertrude B. Elion | Robert F. Engle III | François Englert | Richard R. Ernst Gerhard Ertl | Leo Esaki | Ulf von Euler | Hans von Euler- Chelpin | Martin J. Evans | John B. Fenn | Bernard L. Feringa Albert Fert | Ernst O. Fischer | Edmond H. Fischer | Val Fitch | Paul J.
    [Show full text]
  • 24 August 2013 Seminar Held
    PROCEEDINGS OF THE NOBEL PRIZE SEMINAR 2012 (NPS 2012) 0 Organized by School of Chemistry Editor: Dr. Nabakrushna Behera Lecturer, School of Chemistry, S.U. (E-mail: [email protected]) 24 August 2013 Seminar Held Sambalpur University Jyoti Vihar-768 019 Odisha Organizing Secretary: Dr. N. K. Behera, School of Chemistry, S.U., Jyoti Vihar, 768 019, Odisha. Dr. S. C. Jamir Governor, Odisha Raj Bhawan Bhubaneswar-751 008 August 13, 2013 EMSSSEM I am glad to know that the School of Chemistry, Sambalpur University, like previous years is organizing a Seminar on "Nobel Prize" on August 24, 2013. The Nobel Prize instituted on the lines of its mentor and founder Alfred Nobel's last will to establish a series of prizes for those who confer the “greatest benefit on mankind’ is widely regarded as the most coveted international award given in recognition to excellent work done in the fields of Physics, Chemistry, Physiology or Medicine, Literature, and Peace. The Prize since its introduction in 1901 has a very impressive list of winners and each of them has their own story of success. It is heartening that a seminar is being organized annually focusing on the Nobel Prize winning work of the Nobel laureates of that particular year. The initiative is indeed laudable as it will help teachers as well as students a lot in knowing more about the works of illustrious recipients and drawing inspiration to excel and work for the betterment of mankind. I am sure the proceeding to be brought out on the occasion will be highly enlightening.
    [Show full text]