Planet Ocean Ltd Introduces: the Radac Waveguide Radar

Total Page:16

File Type:pdf, Size:1020Kb

Planet Ocean Ltd Introduces: the Radac Waveguide Radar PLANET OCEAN LTD INTRODUCES: THE RADAC WAVEGUIDE RADAR Described by the European Commission in 2008 as 'the energy of the future', the re- sulting growth in the offshore wind industry helps to ensure security in Europe’s future energy and a transition into a low carbon economy. Weather however remains a major risk to offshore operations and knowledge of site conditions assists in determining the optimum times during which certain procedures can be performed safely. While ad- vances in technology and industry maturity will make offshore wind an increasingly attractive investment, the industry is always in need for solutions which reduce costs and increase operational efficiency. Since 1996, RADAC has therefore been developing the WaveGuide: a very accurate radar based system to measure the sea state, vital in planning operational and development activities in the offshore environments. Wave and tide data are of great importance during all stages of offshore wind farm development and operation as well as many other sectors. Vessels, such as those used for jacking operations, crane operations and towing, rely on real-time wave data. Their operations are typically limited by a maxi- mum wave height of two meters or less. Therefore reliable and real-time data are essential for maximised exploitation of weather windows and improved safety during these offshore activities. From the development phase onwards, wave data is required to calculate the wave load in order to define the requirements of the platform design. In addition, during its operational life, the actual wave climate is monitored to validate the expected endurance models and justify the lengthening or shortening head and which facilitates commissioning, remote servicing, for the platforms lifetime. Accurate analysis of the possible data collection, data processing, presentation and logging. It exploitation period can make an enormous difference in cost. incorporates an internal web-server so that any web enabled Over the past 40 years the standard method for obtaining device connected to the same network can access the wave wave information is by the use of wave directional buoys. The data without the requirement for special software or hard- main advantage of using a buoy is its independence from sup- ware. port structures. However the disadvantages of this method The WaveGuide comes as standard in four different models, include the high maintenance costs and the risk of long peri- differing in functionality from simple water level to a system ods without measurements when a buoy breaks from its which measures all directional wave parameters. mooring or runs out of power. Buy based system are also ex- tremely expensive to deploy and recover for servicing. Wave Direction Down-looking Frequency-Modulated Continuous Wave RADAC’s showpiece is the WaveGuide Direction. The direction- (FMCW) radars for wave measurements have been used for 25 al system consists of three downward-pointing radars. With an years. The popularity of these systems have grown as prices array of three radars, the elevations of the sea surface is for FMCW radars have fallen and the increased use in the field measured at three positions. Knowing the slopes and the have proven them to be a very robust and low maintenance phase relations, the directional spectrum can be accurately alternative to buoy systems. As such, they are slowly becom- calculated. RADAC is the only company that brings this tech- ing a preferred method for collecting environmental data, and nology to the market. are now more widely applied for water level, tide, harbour RADAC has conducted field trials at Prinses Amaliawindpark, oscillations and wave direction and height at sea. 25 kilometres off the Dutch coast. Two versions of the Direc- The WaveGuide tional WaveGuide were compared to a Directional Waverider buoy over a period spanning several months. The field trials RADAC supplies systems for remote monitoring waves and successfully indicated no statistical difference in the direction- tides, including wind farms and installation vessels. The RADAC al information from the buoy and from the WaveGuide radars. WaveGuide is an accurate radar system introduced in 1996, incorporating advanced technologies that make it an easy to use, reliable and robust device for measurement of level, tide and waves up to the most extreme conditions. The WaveGuide radar measures the distance to the water sur- face several times per second. Mounted high above the water with no moving parts, preventive maintenance or cleaning is not required. The system is compact and easy to install, suited to accurately measure wave direction, heights and tides in all Therefore, the Directional WaveGuide can not only accurately weather conditions. Recalibration is also never required due to and reliably measure wave direction, but the high quality data the long-term stable zero reference. is achieved without the hassle of service operations and break away buoys. The WaveGuide control system (data server) is a small low powered module that can be located distant from the sensor Onboard break waters, not only to determine construction require- ments but also to monitor changes in wave climate. Real-time The same technology can be applied directly to vessels to aid measurements are also useful for safe vessel guidance and in their operations. The WaveGuide Onboard installation com- (un)loading of ships. pensates for the vertical motions of the ship, so it measures the waves the ship actually has to endure. A significant ad- Additionally, collecting data provides insight into natural phe- vantage of the WaveGuide Onboard is the continuous availa- nomena and patterns. This aids in predicting water levels in bility of wave data, especially at night, in rough seas and under the future, increasing peace of mind. Especially where the heavy weather conditions with limited visibility. river flows into the sea, extremely high water levels during storm conditions can cause flooding. Additionally, the WaveGuide Onboard measures the waves as they are encountered by the ship itself. This data is ideally Besides the danger of flooding, the lack of water is equally used to determine the operational limitations of the vessel in important. In those situations water level information is cru- harsh conditions. Therefore, a vessel in transit can adjust its cial to water distribution planning. River water level data is speed and course to avoid critical headings. This not only helps essential for shipping as it influences safe passage of vessels to identify safe heading and speed, but also monitoring the (sea gauge/river clearance). actual wave load to determine the lifetime of the vessel. In areas such as coastlines, harbours and deltas, various natu- ral phenomena occur including waves, tides, storm surge, tsu- As the distances measured have to compensate for the verti- nami and harbour oscillations. Despite this diversity, all are cal motions of the radar itself, a motion sensor is incorporated accurately measured by the WaveGuide, without interfering into the sensor unit. The WaveGuide Data Server takes care of with harbour traffic. synchronisation, collection and compensation of the data col- lected. The compensated radar signal is processed in the same way as the standard WaveGuide mounted on a fixed platform. Using the available “Wave and Tide Processing Software” raw data, spectra and parameters can be requested and presented on the web browser. Other Applications It has been and will be important to warn for flood risk due to storm surge, especially as a result of the rise in sea levels. Ad- ditionally, it is of great importance for coastal defence and harbours to monitor actual stress levels on dikes, dunes and ABOUT RADAC RADAC are a fast growing Dutch company, based in Delft. RADAC has a young en- thusiastic team, with a vast range of knowledge combining oceanography, physics and radar technology. By working with the clients in new projects, they develop their products in real live situations as well as working closely with the Technical University of Delft, Deltares and others. They are proud that professional systems have gained industry-wide trust and recognition. Their client base is made up of oil companies, offshore wind farm oper- ators, port operators, governments, shipping companies and international project developers. One of their valued customers is the Dutch Directorate-General for Public Works and Water Management (Rijkswaterstaat). After a thorough evaluation spanning several years they adopted the WaveGuide System as the water level and wave height sensor in their primary measuring network. For wave height Rijkswaterstaat uses the SWAP program, which meets the strict standards of oil and gas companies (IOGP). RADAC – ReliAble Durable Accurate PLANET OCEAN LTD Planet Ocean is proud to represent some of the world’s leading scientific instrument manufacturers and we bring you the very best from each of their specialist areas of expertise. We are also able to provide bespoke and specialist systems not shown here; please contact us with your special project re- quirements. For more information please contact us at [email protected]. Acknowledgements Katja Roose, Marketing & Sales, RADAC .
Recommended publications
  • Lecture 26 Dielectric Slab Waveguides
    Lecture 26 Dielectric Slab Waveguides In this lecture you will learn: • Dielectric slab waveguides •TE and TM guided modes in dielectric slab waveguides ECE 303 – Fall 2005 – Farhan Rana – Cornell University TE Guided Modes in Parallel-Plate Metal Waveguides r E()rr = yˆ E sin()k x e− j kz z x>0 o x x Ei Ei r r Ey k E r k i r kr i H Hi i z ε µo Hr r r ki = −kx xˆ + kzzˆ kr = kx xˆ + kzzˆ Guided TE modes are TE-waves bouncing back and fourth between two metal plates and propagating in the z-direction ! The x-component of the wavevector can have only discrete values – its quantized m π k = where : m = 1, 2, 3, x d KK ECE 303 – Fall 2005 – Farhan Rana – Cornell University 1 Dielectric Waveguides - I Consider TE-wave undergoing total internal reflection: E i x ε1 µo r k E r i r kr H θ θ i i i z r H r ki = −kx xˆ + kzzˆ r kr = kx xˆ + kzzˆ Evanescent wave ε2 µo ε1 > ε2 r E()rr = yˆ E e− j ()−kx x +kz z + yˆ ΓE e− j (k x x +kz z) 2 2 2 x>0 i i kz + kx = ω µo ε1 Γ = 1 when θi > θc When θ i > θ c : kx = − jα x r E()rr = yˆ T E e− j kz z e−α x x 2 2 2 x<0 i kz − α x = ω µo ε2 ECE 303 – Fall 2005 – Farhan Rana – Cornell University Dielectric Waveguides - II x ε2 µo Evanescent wave cladding Ei E ε1 µo r i r k E r k i r kr i core Hi θi θi Hi ε1 > ε2 z Hr cladding Evanescent wave ε2 µo One can have a guided wave that is bouncing between two dielectric interfaces due to total internal reflection and moving in the z-direction ECE 303 – Fall 2005 – Farhan Rana – Cornell University 2 Dielectric Slab Waveguides W 2d Assumption: W >> d x cladding y core
    [Show full text]
  • High Gain Slotted Waveguide Antenna Based on Beam Focusing Using Electrically Split Ring Resonator Metasurface Employing Negative Refractive Index Medium
    Progress In Electromagnetics Research C, Vol. 79, 115–126, 2017 High Gain Slotted Waveguide Antenna Based on Beam Focusing Using Electrically Split Ring Resonator Metasurface Employing Negative Refractive Index Medium Adel A. A. Abdelrehim and Hooshang Ghafouri-Shiraz* Abstract—In this paper, a new high performance slotted waveguide antenna incorporated with negative refractive index metamaterial structure is proposed, designed and experimentally demonstrated. The metamaterial structure is constructed from a multilayer two-directional structure of electrically split ring resonator which exhibits negative refractive index in direction of the radiated wave propagation when it is placed in front of the slotted waveguide antenna. As a result, the radiation beams of the slotted waveguide antenna are focused in both E and H planes, and hence the directivity and the gain are improved, while the beam area is reduced. The proposed antenna and the metamaterial structure operating at 10 GHz are designed, optimized and numerically simulated by using CST software. The effective parameters of the eSRR structure are extracted by Nicolson Ross Weir (NRW) algorithm from the s-parameters. For experimental verification, a proposed antenna operating at 10 GHz is fabricated using both wet etching microwave integrated circuit technique (for the metamaterial structure) and milling technique (for the slotted waveguide antenna). The measurements are carried out in an anechoic chamber. The measured results show that the E plane gain of the proposed slotted waveguide antenna is improved from 6.5 dB to 11 dB as compared to the conventional slotted waveguide antenna. Also, the E plane beamwidth is reduced from 94.1 degrees to about 50 degrees.
    [Show full text]
  • Waveguide Direction User Manual
    WaveGuide Direction Ex. Certified User Manual WaveGuide Direction Ex. Certified User Manual Applicable for product no. WG-DR40-EX Related to software versions: wdr 4.#-# Version 4.0 21st of November 2016 Radac B.V. Elektronicaweg 16b 2628 XG Delft The Netherlands tel: +31(0)15 890 3203 e-mail: [email protected] website: www.radac.nl Preface This user manual and technical documentation is intended for engineers and technicians involved in the software and hardware setup of the Ex. certified version of the WaveGuide Direction. Note All connections to the instrument must be made with shielded cables with exception of the mains. The shielding must be grounded in the cable gland or in the terminal compartment on both ends of the cable. For more information regarding wiring and cable specifications, please refer to Chapter 2. Legal aspects The mechanical and electrical installation shall only be carried out by trained personnel with knowledge of the local requirements and regulations for installation of electronic equipment. The information in this installation guide is the copyright property of Radac BV. Radac BV disclaims any responsibility for personal injury or damage to equipment caused by: Deviation from any of the prescribed procedures. • Execution of activities that are not prescribed. • Neglect of the general safety precautions for handling tools and use of electricity. • The contents, descriptions and specifications in this installation guide are subject to change without notice. Radac BV accepts no responsibility for any errors that may appear in this user manual. Additional information Please do not hesitate to contact Radac or its representative if you require additional information.
    [Show full text]
  • Instruction Manual Waveguide & Waveguide Server
    Instruction manual WaveGuide & WaveGuide Server Radac bv Elektronicaweg 16b 2628 XG DELFT Phone: +31 15 890 32 03 Email: [email protected] www.radac.n l Instruction manual WaveGuide + WaveGuide Server Version 4.1 2 of 30 Oct 2013 Instruction manual WaveGuide + WaveGuide Server Version 4.1 3 of 30 Oct 2013 Instruction manual WaveGuide + WaveGuide Server Table of Contents Introduction...................................................................................................................................................................4 Installation.....................................................................................................................................................................5 The WaveGuide Sensor...........................................................................................................................................5 CaBling.....................................................................................................................................................................6 The WaveGuide Server............................................................................................................................................7 Commissioning the system...........................................................................................................................................9 Connect the WGS to a computer.............................................................................................................................9 Authorization.........................................................................................................................................................10
    [Show full text]
  • Analysis of a Waveguide-Fed Metasurface Antenna
    Analysis of a Waveguide-Fed Metasurface Antenna Smith, D., Yurduseven, O., Mancera, L. P., Bowen, P., & Kundtz, N. B. (2017). Analysis of a Waveguide-Fed Metasurface Antenna. Physical Review Applied, 8(5). https://doi.org/10.1103/PhysRevApplied.8.054048 Published in: Physical Review Applied Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2017 American Physical Society. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:02. Oct. 2021 PHYSICAL REVIEW APPLIED 8, 054048 (2017) Analysis of a Waveguide-Fed Metasurface Antenna † † David R. Smith,* Okan Yurduseven, Laura Pulido Mancera, and Patrick Bowen Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA Nathan B.
    [Show full text]
  • Waveguide Propagation
    NTNU Institutt for elektronikk og telekommunikasjon Januar 2006 Waveguide propagation Helge Engan Contents 1 Introduction ........................................................................................................................ 2 2 Propagation in waveguides, general relations .................................................................... 2 2.1 TEM waves ................................................................................................................ 7 2.2 TE waves .................................................................................................................... 9 2.3 TM waves ................................................................................................................. 14 3 TE modes in metallic waveguides ................................................................................... 14 3.1 TE modes in a parallel-plate waveguide .................................................................. 14 3.1.1 Mathematical analysis ...................................................................................... 15 3.1.2 Physical interpretation ..................................................................................... 17 3.1.3 Velocities ......................................................................................................... 19 3.1.4 Fields ................................................................................................................ 21 3.2 TE modes in rectangular waveguides .....................................................................
    [Show full text]
  • Waveguides Waveguides, Like Transmission Lines, Are Structures Used to Guide Electromagnetic Waves from Point to Point. However
    Waveguides Waveguides, like transmission lines, are structures used to guide electromagnetic waves from point to point. However, the fundamental characteristics of waveguide and transmission line waves (modes) are quite different. The differences in these modes result from the basic differences in geometry for a transmission line and a waveguide. Waveguides can be generally classified as either metal waveguides or dielectric waveguides. Metal waveguides normally take the form of an enclosed conducting metal pipe. The waves propagating inside the metal waveguide may be characterized by reflections from the conducting walls. The dielectric waveguide consists of dielectrics only and employs reflections from dielectric interfaces to propagate the electromagnetic wave along the waveguide. Metal Waveguides Dielectric Waveguides Comparison of Waveguide and Transmission Line Characteristics Transmission line Waveguide • Two or more conductors CMetal waveguides are typically separated by some insulating one enclosed conductor filled medium (two-wire, coaxial, with an insulating medium microstrip, etc.). (rectangular, circular) while a dielectric waveguide consists of multiple dielectrics. • Normal operating mode is the COperating modes are TE or TM TEM or quasi-TEM mode (can modes (cannot support a TEM support TE and TM modes but mode). these modes are typically undesirable). • No cutoff frequency for the TEM CMust operate the waveguide at a mode. Transmission lines can frequency above the respective transmit signals from DC up to TE or TM mode cutoff frequency high frequency. for that mode to propagate. • Significant signal attenuation at CLower signal attenuation at high high frequencies due to frequencies than transmission conductor and dielectric losses. lines. • Small cross-section transmission CMetal waveguides can transmit lines (like coaxial cables) can high power levels.
    [Show full text]
  • A Rack-Mounted Precision Waveguide-Below-Cutoff Attenuator with an Absolute Electronic Readout
    NBSIR 74-394 A RACK-MOUNTED PRECISION WAVEGUIDE-BELOW-CUTOFF ATTENUATOR WITH AN ABSOLUTE ELECTRONIC READOUT Clarence C. Cook Electromagnetics Division Institute for Basic Standards National Bureau of Standards Boulder, Colorado 80302 November 1974 Prepared for Jet Propulsion Laboratory Pasadena, California 91103 NBSIR 74-394 A RACK-MOUNTED PRECISION WAVEGUIDE-BELOW-CUTOFF ATTENUATOR WITH AN ABSOLUTE ELECTRONIC READOUT Clarence C. Cook Electromagnetics Division Institute for Basic Standards National Bureau of Standards Boulder, Colorado 80302 Certain commerical equipment and materials are identified on the drawings in order to adequately specify the fabrication procedure. In no case does such identification imply recommendation or endorse- ment by the National Bureau of Standards, nor does it imply that the material or equipment identified is necessarily the best available for the purpose. November 1974 Prepared for Jet Propulsion Laboratory Pasadena, California 91103 u s DEPARTMENT OF COMMERCE, Frederick B. Dent. Secretary NATIONAL BUREAU OF STANDARDS Richard W Roberts Director CONTENTS Page ABSTRACT 1 1. INTRODUCTION 1 2. THEORY OF OPERATION 1 3. DESCRIPTION OF ATTENUATOR 3 4. ATTENUATOR OPERATION 7 4.1 Preliminary Setup and Check 7 4.2 Displacement Readouts and Attenuation Value 7 5. OPERATIONAL CONSIDERATIONS 9 5.1 Initial Alignment 9 . 5.2 Operation 10 6. ERROR ANALYSIS , . 11 6.1 Waveguide Diameter 11 6.2 Waveguide Conductivity .... 12 6.3 Attenuation Rate 12 6.4 Displacement Readout 13 6.5 Miscellaneous Sources of Error 13 6.6 Temperature Effects . 15 6.7 Summary of Errors 16 7. SUMMARY 16 8. ACKNOWLEDGMENTS 17 9. REFERENCES 17 10. PARTS LIST 18 iii LIST OF FIGURES Page 1.
    [Show full text]
  • 23. Cavity Resonator
    WCChew ECE Lecture Notes Cavity Resonator y b –d x 0 a z A cavity resonator is a useful microwave device If we close o two ends of a rectangular waveguide with metallic walls we have a rectangular cavity resonator In this case the wave propagating in the zdirection will b ounce o the twowalls resulting in a standing waveinthezdirection For the TM casewe have j z j z z z E E sin x sin y e e z x y j x z j z j z z z E cos x sin y e e E x y x y x j y z j z j z z z E E sin x cos y e e y x y y x For the b oundary conditions to be satised we require that E z x E z Hence and y E E sin xsin y cos z z x y z x z E E cos x sin y sin z x x y z x y y z E E sin x cos y sin z y x y z x y Furthermore E z dE z d implying that x y p p z d m n The guidance conditions for a waveguide demand that and x y a b where for TM case neither m or n can be zero Now that has to satisfy z the TM mo de in a cavity is classied as TM mo de We note from mnp that p can be zero while E Hence the TM cavity mo de can exist z mn In order for and to b e solutions to the wave equation we require that m n p x y z a b d For a given choice of m n and p only a single frequency can satisfy This frequency is the resonant frequency of the cavity It is only at this frequency that the cavity can sustain a free oscillation At other frequencies the elds interfere destructively and the free oscillation is not sustained From we gather that the resonant frequency for the TM
    [Show full text]
  • Design of Slotted Waveguide Antenna for Radar Applications at X-Band
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 3 Issue 11, November-2014 Design of Slotted Waveguide Antenna for Radar Applications at X-Band S. Murugaveni1 T. Karthick 2 1Assistant Professor, M.Tech, 2 Department of Telecommunication Engineering, Department of Telecommunication Engineering, SRM University, Kattankulathur – 603203, SRM University, Kattankulathur – 603203, Chennai, India. Chennai,India. Abstract --A slotted waveguide antenna has been designed for I MATHEMATICAL MODELING radar applications at X-band, 9.47 GHz. Slotted waveguide The dominant mode in a rectangular waveguide with antennas are mostly employed in Radar applications. This dimension a > b is the TE10 mode. Dominant mode is paper analysis the structure and design procedures of slotted always a low loss, distortion less transmission and higher antenna in the broad wall. This design specifications are modes result in significant loss of power and also chosen for high gain and mechanical robustness. The slotted waveguide antenna designed is a directional type antenna undesirable harmonic distortion. The standard length of the with gain of 16db. We first obtain the physical size of each slot wave guide is shown in the figure where the slot length is by using parameter sweep function Ansoft High Frequency around half of the wavelength over the air,휆 2. The slots Structured Simulation (HFSS) software. Then we created a are milled onto a standard waveguide wr90 with inner complete model. Finally we perform the simulation and waveguide dimension of 22.86 × 10.16 mm arranged in compare against the design requirement. There is a good two vertical columns offset from the centre which acts as agreement between simulation and design requirement.
    [Show full text]
  • Abnormal Radiation Pattern of Metamaterial Waveguide
    PIERS ONLINE, VOL. 4, NO. 6, 2008 641 Abnormal Radiation Pattern of Metamaterial Waveguide A. N. Lagarkov, V. N. Semenenko, A. A. Basharin, and N. P. Balabukha Institute for Theoretical and Applied Electromagnetics of Russian Academy of Sciences (ITAE RAS) Izhorskaya 13, Moscow 125412, Russia Abstract| The idea to inverse the radiation pattern of the microwave antenna due to appli- cation of the isotropic metamaterial screen with negative refractive index in S band is demon- strated at the ¯rst time in this investigation. The electromagnetic simulation of waveguide antenna patterns by moment's methods demonstrates an agreement modeling antenna patterns with measured antenna diagrams for values of metamaterial e®ective parameters (permittivity and permeability) extracted from measured S-parameters of metamaterial sheet sample. 1. INTRODUCTION The prediction of left handed materials (LHM) by V. G. Veselago in 1967 [1] can be considered as a new stage in the development of electromagnetics of continuous media. Recently a lot of papers [2, 3] related to the arti¯cial magnetoelectric media with anomalous electromagnetic properties have been appeared. Among these papers there are ones on 2-D, 3-D media with the negative permittivity and permeability [4, 5] and, hence, negative refractive index. The abnormal antenna patterns of a rectangular open waveguide loaded by a rectangular cross-section magnetoelectric tube made of the metamaterial with the negative refractive index in S frequency band for di®erent thicknesses of tube are demonstrated at ¯rst in this paper. 2. SCHEME OF WAVEGUIDE RADIATOR The geometry of open waveguide loaded by the metamaterial screen having a shape of a rectangular cross-section tube (modi¯ed open waveguide radiator) is shown in Figs.
    [Show full text]
  • WAVEGUIDES X
    WAVEGUIDES x z y µ, ε Maxwell's Equation ∇2E + ω2µεE = 0 (A) ∇2H + ω2µεH = 0 (B) For a waveguide with arbitrary cross section as shown in the above figure, we assume a plane wave solution and as a first trial, we set Ez = 0. This defines the TE modes. ∂H ∇ × = −µ , we have From E ∂t ∂ ∂ ∂ Ez Ey µ Hx ⇒ β ωµ ∂y - ∂z = - ∂t +j zEy = -j Hx (1) ∂ ∂ ∂ Ex Ez µ Hy ⇒ β ωµ ∂z - ∂x = - ∂t -j zEx = -j Hy (2) ∂ ∂ ∂ ∂ ∂ Ey Ex µ Hz ⇒ Ey Ex ωµ ∂x - ∂y = - ∂t ∂x - ∂y = -j Hz (3) From ∇ × E = − jωµH, we get xyzˆˆˆ ∂ ∂ ∂ jωεE = ∂xxz∂ ∂ Hx Hy Hz ∂ ∂ ∂ Hz Hy ωε ⇒ Hz β ωε ∂y - ∂z = j Ex ∂y + j zHy = j Ex (4) ∂ ∂ ∂ Hx Hz ωε ⇒ β Hz ωε ∂z - ∂x = j Ey -j zHx - ∂x = j Ey (5) - 2 - ∂Hy ∂Hx ∂x - ∂y = 0 (6) We want to express all quantities in terms of Hz. From (2), we have β E H = z x (7) y ωµ in (4) ∂H E z + jβ 2 x = jωεE (8) ∂y z ωµ x Solving for Ex jωµ ∂Hz Ex = ∂y (9) βz2-ω2µε From (1) -β E H = z y (10) x ωµ in (5) β 2E ∂Hz +j z y - = jωεE (11) ωµ ∂x y so that -jωµ ∂Hz Ey = ∂x (12) βz2-ω2µε jβz ∂Hz Hx = ∂x (13) βz2-ω2µε jβz ∂Hz Hy = ∂y (14) βz2-ω2µε Ez = 0 (15) - 3 - Combining solutions for Ex and Ey into (3) gives ∂2Hz ∂2Hz + = [βz2-ω2µε]Hz (16) ∂x2 ∂y2 RECTANGULAR WAVEGUIDES y x z µ, ε b a If the cross section of the waveguide is a rectangle, we have a rectangular waveguide and the boundary conditions are such that the tangential electric field is zero on all the PEC walls.
    [Show full text]