Resonant Cavities and Waveguides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 17 - Rectangular Waveguides/Photonic Crystals� and Radiative Recombination -Outline�
6.772/SMA5111 - Compound Semiconductors Lecture 17 - Rectangular Waveguides/Photonic Crystals� and Radiative Recombination -Outline� • Dielectric optics (continuing discussion in Lecture 16) Rectangular waveguides� Coupled rectangular waveguide structures Couplers, Filters, Switches • Photonic crystals History: Optical bandgaps and Eli Yablonovich, to the present One-dimensional photonic crystals� Distributed Bragg reflectors� Photonic fibers; perfect mirrors� Two-dimensional photonic crystals� Guided wave optics structures� Defect levels� Three-dimensional photonic crystals • Recombination Processes (preparation for LEDs and LDs) Radiative vs. non-radiative� Relative carrier lifetimes� C. G. Fonstad, 4/03 Lecture 17 - Slide 1 Absorption in semiconductors - indirect-gap band-to-band� •� The phonon modes involved indirect band gap absorption •� Dispersion curves for acoustic and optical phonons Approximate optical phonon energies for several semiconductors Ge: 37 meV (Swaminathan and Macrander) Si: 63 meV GaAs: 36 meV C. G. Fonstad, 4/03� Lecture 15 - Slide 2� Slab dielectric waveguides� •�Nature of TE-modes (E-field has only a y-component). For the j-th mode of the slab, the electric field is given by: - (b -w ) = j j z t E y, j X j (x)Re[ e ] In this equation: w: frequency/energy of the light pw = n = l 2 c o l o: free space wavelength� b j: propagation constant of the j-th mode Xj(x): mode profile normal to the slab. satisfies d 2 X j + 2 2- b 2 = 2 (ni ko j )X j 0 dx where:� ni: refractive index in region i� ko: propagation constant in free space = pl ko 2 o C. G. Fonstad, 4/03� Lecture 17 - Slide 3� Slab dielectric waveguides� •�In approaching a slab waveguide problem, we typically take the dimensions and indices in the various regions and the free space wavelength or frequency of the light as the "givens" and the unknown is b, the propagation constant in the slab. -
Chapter 3 Dynamics of the Electromagnetic Fields
Chapter 3 Dynamics of the Electromagnetic Fields 3.1 Maxwell Displacement Current In the early 1860s (during the American civil war!) electricity including induction was well established experimentally. A big row was going on about theory. The warring camps were divided into the • Action-at-a-distance advocates and the • Field-theory advocates. James Clerk Maxwell was firmly in the field-theory camp. He invented mechanical analogies for the behavior of the fields locally in space and how the electric and magnetic influences were carried through space by invisible circulating cogs. Being a consumate mathematician he also formulated differential equations to describe the fields. In modern notation, they would (in 1860) have read: ρ �.E = Coulomb’s Law �0 ∂B � ∧ E = − Faraday’s Law (3.1) ∂t �.B = 0 � ∧ B = µ0j Ampere’s Law. (Quasi-static) Maxwell’s stroke of genius was to realize that this set of equations is inconsistent with charge conservation. In particular it is the quasi-static form of Ampere’s law that has a problem. Taking its divergence µ0�.j = �. (� ∧ B) = 0 (3.2) (because divergence of a curl is zero). This is fine for a static situation, but can’t work for a time-varying one. Conservation of charge in time-dependent case is ∂ρ �.j = − not zero. (3.3) ∂t 55 The problem can be fixed by adding an extra term to Ampere’s law because � � ∂ρ ∂ ∂E �.j + = �.j + �0�.E = �. j + �0 (3.4) ∂t ∂t ∂t Therefore Ampere’s law is consistent with charge conservation only if it is really to be written with the quantity (j + �0∂E/∂t) replacing j. -
New Waveguide-Type HOM Damper for the ALS Storage Ring RF Cavities
Proceedings of EPAC 2004, Lucerne, Switzerland NEW WAVEGUIDE-TYPE HOM DAMPER FOR ALS STORAGE RING CAVITIES*. S.Kwiatkowski, K. Baptiste, J. Julian LBL, Berkeley, CA, 94720, USA Abstract The ALS storage ring 500 MHz RF system uses two re-entrant accelerating cavities powered by a single This effect could be compensated by adding a second 320kW PHILLIPS YK1305 klystron. During several vacuum pump if necessary (which would pump the cavity years of initial operation, the RF cavities were not via the power coupler port). The cut-off frequency for the equipped with effective passive HOM damper systems, lowest TE mode (TE11 mode) of the single ridge circular however, longitudinal beam stability was achieved with waveguide, used in our damper, is 890MHz and the total careful cavity temperature control and by implementing length is 600mm. The single ridge geometry of the an active longitudinal feedback system (LFB), which was waveguide was chosen as it allows to dump both often operating at the edge of its capabilities. As a result, symmetrical and nonsymmetrical HOM’s. longitudinal beam stability was a significant operations issue at the ALS. During three consecutive shutdown DESIGN PROCESS periods (April2002, 2003 and 2004) we installed E-type The design process of the new ALS damper took HOM dampers on the main and third harmonic cavities. several steps. First with the help of 2-D SUPERLANS These devices dramatically decreased the Q-values of the code, the main parameters of the longitudinal HOM longitudinal anti-symmetric HOM modes. The next step spectrum have been determined. Then the cross-section of is to damp the remaining longitudinal HOM modes in the the HOM damper waveguide was optimized with the help fundamental RF cavities below the synchrotron radiation of HFSS S11 processor. -
Lecture 26 Dielectric Slab Waveguides
Lecture 26 Dielectric Slab Waveguides In this lecture you will learn: • Dielectric slab waveguides •TE and TM guided modes in dielectric slab waveguides ECE 303 – Fall 2005 – Farhan Rana – Cornell University TE Guided Modes in Parallel-Plate Metal Waveguides r E()rr = yˆ E sin()k x e− j kz z x>0 o x x Ei Ei r r Ey k E r k i r kr i H Hi i z ε µo Hr r r ki = −kx xˆ + kzzˆ kr = kx xˆ + kzzˆ Guided TE modes are TE-waves bouncing back and fourth between two metal plates and propagating in the z-direction ! The x-component of the wavevector can have only discrete values – its quantized m π k = where : m = 1, 2, 3, x d KK ECE 303 – Fall 2005 – Farhan Rana – Cornell University 1 Dielectric Waveguides - I Consider TE-wave undergoing total internal reflection: E i x ε1 µo r k E r i r kr H θ θ i i i z r H r ki = −kx xˆ + kzzˆ r kr = kx xˆ + kzzˆ Evanescent wave ε2 µo ε1 > ε2 r E()rr = yˆ E e− j ()−kx x +kz z + yˆ ΓE e− j (k x x +kz z) 2 2 2 x>0 i i kz + kx = ω µo ε1 Γ = 1 when θi > θc When θ i > θ c : kx = − jα x r E()rr = yˆ T E e− j kz z e−α x x 2 2 2 x<0 i kz − α x = ω µo ε2 ECE 303 – Fall 2005 – Farhan Rana – Cornell University Dielectric Waveguides - II x ε2 µo Evanescent wave cladding Ei E ε1 µo r i r k E r k i r kr i core Hi θi θi Hi ε1 > ε2 z Hr cladding Evanescent wave ε2 µo One can have a guided wave that is bouncing between two dielectric interfaces due to total internal reflection and moving in the z-direction ECE 303 – Fall 2005 – Farhan Rana – Cornell University 2 Dielectric Slab Waveguides W 2d Assumption: W >> d x cladding y core -
Lecture 5: Displacement Current and Ampère's Law
Whites, EE 382 Lecture 5 Page 1 of 8 Lecture 5: Displacement Current and Ampère’s Law. One more addition needs to be made to the governing equations of electromagnetics before we are finished. Specifically, we need to clean up a glaring inconsistency. From Ampère’s law in magnetostatics, we learned that H J (1) Taking the divergence of this equation gives 0 H J That is, J 0 (2) However, as is shown in Section 5.8 of the text (“Continuity Equation and Relaxation Time), the continuity equation (conservation of charge) requires that J (3) t We can see that (2) and (3) agree only when there is no time variation or no free charge density. This makes sense since (2) was derived only for magnetostatic fields in Ch. 7. Ampère’s law in (1) is only valid for static fields and, consequently, it violates the conservation of charge principle if we try to directly use it for time varying fields. © 2017 Keith W. Whites Whites, EE 382 Lecture 5 Page 2 of 8 Ampère’s Law for Dynamic Fields Well, what is the correct form of Ampère’s law for dynamic (time varying) fields? Enter James Clerk Maxwell (ca. 1865) – The Father of Classical Electromagnetism. He combined the results of Coulomb’s, Ampère’s, and Faraday’s laws and added a new term to Ampère’s law to form the set of fundamental equations of classical EM called Maxwell’s equations. It is this addition to Ampère’s law that brings it into congruence with the conservation of charge law. -
This Chapter Deals with Conservation of Energy, Momentum and Angular Momentum in Electromagnetic Systems
This chapter deals with conservation of energy, momentum and angular momentum in electromagnetic systems. The basic idea is to use Maxwell’s Eqn. to write the charge and currents entirely in terms of the E and B-fields. For example, the current density can be written in terms of the curl of B and the Maxwell Displacement current or the rate of change of the E-field. We could then write the power density which is E dot J entirely in terms of fields and their time derivatives. We begin with a discussion of Poynting’s Theorem which describes the flow of power out of an electromagnetic system using this approach. We turn next to a discussion of the Maxwell stress tensor which is an elegant way of computing electromagnetic forces. For example, we write the charge density which is part of the electrostatic force density (rho times E) in terms of the divergence of the E-field. The magnetic forces involve current densities which can be written as the fields as just described to complete the electromagnetic force description. Since the force is the rate of change of momentum, the Maxwell stress tensor naturally leads to a discussion of electromagnetic momentum density which is similar in spirit to our previous discussion of electromagnetic energy density. In particular, we find that electromagnetic fields contain an angular momentum which accounts for the angular momentum achieved by charge distributions due to the EMF from collapsing magnetic fields according to Faraday’s law. This clears up a mystery from Physics 435. We will frequently re-visit this chapter since it develops many of our crucial tools we need in electrodynamics. -
High Gain Slotted Waveguide Antenna Based on Beam Focusing Using Electrically Split Ring Resonator Metasurface Employing Negative Refractive Index Medium
Progress In Electromagnetics Research C, Vol. 79, 115–126, 2017 High Gain Slotted Waveguide Antenna Based on Beam Focusing Using Electrically Split Ring Resonator Metasurface Employing Negative Refractive Index Medium Adel A. A. Abdelrehim and Hooshang Ghafouri-Shiraz* Abstract—In this paper, a new high performance slotted waveguide antenna incorporated with negative refractive index metamaterial structure is proposed, designed and experimentally demonstrated. The metamaterial structure is constructed from a multilayer two-directional structure of electrically split ring resonator which exhibits negative refractive index in direction of the radiated wave propagation when it is placed in front of the slotted waveguide antenna. As a result, the radiation beams of the slotted waveguide antenna are focused in both E and H planes, and hence the directivity and the gain are improved, while the beam area is reduced. The proposed antenna and the metamaterial structure operating at 10 GHz are designed, optimized and numerically simulated by using CST software. The effective parameters of the eSRR structure are extracted by Nicolson Ross Weir (NRW) algorithm from the s-parameters. For experimental verification, a proposed antenna operating at 10 GHz is fabricated using both wet etching microwave integrated circuit technique (for the metamaterial structure) and milling technique (for the slotted waveguide antenna). The measurements are carried out in an anechoic chamber. The measured results show that the E plane gain of the proposed slotted waveguide antenna is improved from 6.5 dB to 11 dB as compared to the conventional slotted waveguide antenna. Also, the E plane beamwidth is reduced from 94.1 degrees to about 50 degrees. -
Waveguide Direction User Manual
WaveGuide Direction Ex. Certified User Manual WaveGuide Direction Ex. Certified User Manual Applicable for product no. WG-DR40-EX Related to software versions: wdr 4.#-# Version 4.0 21st of November 2016 Radac B.V. Elektronicaweg 16b 2628 XG Delft The Netherlands tel: +31(0)15 890 3203 e-mail: [email protected] website: www.radac.nl Preface This user manual and technical documentation is intended for engineers and technicians involved in the software and hardware setup of the Ex. certified version of the WaveGuide Direction. Note All connections to the instrument must be made with shielded cables with exception of the mains. The shielding must be grounded in the cable gland or in the terminal compartment on both ends of the cable. For more information regarding wiring and cable specifications, please refer to Chapter 2. Legal aspects The mechanical and electrical installation shall only be carried out by trained personnel with knowledge of the local requirements and regulations for installation of electronic equipment. The information in this installation guide is the copyright property of Radac BV. Radac BV disclaims any responsibility for personal injury or damage to equipment caused by: Deviation from any of the prescribed procedures. • Execution of activities that are not prescribed. • Neglect of the general safety precautions for handling tools and use of electricity. • The contents, descriptions and specifications in this installation guide are subject to change without notice. Radac BV accepts no responsibility for any errors that may appear in this user manual. Additional information Please do not hesitate to contact Radac or its representative if you require additional information. -
High-Index Glass Waveguides for AR Roadmap to Consumer Market
High-Index Glass Waveguides for AR Roadmap to Consumer Market Dr. Xavier Lafosse Commercial Technology Director, Advanced Optics SPIE AR / VR / MR Conference February 2-4, 2020 Outline • Enabling the Display Industry Through Glass Innovations • Our Solutions for Augmented Reality Applications • The Challenges for Scalable and Cost-Effective Solutions Precision Glass Solutions © 2020 Corning Incorporated 2 Corning’s glass innovations have enabled displays for more than 80 years… 1939 1982 2019 Cathode ray tubes for Liquid crystal display (LCD) EAGLE XG® Glass is the black and white televisions glass for monitors, laptops LCD industry standard Precision Glass Solutions © 2020 Corning Incorporated 3 Corning is a world-renowned innovator and supplier across the display industry Cover Glass Glass For AR/MR Display for Display Waveguides Display Technologies Introduced glass panels for 1st active 12 years of innovation in cover Corning Precision Glass Solutions matrix LCD devices in 1980s glass for smartphones, laptops, (PGS) was the first to market with tablets & wearables ultra-flat, high-index wafers for top- Have sold 25 billion square feet of tier consumer electronic companies ® ® ® ® flagship Corning EAGLE XG Corning Gorilla Glass is now on pursuing augmented reality and more than 7 billion devices worldwide mixed reality waveguide displays Precision Glass Solutions © 2020 Corning Incorporated 4 PGS offers best-in-class glass substrates for semiconductor and consumer electronics applications Advanced Low-loss, low Wafer-level Waveguide -
Instruction Manual Waveguide & Waveguide Server
Instruction manual WaveGuide & WaveGuide Server Radac bv Elektronicaweg 16b 2628 XG DELFT Phone: +31 15 890 32 03 Email: [email protected] www.radac.n l Instruction manual WaveGuide + WaveGuide Server Version 4.1 2 of 30 Oct 2013 Instruction manual WaveGuide + WaveGuide Server Version 4.1 3 of 30 Oct 2013 Instruction manual WaveGuide + WaveGuide Server Table of Contents Introduction...................................................................................................................................................................4 Installation.....................................................................................................................................................................5 The WaveGuide Sensor...........................................................................................................................................5 CaBling.....................................................................................................................................................................6 The WaveGuide Server............................................................................................................................................7 Commissioning the system...........................................................................................................................................9 Connect the WGS to a computer.............................................................................................................................9 Authorization.........................................................................................................................................................10 -
Section 2: Maxwell Equations
Section 2: Maxwell’s equations Electromotive force We start the discussion of time-dependent magnetic and electric fields by introducing the concept of the electromotive force . Consider a typical electric circuit. There are two forces involved in driving current around a circuit: the source, fs , which is ordinarily confined to one portion of the loop (a battery, say), and the electrostatic force, E, which serves to smooth out the flow and communicate the influence of the source to distant parts of the circuit. Therefore, the total force per unit charge is a circuit is = + f fs E . (2.1) The physical agency responsible for fs , can be any one of many different things: in a battery it’s a chemical force; in a piezoelectric crystal mechanical pressure is converted into an electrical impulse; in a thermocouple it’s a temperature gradient that does the job; in a photoelectric cell it’s light. Whatever the mechanism, its net effect is determined by the line integral of f around the circuit: E =fl ⋅=d f ⋅ d l ∫ ∫ s . (2.2) The latter equality is because ∫ E⋅d l = 0 for electrostatic fields, and it doesn’t matter whether you use f E or fs . The quantity is called the electromotive force , or emf , of the circuit. It’s a lousy term, since this is not a force at all – it’s the integral of a force per unit charge. Within an ideal source of emf (a resistanceless battery, for instance), the net force on the charges is zero, so E = – fs. The potential difference between the terminals ( a and b) is therefore b b ∆Φ=− ⋅ = ⋅ = ⋅ = E ∫Eld ∫ fs d l ∫ f s d l . -
Analysis of a Waveguide-Fed Metasurface Antenna
Analysis of a Waveguide-Fed Metasurface Antenna Smith, D., Yurduseven, O., Mancera, L. P., Bowen, P., & Kundtz, N. B. (2017). Analysis of a Waveguide-Fed Metasurface Antenna. Physical Review Applied, 8(5). https://doi.org/10.1103/PhysRevApplied.8.054048 Published in: Physical Review Applied Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2017 American Physical Society. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:02. Oct. 2021 PHYSICAL REVIEW APPLIED 8, 054048 (2017) Analysis of a Waveguide-Fed Metasurface Antenna † † David R. Smith,* Okan Yurduseven, Laura Pulido Mancera, and Patrick Bowen Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA Nathan B.