Displacement Current and Ampère's Circuital Law Ivan S

Total Page:16

File Type:pdf, Size:1020Kb

Displacement Current and Ampère's Circuital Law Ivan S ELECTRICAL ENGINEERING Displacement current and Ampère's circuital law Ivan S. Bozev, Radoslav B. Borisov The existing literature about displacement current, although it is clearly defined, there are not enough publications clarifying its nature. Usually it is assumed that the electrical current is three types: conduction current, convection current and displacement current. In the first two cases we have directed movement of electrical charges, while in the third case we have time varying electric field. Most often for the displacement current is talking in capacitors. Taking account that charge carriers (electrons and charged particles occupy the negligible space in the surrounding them space, they can be regarded only as exciters of the displacement current that current fills all space and is superposition of the currents of the individual moving charges. For this purpose in the article analyzes the current configuration of lines in space around a moving charge. An analysis of the relationship between the excited magnetic field around the charge and the displacement current is made. It is shown excited magnetic flux density and excited the displacement current are linked by Ampere’s circuital law. ъ а аа я аъ а ъя (Ива . Бв, аав Б. Бв.) В я, я , я , яя . , я : , я я. я я, я я . я . К , я ( я я , я, я я я. З я я я. я я. , я я я я . 1. Introduction configurations of the electric field of moving charge are shown on Fig. 1 and Fig. 2. First figure represents The size of electronic components constantly delayed potentials of the electric field according to shrinks and the discrete nature of the matter is Liénard–Wiechert and this picture is not symmetrical becomming more obvious. Electromagnetic field towards the axis of the moving charge. In this case the surrounding individual charges cannot be neglected =v c anymore and the processes connected to the picture represents charge moving at speed 0,5 0 , electromagnetic field energy should be considered. where c0 is the speed of light in vacuum. Doppler Most famous analysis discussing the electromagnetic effect is expressed and presented on the figure. Figure field surrounding moving charges are Liénard– 2 represents electric field strength of the electrical Wiechert (Liénard–Wiechert potentials), Oliver field according to the analysis of Heaviside and as it is Heaviside and Oleg Jefimenko (Jefimenko's shown, the picture is symmetrical about the moving equations). All of the above analysis is so called charge. The compression along the x axis can be solutions of the Maxwell equations. Most famous explained using Lorentz contraction in the direction of “Е+Е”, 11-12/2016 15 the movement. Later on Efimenko introduces the where ε0 is electrical constant in vacuum, Е is the concept „delayed time“. electric filed strenght and D is the electric flux density. y q v Figure 3 shows moving charge at speed along x the axis. Electric field strenght Е and the electric flux density D are defined according to the Coulomb V law for point charge, where it matches the border case where v → 0 . v x y q x r y q Fig. 1 vt x v Fig. 3 y From the equations below we can see that they have spherical symmetry qrˆ qrˆ E D E (2) = 2 , = ε0 = 2 , 4πε0r 4πr E 2 2 2 2 where r = x + y + z when we have the three axis q v x coordinate system and rˆ is the unit vector of r . Figure 3 represents two axis coordinate system 2 2 2 ( r = x + y ; z = 0) and the symmetry is along the x axis. When the charge is moving, the electric field strength for the individual points in the space is function of time t. According to equations (2) the Fig. 2 electric field strength Е is: According to all analysis of the electromagnetic qrˆ qrˆ (3) E = , E = . field surrounding moving charge causal connection x vt 2 y 2 z 2 x vt 2 y2 4πε0 ()− + + 4πε0 ()()− + between the separate quantities and processes is () missing. Respectively the three components of the 2. Exposition derivatives of electric field strength are decomposed as follow: We know from Maxwell equations [1], that the j displacement current density D is: ()x − vt q() x − vt (4) Ex = E ⋅ = , 1 3 D E 2 2 2 2 2 2 ∂ ∂ x − vt + y + z 2 4πε0 x − vt + y + z 2 (1) jD = = ε0 , ()() ()() ∂t ∂t y qy (5) E y = E ⋅ = , 1 3 x vt 2 + y2 + z 2 x vt 2 + y2 + z 2 ()()− 2 4πε0 ()()− 2 16 “Е+Е”, 11-12/2016 z qz (6) Ez = E ⋅ = . 1 3 y x vt 2 + y2 + z 2 x vt 2 + y2 + z 2 ()()− 2 4πε0 ()()− 2 For the first derivatives with respect to time for each axis we can write: j 2 2 2 2 2 2 qv 2()x − vt − y − z qv 2x − y − z (6) Ex′ = ⋅ ( ) , Ex′ = ⋅ ( ) , x 4 5 4 5 v πε0 2 2 2 t→0 πε0 2 2 2 ()()x − vt + y + z 2 ()x + y + z 2 j qv 3y() x − vt qv 3yx (7) E′y = ⋅ , E′y = ⋅ , 4 5 4 5 πε0 2 2 2 t→0 πε0 2 2 2 ()()x − vt + y + z 2 ()x + y + z 2 qv 3z x vt qv 3zx E ()− E (9) z′ = ⋅ 5 , z′ = ⋅ 5 , 4πε0 2 2 2 t→0 4πε0 2 2 2 ()()x − vt + y + z 2 ()x + y + z 2 Fig. 4 Accordingly for the displacement current density jD the following equations are valid: qv 2x2 y 2 z 2 j E ()− − (10) x = ε0 x′ = ⋅ 5 , 4π 2 2 2 ()x + y + z 2 qv 3yx j E (11) y = ε0 ′y = ⋅ 5 , 4π 2 2 2 ()x + y + z 2 qv 3zx j E (12) z = ε0 z′ = ⋅ 5 . 4π 2 2 2 ()x + y + z 2 Selection of the analyzed point to be in the plane of xy simplifies the analysis (follows that z=0) and the distribution of the displacement current can be represented clearly. For the analysis were used online Fig.5. calculators [2] and [3]. Use of the above mentioned calculators give advantage that they provide results for Fig. 6 presents the shape of the displacement each step of the transformations and function’s visual current and excited magnetic induction B around a representation using graphics. moving charge. The value of the magnetic induction A simulation has been conducted with respect to according to Fig. 6 is calculated using Biot-Savart the displacement current using software [4] and Fig 5 law: shows the results from the calculations of equations q v rˆ v sinθ (10) and (11) in case z=0. B µ0 × µ0 (13) = 2 = 2 . Displacement current trajectories shown on Fig. 4 4π r 4π r in the xy plane are approximate. Paths flow of the In principal it is interesting to be determined if in displacement current are represented by oval curves, the space surrounding a moving charge it`s magnetic close to circles, symmetrical with respect to y axis and field and displacement current are connected through passing through the origin of the coordinate system (in the Ampère's circuital law. this case through the moving point charge). In case of Calculations were conducted for the covered uniform motion of the charge q and speed tend to be current by the contours in shape of circle with center zero ( v 0 ), the vector field of the displacement → on x axis and magnetic flux density along the circle is current is solenoidal. It has divergence equal to zero checked if with Biot-Savart law satisfies the Ampère's and the displacement current forms closed curves in circuital law. Table 1 represents the results from the the form of pipes where the currents are constant. calculations in case q = 1 C, r = 1 m and v =1 m/s . First column represents the angle θ. “Е+Е”, 11-12/2016 17 The results for calculated magnetic flux density If θ = 30° the equation becomes { were done using calculator [5], where equation (13) y((2)(cos(pi/6))^2-y^2)/(2((cos(pi/6))^2+y^2)^(5/2)) } was used and previously mentioned values using the online calculator [2]. 7 ( B =10− sinθ ). Second column contains the In case θ = 90° the circle covers the beginning of calculated results. the coordinate system where the values are infinite Third column contains the full current according to and the integral becomes divergent. Approximate the defined magnetic flux density on the result could be derived in case we select a coordinate system very close to the beginning of the initial y coordinate system and integral is defined from 0 to 1. In case x = 0 the limits of the integral become y =1...∞ and definite result is obtained with negative B sign. This is possible, because the vector field of the j current is solenoidal (no divergence) and the currents r through the two half’s of the plane, separated by the θ circle with centre in the beginning of the coordinate system are equal and with opposite signs. x Results from the calculations are equal to the one from vq the previous column. B The fourth column contains the current, defined by spherical surface surrounded by the circle according to B angle θ, where the expressions j zx 0 and j zy 0 are B ()= ()= j used. The current follows through the equation: 1 i j S j S 2 ydx cd = ()x ⋅ x⊥ + y ⋅ y⊥ π = cos θ 6.Fig (17) 2 2 x 2x − y + 3yx R qv ()y 1 x circumference of the sphere defined by the angle θ.
Recommended publications
  • Chapter 3 Dynamics of the Electromagnetic Fields
    Chapter 3 Dynamics of the Electromagnetic Fields 3.1 Maxwell Displacement Current In the early 1860s (during the American civil war!) electricity including induction was well established experimentally. A big row was going on about theory. The warring camps were divided into the • Action-at-a-distance advocates and the • Field-theory advocates. James Clerk Maxwell was firmly in the field-theory camp. He invented mechanical analogies for the behavior of the fields locally in space and how the electric and magnetic influences were carried through space by invisible circulating cogs. Being a consumate mathematician he also formulated differential equations to describe the fields. In modern notation, they would (in 1860) have read: ρ �.E = Coulomb’s Law �0 ∂B � ∧ E = − Faraday’s Law (3.1) ∂t �.B = 0 � ∧ B = µ0j Ampere’s Law. (Quasi-static) Maxwell’s stroke of genius was to realize that this set of equations is inconsistent with charge conservation. In particular it is the quasi-static form of Ampere’s law that has a problem. Taking its divergence µ0�.j = �. (� ∧ B) = 0 (3.2) (because divergence of a curl is zero). This is fine for a static situation, but can’t work for a time-varying one. Conservation of charge in time-dependent case is ∂ρ �.j = − not zero. (3.3) ∂t 55 The problem can be fixed by adding an extra term to Ampere’s law because � � ∂ρ ∂ ∂E �.j + = �.j + �0�.E = �. j + �0 (3.4) ∂t ∂t ∂t Therefore Ampere’s law is consistent with charge conservation only if it is really to be written with the quantity (j + �0∂E/∂t) replacing j.
    [Show full text]
  • Electromagnetism As Quantum Physics
    Electromagnetism as Quantum Physics Charles T. Sebens California Institute of Technology May 29, 2019 arXiv v.3 The published version of this paper appears in Foundations of Physics, 49(4) (2019), 365-389. https://doi.org/10.1007/s10701-019-00253-3 Abstract One can interpret the Dirac equation either as giving the dynamics for a classical field or a quantum wave function. Here I examine whether Maxwell's equations, which are standardly interpreted as giving the dynamics for the classical electromagnetic field, can alternatively be interpreted as giving the dynamics for the photon's quantum wave function. I explain why this quantum interpretation would only be viable if the electromagnetic field were sufficiently weak, then motivate a particular approach to introducing a wave function for the photon (following Good, 1957). This wave function ultimately turns out to be unsatisfactory because the probabilities derived from it do not always transform properly under Lorentz transformations. The fact that such a quantum interpretation of Maxwell's equations is unsatisfactory suggests that the electromagnetic field is more fundamental than the photon. Contents 1 Introduction2 arXiv:1902.01930v3 [quant-ph] 29 May 2019 2 The Weber Vector5 3 The Electromagnetic Field of a Single Photon7 4 The Photon Wave Function 11 5 Lorentz Transformations 14 6 Conclusion 22 1 1 Introduction Electromagnetism was a theory ahead of its time. It held within it the seeds of special relativity. Einstein discovered the special theory of relativity by studying the laws of electromagnetism, laws which were already relativistic.1 There are hints that electromagnetism may also have held within it the seeds of quantum mechanics, though quantum mechanics was not discovered by cultivating those seeds.
    [Show full text]
  • Electromagnetic Field Theory
    Lecture 4 Electromagnetic Field Theory “Our thoughts and feelings have Dr. G. V. Nagesh Kumar Professor and Head, Department of EEE, electromagnetic reality. JNTUA College of Engineering Pulivendula Manifest wisely.” Topics 1. Biot Savart’s Law 2. Ampere’s Law 3. Curl 2 Releation between Electric Field and Magnetic Field On 21 April 1820, Ørsted published his discovery that a compass needle was deflected from magnetic north by a nearby electric current, confirming a direct relationship between electricity and magnetism. 3 Magnetic Field 4 Magnetic Field 5 Direction of Magnetic Field 6 Direction of Magnetic Field 7 Properties of Magnetic Field 8 Magnetic Field Intensity • The quantitative measure of strongness or weakness of the magnetic field is given by magnetic field intensity or magnetic field strength. • It is denoted as H. It is a vector quantity • The magnetic field intensity at any point in the magnetic field is defined as the force experienced by a unit north pole of one Weber strength, when placed at that point. • The magnetic field intensity is measured in • Newtons/Weber (N/Wb) or • Amperes per metre (A/m) or • Ampere-turns / metre (AT/m). 9 Magnetic Field Density 10 Releation between B and H 11 Permeability 12 Biot Savart’s Law 13 Biot Savart’s Law 14 Biot Savart’s Law : Distributed Sources 15 Problem 16 Problem 17 H due to Infinitely Long Conductor 18 H due to Finite Long Conductor 19 H due to Finite Long Conductor 20 H at Centre of Circular Cylinder 21 H at Centre of Circular Cylinder 22 H on the axis of a Circular Loop
    [Show full text]
  • Electro Magnetic Fields Lecture Notes B.Tech
    ELECTRO MAGNETIC FIELDS LECTURE NOTES B.TECH (II YEAR – I SEM) (2019-20) Prepared by: M.KUMARA SWAMY., Asst.Prof Department of Electrical & Electronics Engineering MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India ELECTRO MAGNETIC FIELDS Objectives: • To introduce the concepts of electric field, magnetic field. • Applications of electric and magnetic fields in the development of the theory for power transmission lines and electrical machines. UNIT – I Electrostatics: Electrostatic Fields – Coulomb’s Law – Electric Field Intensity (EFI) – EFI due to a line and a surface charge – Work done in moving a point charge in an electrostatic field – Electric Potential – Properties of potential function – Potential gradient – Gauss’s law – Application of Gauss’s Law – Maxwell’s first law, div ( D )=ρv – Laplace’s and Poison’s equations . Electric dipole – Dipole moment – potential and EFI due to an electric dipole. UNIT – II Dielectrics & Capacitance: Behavior of conductors in an electric field – Conductors and Insulators – Electric field inside a dielectric material – polarization – Dielectric – Conductor and Dielectric – Dielectric boundary conditions – Capacitance – Capacitance of parallel plates – spherical co‐axial capacitors. Current density – conduction and Convection current densities – Ohm’s law in point form – Equation of continuity UNIT – III Magneto Statics: Static magnetic fields – Biot‐Savart’s law – Magnetic field intensity (MFI) – MFI due to a straight current carrying filament – MFI due to circular, square and solenoid current Carrying wire – Relation between magnetic flux and magnetic flux density – Maxwell’s second Equation, div(B)=0, Ampere’s Law & Applications: Ampere’s circuital law and its applications viz.
    [Show full text]
  • Lecture 5: Displacement Current and Ampère's Law
    Whites, EE 382 Lecture 5 Page 1 of 8 Lecture 5: Displacement Current and Ampère’s Law. One more addition needs to be made to the governing equations of electromagnetics before we are finished. Specifically, we need to clean up a glaring inconsistency. From Ampère’s law in magnetostatics, we learned that H J (1) Taking the divergence of this equation gives 0 H J That is, J 0 (2) However, as is shown in Section 5.8 of the text (“Continuity Equation and Relaxation Time), the continuity equation (conservation of charge) requires that J (3) t We can see that (2) and (3) agree only when there is no time variation or no free charge density. This makes sense since (2) was derived only for magnetostatic fields in Ch. 7. Ampère’s law in (1) is only valid for static fields and, consequently, it violates the conservation of charge principle if we try to directly use it for time varying fields. © 2017 Keith W. Whites Whites, EE 382 Lecture 5 Page 2 of 8 Ampère’s Law for Dynamic Fields Well, what is the correct form of Ampère’s law for dynamic (time varying) fields? Enter James Clerk Maxwell (ca. 1865) – The Father of Classical Electromagnetism. He combined the results of Coulomb’s, Ampère’s, and Faraday’s laws and added a new term to Ampère’s law to form the set of fundamental equations of classical EM called Maxwell’s equations. It is this addition to Ampère’s law that brings it into congruence with the conservation of charge law.
    [Show full text]
  • This Chapter Deals with Conservation of Energy, Momentum and Angular Momentum in Electromagnetic Systems
    This chapter deals with conservation of energy, momentum and angular momentum in electromagnetic systems. The basic idea is to use Maxwell’s Eqn. to write the charge and currents entirely in terms of the E and B-fields. For example, the current density can be written in terms of the curl of B and the Maxwell Displacement current or the rate of change of the E-field. We could then write the power density which is E dot J entirely in terms of fields and their time derivatives. We begin with a discussion of Poynting’s Theorem which describes the flow of power out of an electromagnetic system using this approach. We turn next to a discussion of the Maxwell stress tensor which is an elegant way of computing electromagnetic forces. For example, we write the charge density which is part of the electrostatic force density (rho times E) in terms of the divergence of the E-field. The magnetic forces involve current densities which can be written as the fields as just described to complete the electromagnetic force description. Since the force is the rate of change of momentum, the Maxwell stress tensor naturally leads to a discussion of electromagnetic momentum density which is similar in spirit to our previous discussion of electromagnetic energy density. In particular, we find that electromagnetic fields contain an angular momentum which accounts for the angular momentum achieved by charge distributions due to the EMF from collapsing magnetic fields according to Faraday’s law. This clears up a mystery from Physics 435. We will frequently re-visit this chapter since it develops many of our crucial tools we need in electrodynamics.
    [Show full text]
  • Section 2: Maxwell Equations
    Section 2: Maxwell’s equations Electromotive force We start the discussion of time-dependent magnetic and electric fields by introducing the concept of the electromotive force . Consider a typical electric circuit. There are two forces involved in driving current around a circuit: the source, fs , which is ordinarily confined to one portion of the loop (a battery, say), and the electrostatic force, E, which serves to smooth out the flow and communicate the influence of the source to distant parts of the circuit. Therefore, the total force per unit charge is a circuit is = + f fs E . (2.1) The physical agency responsible for fs , can be any one of many different things: in a battery it’s a chemical force; in a piezoelectric crystal mechanical pressure is converted into an electrical impulse; in a thermocouple it’s a temperature gradient that does the job; in a photoelectric cell it’s light. Whatever the mechanism, its net effect is determined by the line integral of f around the circuit: E =fl ⋅=d f ⋅ d l ∫ ∫ s . (2.2) The latter equality is because ∫ E⋅d l = 0 for electrostatic fields, and it doesn’t matter whether you use f E or fs . The quantity is called the electromotive force , or emf , of the circuit. It’s a lousy term, since this is not a force at all – it’s the integral of a force per unit charge. Within an ideal source of emf (a resistanceless battery, for instance), the net force on the charges is zero, so E = – fs. The potential difference between the terminals ( a and b) is therefore b b ∆Φ=− ⋅ = ⋅ = ⋅ = E ∫Eld ∫ fs d l ∫ f s d l .
    [Show full text]
  • PHYS 352 Electromagnetic Waves
    Part 1: Fundamentals These are notes for the first part of PHYS 352 Electromagnetic Waves. This course follows on from PHYS 350. At the end of that course, you will have seen the full set of Maxwell's equations, which in vacuum are ρ @B~ r~ · E~ = r~ × E~ = − 0 @t @E~ r~ · B~ = 0 r~ × B~ = µ J~ + µ (1.1) 0 0 0 @t with @ρ r~ · J~ = − : (1.2) @t In this course, we will investigate the implications and applications of these results. We will cover • electromagnetic waves • energy and momentum of electromagnetic fields • electromagnetism and relativity • electromagnetic waves in materials and plasmas • waveguides and transmission lines • electromagnetic radiation from accelerated charges • numerical methods for solving problems in electromagnetism By the end of the course, you will be able to calculate the properties of electromagnetic waves in a range of materials, calculate the radiation from arrangements of accelerating charges, and have a greater appreciation of the theory of electromagnetism and its relation to special relativity. The spirit of the course is well-summed up by the \intermission" in Griffith’s book. After working from statics to dynamics in the first seven chapters of the book, developing the full set of Maxwell's equations, Griffiths comments (I paraphrase) that the full power of electromagnetism now lies at your fingertips, and the fun is only just beginning. It is a disappointing ending to PHYS 350, but an exciting place to start PHYS 352! { 2 { Why study electromagnetism? One reason is that it is a fundamental part of physics (one of the four forces), but it is also ubiquitous in everyday life, technology, and in natural phenomena in geophysics, astrophysics or biophysics.
    [Show full text]
  • PHYS 110B - HW #4 Fall 2005, Solutions by David Pace Equations Referenced As ”EQ
    PHYS 110B - HW #4 Fall 2005, Solutions by David Pace Equations referenced as ”EQ. #” are from Griffiths Problem statements are paraphrased [1.] Problem 8.2 from Griffiths Reference problem 7.31 (figure 7.43). (a) Let the charge on the ends of the wire be zero at t = 0. Find the electric and magnetic fields in the gap, E~ (s, t) and B~ (s, t). (b) Find the energy density and Poynting vector in the gap. Verify equation 8.14. (c) Solve for the total energy in the gap; it will be time-dependent. Find the total power flowing into the gap by integrating the Poynting vector over the relevant surface. Verify that the input power is equivalent to the rate of increasing energy in the gap. (Griffiths Hint: This verification amounts to proving the validity of equation 8.9 in the case where W = 0.) Solution (a) The electric field between the plates of a parallel plate capacitor is known to be (see example 2.5 in Griffiths), σ E~ = zˆ (1) o where I define zˆ as the direction in which the current is flowing. We may assume that the charge is always spread uniformly over the surfaces of the wire. The resultant charge density on each “plate” is then time-dependent because the flowing current causes charge to pile up. At time zero there is no charge on the plates, so we know that the charge density increases linearly as time progresses. It σ(t) = (2) πa2 where a is the radius of the wire and It is the total charge on the plates at any instant (current is in units of Coulombs/second, so the total charge on the end plate is the current multiplied by the length of time over which the current has been flowing).
    [Show full text]
  • Notes 4 Maxwell's Equations
    ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson Fall 2020 Notes 4 Maxwell’s Equations Adapted from notes by Prof. Stuart A. Long 1 Overview Here we present an overview of Maxwell’s equations. A much more thorough discussion of Maxwell’s equations may be found in the class notes for ECE 3318: http://courses.egr.uh.edu/ECE/ECE3318 Notes 10: Electric Gauss’s law Notes 18: Faraday’s law Notes 28: Ampere’s law Notes 28: Magnetic Gauss law . D. Fleisch, A Student’s Guide to Maxwell’s Equations, Cambridge University Press, 2008. 2 Electromagnetic Fields Four vector quantities E electric field strength [Volt/meter] D electric flux density [Coulomb/meter2] H magnetic field strength [Amp/meter] B magnetic flux density [Weber/meter2] or [Tesla] Each are functions of space and time e.g. E(x,y,z,t) J electric current density [Amp/meter2] 3 ρv electric charge density [Coulomb/meter ] 3 MKS units length – meter [m] mass – kilogram [kg] time – second [sec] Some common prefixes and the power of ten each represent are listed below femto - f - 10-15 centi - c - 10-2 mega - M - 106 pico - p - 10-12 deci - d - 10-1 giga - G - 109 nano - n - 10-9 deka - da - 101 tera - T - 1012 micro - μ - 10-6 hecto - h - 102 peta - P - 1015 milli - m - 10-3 kilo - k - 103 4 Maxwell’s Equations (Time-varying, differential form) ∂B ∇×E =− ∂t ∂D ∇×HJ = + ∂t ∇⋅B =0 ∇⋅D =ρv 5 Maxwell James Clerk Maxwell (1831–1879) James Clerk Maxwell was a Scottish mathematician and theoretical physicist.
    [Show full text]
  • Metamaterials for Electromagnetic and Thermal Waves
    Metamaterials for electromagnetic and thermal waves 1 1,2 1,3 1 Erin Donnelly , Antoine Durant , Célia Lacoste , Luigi La Spada 1School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh, United Kingdom 2IUT1, Université Grenoble Alpes, Grenoble, France 3INP-ENSEEIHT, University of Toulouse, Toulouse, France [email protected] Abstract— In the last decade, electromagnetic is of great interest in any industrial applications. Moreover, metamaterials, thanks to their exotic properties and the unsolved issues are still present: significant presence of possibility to control electromagnetic waves at will, become losses, narrow bandwidth, material properties difficult to crucial building blocks to develop new and advanced technologies in several practical applications. Even though achieve, complexity in both design and manufacturing. until now the metamaterial concept has been mostly associated Therefore, in this paper, we model, design and fabricate a with electromagnetism and optics; the same concepts can be multi-functional metamaterial able to control amplitude and also applied to other wave phenomena, such as phase of both electromagnetic and thermal wave. thermodynamics. For this reason, here the aim is to realize a The paper is organized as follows: (i) in the modeling multi-functional metamaterial able to control and manipulate section, by using field theory, we evaluate the metamaterial simultaneously both electromagnetic and thermal waves. fundamental parameters: electric permittivity ε and thermal
    [Show full text]
  • PHYS 332 Homework #1 Maxwell's Equations, Poynting Vector, Stress
    PHYS 332 Homework #1 Maxwell's Equations, Poynting Vector, Stress Energy Tensor, Electromagnetic Momentum, and Angular Momentum 1 : Wangsness 21-1. A parallel plate capacitor consists of two circular plates of area S (an effectively infinite area) with a vacuum between them. It is connected to a battery of constant emf . The plates are then slowly oscillated so that the separation d between ~ them is described by d = d0 + d1 sin !t. Find the magnetic field H between the plates produced by the displacement current. Similarly, find H~ if the capacitor is first disconnected from the battery and then the plates are oscillated in the same manner. 2 : Wangsness 21-7. Find the form of Maxwell's equations in terms of E~ and B~ for a linear isotropic but non-homogeneous medium. Do not assume that Ohm's Law is valid. 3 : Wangsness 21-9. Figure 21-3 shows a charging parallel plate capacitor. The plates are circular with radius a (effectively infinite). Find the Poynting vector on the bounding surface of region 1 of the figure. Find the total rate at which energy is entering region 1 and then show that it equals the rate at which the energy of the capacitor is increasing. 4a: Extra-2. You have a parallel plate capacitor (assumed infinite) with charge densities σ and −σ and plate separation d. The capacitor moves with velocity v in a direction perpendicular to the area of the plates (NOT perpendicular to the area vector for the plates). Determine S~. b: This time the capacitor moves with velocity v parallel to the area of the plates.
    [Show full text]