Downloaded from Brill.Com09/24/2021 08:16:07PM Via Free Access 210 R.A

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from Brill.Com09/24/2021 08:16:07PM Via Free Access 210 R.A Contributions to Zoology, 74 (1/2) 209-211 (2005) Short notes and reviews Combating footnote status in evolutionary theory Ronald A. Jenner Section of Evolution & Ecology, University of California, Davis, CA95616, USA (e-mail: rajenner@ucdavis. edu) Review of: Biased Embryos and Evolution, by empirical and theoretical information generated Wallace Arthur. Cambridge University Press, 2004, within the mushrooming discipline of evolutionary xiii + 233 pp. ISBN 0 521 54161 1 (Paperback). development biology, or, in short, evo-devo. De- pending on the reader’s background, they can then On 11 May 2004, Wallace Arthur presented a char- choose to flesh out Arthur’s conceptual framework acteristically engaging seminar at the Department with intellectually more taxing and empirically of Zoology of the University of Cambridge in or- more dense works such as Gerhart and Kirschner der to promote his new book Biased Embryos and (1997), Davidson (2001), Minelli (2003), and Wilkins Evolution. After the lecture the speaker and his au- (2002). dience adjourned to the University Museum of Zo- The core question in Arthur’s book is: what de- ology for the official launch of the book. There, termines the direction of evolutionary change? A amidst wine and canapés, the flocked friends and resounding “natural selection!” will certainly be collected colleagues were given the opportunity to the most common answer to this question from the purchase, with a considerable reduction in prize of educated layman to most professional biologists. course, the first copies of Arthur’s book, which the However, Arthur labels this expected answer as author dutifully signed in between his munching of “overly Darwinian” (p. 10). While not denying the snacks. The festivities included mercifully little uncontested importance of natural selection as one speechifying, with the notable exception of Arthur’s factor influencing evolutionary change, Arthur managing editor at Cambridge University Press, considers natural selection to be, at best, only half who made a salient point: what set Arthur’s book the answer. Arthur (p.25) writes: “many of us feel apart for him from most other popular science books that something is missing; that selection is not was that the entire manuscript of the book was read enough; that the actualization of some creatures, in just a single sitting. This feat is certainly not the together with the failure of others to emerge from prerogative of merely the most avid bookworms, the realm of the possible, requires something else because Arthur’s refreshingly uncluttered prose al- – something internal that interacts with selection lows an effortless consumption of the book in one in a particular way.” Although I would hesitate to or just a few sessions by any interested reader. label Arthur’s more complete answer as “revolu- The book’s uncomplicated style is well tailored tionary,” as is dramatically claimed on the back to the intended broad audience of “students and the cover of the book, the central ingredients of general reader,” but the book is certainly not all Arthur’s perspective justly merit being called “as- style and no content. Biased Embryos and Evolu- saults on the modern synthesis” (p. 74). tion is an enjoyable and instructive read even for The monolithic core of modern Neo-Darwinian dyed-in-the-wool professional biologists. In my theory is the central role assigned to the functional view, this book is the best choice currently availa- and external mechanism of natural selection, which ble for an easy, short, and minimally intimidating acts on raw variation between individuals in adapt- introduction to the challenges posed to current ev- ing organisms to changing local environments. olutionary theory by the accumulating corpus of Mutations serve as the principal source of variation Downloaded from Brill.com09/24/2021 08:16:07PM via free access 210 R.A. Jenner – Combating footnote status in evolutionary theory between different individuals. These variations, sleek book full of insightful introductions to the upon which natural selection acts, are generally as- essential concepts of evo-devo. A partial list in- sumed to be not only copious, but also undirected cludes developmental reprogramming, internal with respect to the direction of adaptive change and selection and co-adaptation of an organism’s parts, of small phenotypic effect. These presumed char- the existence of mutations with phenotypic effects acteristics have been taken to imply that natural of different magnitudes, gene duplication and func- selection is the most important causative agent un- tional divergence, co-option, accumulation of hid- derlying significant evolutionary change, and the den genetic variation, heterochrony, the structure origin of evolutionary novelties. of adaptive landscapes, as well as phylogenetic Arthur builds a case against this orthodox view methods, metazoan phylogeny, homeobox genes, by explicitly emphasizing several heretofore ne- comparative study of expression patterns of devel- glected internalist themes that require us to focus opmental genes, and homology. In addition, the not just on the interaction between organisms and book is sprinkled with pertinent discussions of the their external environment, but also on the role of history of biology, and revealing personal reminis- organisms themselves as internal determinants of cences from Arthur’s own career. the direction of evolutionary change. For example, Throughout his book Arthur is refreshingly can- Arthur points out that not all mutations have only did about his intellectual commitments, personal very small effects on resulting phenotypes. He also interests and biases, the supposed novelty of his argues that the variation offered to the scrutiny of views, and how much they depart from perceived natural selection is not so unconstrained, or un- orthodoxy. He clearly shows that a universal con- structured, as to be essentially inconsequential to sensus about the factors responsible for the direc- the possible directions of evolutionary change. tion of evolution is elusive. Arthur’s view is mere- Therefore, in order to understand the direction of ly one of a variety of different opinions that range evolutionary change, Arthur impels us to study the from the ultimate reductionism of Davidson (2001), origin and structure of the variation offered to nat- who argues that “the study of the mechanisms by ural selection. Because evolutionary changes in which animal body plans evolve” in time will just the phenotype are necessarily effected through “be regarded as a branch of regulatory genomics”, changes in development, Arthur focuses on what to the expansive view of Vermeij (2004), who ar- he calls “developmental bias.” He defines develop- gues that the pattern of evolutionary history is mental bias as (p. 213) “non-randomness in the largely determined by universally operating eco- variation (both discrete and continuous) in devel- nomic principles that are equally applicable to hu- opmental trajectories upon which natural selection mans and the biosphere. acts.” Before the blossoming of evo-devo, such in- Although the absence of mathematics or the use ternalist explanations for the direction of evolu- of a conversational style may not convince all tionary change were at best awarded the status of readers of the validity of Arthur’s thesis, it should footnotes in evolutionary theory. However, the sig- be noted that his plea for a revision of evolutionary nificant revision of evolutionary theory proposed theory is not a lonely cry. In fact, the unquestioned by Arthur necessitates the promotion of these is- hegemony of natural selection as the sole locus of sues from mere acknowledgements in the margins evolutionary causality, with adaptation signifying of orthodoxy to fully-fledged focal points of re- the fit of organisms to their external environments, search. has recently come under attack from several cor- In summary, Arthur proposes that evolutionary ners. The best-known example is surely Stephen change is determined by the interaction of natural Jay Gould, who argued throughout his career that selection with the structure of the variation offered evolution is not just about natural selection and ad- to it, played out within an enveloping matrix of aptation. A fuller view should also include a sub- historical contingency. stantial internal component that addresses how or- In arguing his case for the importance of devel- ganismic structure and development affect the opment for fully understanding the nature of evo- direction of evolutionary change. Gould summa- lutionary change, Arthur has managed to cram his rized his views in his massive book, The Structure Downloaded from Brill.com09/24/2021 08:16:07PM via free access Contributions to Zoology, 74 (1/2) – 2005 211 of Evolutionary Theory (2002). Arthur is evidently more central position in evolutionary biology. strongly influenced by Gould, who is one of the All these efforts attempt to promote “footnotes” dedicatees of Arthur’s book. This is demonstrated, in evolutionary theory into fully-fledged research for example, by both Gould’s and Arthur’s choices programs. to represent evolutionary theory with architectural metaphors. Odling-Smee et al. (2003) recently presented a References different perspective that also emphasizes how or- ganisms can affect the direction of their evolution Davidson E. 2001. Genomic regulatory systems. Development in the book Niche Construction: The Neglected and evolution. San Diego: Academic Press. Gerhart
Recommended publications
  • From Developmental Constraint to Evolvability
    From Developmental Constraint to Evolvability How Concepts Figure in Explanation and Disciplinary Identity Ingo Brigandt Department of Philosophy, University of Alberta 2-40 Assiniboia Hall, Edmonton, AB T6G2E7, Canada [email protected] Abstract The concept of developmental constraint was at the heart of develop- mental approaches to evolution of the 1980s. While this idea was widely used to criticize neo-Darwinian evolutionary theory, critique does not yield an alternative framework that offers evolutionary explanations. In current Evo-devo the concept of constraint is of minor importance, whereas notions as evolvability are at the center of attention. The latter clearly defines an explanatory agenda for evolution- ary research, so that one could view the historical shift from ‘developmental con- straint’ towards ‘evolvability’ as the move from a concept that is a mere tool of criticism to a concept that establishes a positive explanatory project. However, by taking a look at how the concept of constraint was employed in the 1980s, I argue that developmental constraint was not just seen as restricting possibilities (‘con- straining’), but also as facilitating morphological change in several ways. Ac- counting for macroevolutionary transformation and the origin of novel form was an aim of these developmental approaches to evolution. Thus, the concept of de- velopmental constraint was part of a positive explanatory agenda long before the advent of Evo-devo as a genuine scientific discipline. In the 1980s, despite the lack of a clear disciplinary identity, this concept coordinated research among pale- ontologists, morphologists, and developmentally inclined evolutionary biologists. I discuss the different functions that scientific concepts can have, highlighting that instead of classifying or explaining natural phenomena, concepts such as ‘devel- opmental constraint’ and ‘evolvability’ are more important in setting explanatory agendas so as to provide intellectual coherence to scientific approaches.
    [Show full text]
  • Why Call It Developmental Bias When It Is Just Development? Isaac Salazar-Ciudad1,2,3
    Salazar-Ciudad Biology Direct (2021) 16:3 https://doi.org/10.1186/s13062-020-00289-w OPINION Open Access Why call it developmental bias when it is just development? Isaac Salazar-Ciudad1,2,3 Abstract The concept of developmental constraints has been central to understand the role of development in morphological evolution. Developmental constraints are classically defined as biases imposed by development on the distribution of morphological variation. This opinion article argues that the concepts of developmental constraints and developmental biases do not accurately represent the role of development in evolution. The concept of developmental constraints was coined to oppose the view that natural selection is all-capable and to highlight the importance of development for understanding evolution. In the modern synthesis, natural selection was seen as the main factor determining the direction of morphological evolution. For that to be the case, morphological variation needs to be isotropic (i.e. equally possible in all directions). The proponents of the developmental constraint concept argued that development makes that some morphological variation is more likely than other (i.e. variation is not isotropic), and that, thus, development constraints evolution by precluding natural selection from being all-capable. This article adds to the idea that development is not compatible with the isotropic expectation by arguing that, in fact, it could not be otherwise: there is no actual reason to expect that development could lead to isotropic morphological variation. It is then argued that, since the isotropic expectation is untenable, the role of development in evolution should not be understood as a departure from such an expectation.
    [Show full text]
  • Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology Anna Hiatt
    Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College Biology Faculty Research and Scholarship Biology 2013 Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology Anna Hiatt Gregory K. Davis Bryn Mawr College, [email protected] Caleb Trujillo Mark Terry Donald P. French See next page for additional authors Let us know how access to this document benefits ouy . Follow this and additional works at: http://repository.brynmawr.edu/bio_pubs Part of the Biology Commons Custom Citation Hiatt A, Davis GK, Trujillo C, Terry M, French DP, Price RM and Perez KE . "Getting to evo-devo: concepts and challenges for students learning evolutionary developmental biology". CBE-Life Sciences Education 12 (2013): 494-508. This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. http://repository.brynmawr.edu/bio_pubs/10 For more information, please contact [email protected]. Authors Anna Hiatt, Gregory K. Davis, Caleb Trujillo, Mark Terry, Donald P. French, Rebecca M. Price, and Kathryn E. Perez This article is available at Scholarship, Research, and Creative Work at Bryn Mawr College: http://repository.brynmawr.edu/ bio_pubs/10 CBE—Life Sciences Education Vol. 12, 494–508, Fall 2013 Article Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology Anna Hiatt,*† Gregory K. Davis,‡ Caleb Trujillo,§ Mark Terry, Donald P. French,* Rebecca M. Price,¶ and Kathryn E. Perez** *Department of Zoology, Oklahoma
    [Show full text]
  • Evodevo: an Ongoing Revolution?
    philosophies Article EvoDevo: An Ongoing Revolution? Salvatore Ivan Amato Department of Cognitive Sciences, University of Messina, Via Concezione 8, 98121 Messina, Italy; [email protected] or [email protected] Received: 27 September 2020; Accepted: 2 November 2020; Published: 5 November 2020 Abstract: Since its appearance, Evolutionary Developmental Biology (EvoDevo) has been called an emerging research program, a new paradigm, a new interdisciplinary field, or even a revolution. Behind these formulas, there is the awareness that something is changing in biology. EvoDevo is characterized by a variety of accounts and by an expanding theoretical framework. From an epistemological point of view, what is the relationship between EvoDevo and previous biological tradition? Is EvoDevo the carrier of a new message about how to conceive evolution and development? Furthermore, is it necessary to rethink the way we look at both of these processes? EvoDevo represents the attempt to synthesize two logics, that of evolution and that of development, and the way we conceive one affects the other. This synthesis is far from being fulfilled, but an adequate theory of development may represent a further step towards this achievement. In this article, an epistemological analysis of EvoDevo is presented, with particular attention paid to the relations to the Extended Evolutionary Synthesis (EES) and the Standard Evolutionary Synthesis (SET). Keywords: evolutionary developmental biology; evolutionary extended synthesis; theory of development 1. Introduction: The House That Charles Built Evolutionary biology, as well as science in general, is characterized by a continuous genealogy of problems, i.e., “a kind of dialectical sequence” of problems that are “linked together in a continuous family tree” [1] (p.
    [Show full text]
  • A Release from Developmental Bias Accelerates Morphological Diversification in Butterfly Eyespots
    A release from developmental bias accelerates morphological diversification in butterfly eyespots Oskar Brattströma,b,1,2, Kwaku Aduse-Pokua,3, Erik van Bergena,4, Vernon Frenchc, and Paul M. Brakefielda,d aDepartment of Zoology, University of Cambridge, CB2 3EJ Cambridge, United Kingdom; bAfrican Butterfly Research Institute (ABRI), 0800 Nairobi, Kenya; cInstitute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; and dCambridge University Museum of Zoology, CB2 3EJ Cambridge, United Kingdom Edited by Sean B. Carroll, Howard Hughes Medical Institute, College Park, MD, and approved September 8, 2020 (received for review April 28, 2020) Development can bias the independent evolution of traits sharing cells releasing a signal (e.g., a diffusible morphogen) that spreads ontogenetic pathways, making certain evolutionary changes less out to form a circular concentration gradient (21, 26). The sur- likely. The eyespots commonly found on butterfly wings each have rounding cells have sensitivity thresholds that direct the color of the concentric rings of differing colors, and these serially repeated pigmented scales that are formed. Below a certain signal threshold, pattern elements have been a focus for evo–devo research. In the the cells do not respond and will continue to develop into the butterfly family Nymphalidae, eyespots have been shown to func- normal base color of the wing, effectively forming the outer edge tion in startling or deflecting predators and to be involved in sex- of the eyespot. Despite two decades of research gradually unrav- ual selection. Previous work on a model species of Mycalesina eling the genetic basis of the developmental processes of butterfly butterfly, Bicyclus anynana, has provided insights into the devel- eyespots, the exact nature of the focal signal remains unknown.
    [Show full text]
  • The Structure of Evolutionary Theory: Beyond Neo-Darwinism, Neo
    1 2 3 The structure of evolutionary theory: Beyond Neo-Darwinism, 4 Neo-Lamarckism and biased historical narratives about the 5 Modern Synthesis 6 7 8 9 10 Erik I. Svensson 11 12 Evolutionary Ecology Unit, Department of Biology, Lund University, SE-223 62 Lund, 13 SWEDEN 14 15 Correspondence: [email protected] 16 17 18 19 1 20 Abstract 21 The last decades have seen frequent calls for a more extended evolutionary synthesis (EES) that 22 will supposedly overcome the limitations in the current evolutionary framework with its 23 intellectual roots in the Modern Synthesis (MS). Some radical critics even want to entirely 24 abandon the current evolutionary framework, claiming that the MS (often erroneously labelled 25 “Neo-Darwinism”) is outdated, and will soon be replaced by an entirely new framework, such 26 as the Third Way of Evolution (TWE). Such criticisms are not new, but have repeatedly re- 27 surfaced every decade since the formation of the MS, and were particularly articulated by 28 developmental biologist Conrad Waddington and paleontologist Stephen Jay Gould. 29 Waddington, Gould and later critics argued that the MS was too narrowly focused on genes and 30 natural selection, and that it ignored developmental processes, epigenetics, paleontology and 31 macroevolutionary phenomena. More recent critics partly recycle these old arguments and 32 argue that non-genetic inheritance, niche construction, phenotypic plasticity and developmental 33 bias necessitate major revision of evolutionary theory. Here I discuss these supposed 34 challenges, taking a historical perspective and tracing these arguments back to Waddington and 35 Gould. I dissect the old arguments by Waddington, Gould and more recent critics that the MS 36 was excessively gene centric and became increasingly “hardened” over time and narrowly 37 focused on natural selection.
    [Show full text]
  • Phenotype Bias Determines How RNA Structures Occupy the Morphospace of All Possible Shapes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.410605; this version posted December 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phenotype bias determines how RNA structures occupy the morphospace of all possible shapes Kamaludin Dingle1, Fatme Ghaddar1, Petr Sulcˇ 2, Ard A. Louis3 1Centre for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait, 2School of Molecular Sciences and Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA 3Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom (Dated: December 3, 2020) The relative prominence of developmental bias versus natural selection is a long standing con- troversy in evolutionary biology. Here we demonstrate quantitatively that developmental bias is the primary explanation for the occupation of the morphospace of RNA secondary structure (SS) shapes. By using the RNAshapes method to define coarse-grained SS classes, we can directly mea- sure the frequencies that non-coding RNA SS shapes appear in nature. Our main findings are, firstly, that only the most frequent structures appear in nature: The vast majority of possible struc- tures in the morphospace have not yet been explored. Secondly, and perhaps more surprisingly, these frequencies are accurately predicted by the likelihood that structures appear upon uniform random sampling of sequences.
    [Show full text]
  • Development Evolution 9. Phenotypic Plasticity Phenotypic Plasticity
    Development Evolution 9. Phenotypic plasticity 1. development 2. evolution The short version: 3. epigenetics 4. canalization 5. cryptic genetic variation / capacitance phenotype depends on the environment 6. genetic assimilation 7. evolvability 8. preadaptation 9. phenotypic plasticity 10. epistasis 11. modularity 12. developmental bias / constraint Phenotypic plasticity: long version Phenotypic plasticity • Gradual response to environmental gradient OR “When I use a word, it means just what I discrete switching between types choose it to mean – neither more nor less” • Fixed traits (eg size after metamorphosis) OR Humpty Dumpty labile traits (eg behavioral) • Change in the phenotypic mean (reaction norm) OR change in the phenotypic variance “When I make a word do a lot of work like that, • Response to a directional environmental shift OR I always pay it extra” response to residual environmental “noise” Humpty Dumpty • Adaptive, evolved response OR side effect of basic physiology How does phenotypic plasticity trait Spectrum adaptive tie in to other concepts? phenotypic plasticity Some contradictory (?) ideas: random preadapted • Genetic assimilation of plastic trait is loss not gain mutation cryptic variation of complexity, so genetic assimilation is irrelevant • Random variation unlikely to be adaptive to the evolution of novelty (Williams) • Very deleterious stuff weeded out • Canalization is the opposite of phenotypic • Revealed variation more likely to be adaptive plasticity (Goggy) • Trait needed briefly, then lost • Revelation of cryptic genetic variation in response • Easier to find it again in cryptic variation to stress is one kind of phenotypic plasticity • Frequent environmental switching ⇒ evolution of adaptive phenotypic plasticity (or reaction norm) • Environment stabilizes ⇒ genetic assimilation with loss of complexity 1 10.
    [Show full text]
  • The Role of Developmental Bias In
    THE ROLE OF DEVELOPMENTAL BIAS IN A SIMULATED EVO-DEVO SYSTEM by SEAN THOMAS PSUJEK Submitted in partial fulfillments of the requirements For the degree of Doctor of Philosophy Department of Biology CASE WESTERN RESERVE UNIVERSITY May, 2009 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents Abstract .............................................................................................................................. 2 List of Figures ................................................................................................................... 4 Chapter 1 : Introduction ...................................................................................................... 6 Chapter 2 : Background .................................................................................................... 12 Modeling in Evo-devo ...............................................................................................
    [Show full text]
  • Evolution & Development
    Received: 28 March 2019 | Revised: 5 August 2019 | Accepted: 6 August 2019 DOI: 10.1111/ede.12312 RESEARCH Developmental bias in the fossil record Illiam S. C. Jackson Department of Biology, Lund University, Sweden Abstract The role of developmental bias and plasticity in evolution is a central research Correspondence interest in evolutionary biology. Studies of these concepts and related Illiam S. C. Jackson, Lund University, Sweden. processes are usually conducted on extant systems and have seen limited Email: [email protected] investigation in the fossil record. Here, I identify plasticity‐led evolution (PLE) as a form of developmental bias accessible through scrutiny of paleontological Funding information Knut och Alice Wallenbergs Stiftelse, material. I summarize the process of PLE and describe it in terms of the Grant/Award Number: KAW 2012.0155 environmentally mediated accumulation and release of cryptic genetic variation. Given this structure, I then predict its manifestation in the fossil record, discuss its similarity to quantum evolution and punctuated equili- brium, and argue that these describe macroevolutionary patterns concordant with PLE. Finally, I suggest methods and directions towards providing evidence of PLE in the fossil record and conclude that such endeavors are likely to be highly rewarding. KEYWORDS cryptic genetic variation, developmental bias, plasticity‐led evolution 1 | INTRODUCTION we might expect to result from PLE in the fossil record, anchor these patterns in historical work and suggest Developmental bias describes the manner in which methods and future directions for examining PLE using certain changes to development are more accessible to fossil data. evolution than others (Arthur, 2004). A key generator of developmental bias, and integral to understanding its role in evolution, is developmental plasticity, which 2 | CONSTRUCTIVE refers to an organism’s ability to adjust its phenotype in DEVELOPMENT response to environmental conditions (Laland et al., 2015; Schwab, Casasa, & Moczek, 2019).
    [Show full text]
  • Animal Learning As a Source of Developmental Bias
    1 2 3 4 5 Animal Learning as a Source of Developmental Bias 6 7 In: Developmental Bias in Evolution, 8 Special Edition of Evolution and Development 9 10 11 12 13 Kevin N Laland1, Wataru Toyokawa1,2,3 & Thomas Oudman1,4 14 15 1 School of Biology, University of St Andrews, St Andrews, UK 16 2 Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced 17 Studies), Hayama, Kanagawa 240-0193, Japan 18 3 Current address: Department of Psychology, University of Konstanz, Germany 19 4 NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, and Utrecht University, 20 The Netherlands 21 22 23 The authors declare that they have no relevant conflicts of interest. 24 25 Article: Laland, KN, Toyokawa, W & Oudman, T 2019, 'Animal learning as a source of 26 developmental bias' Evolution and Development, vol. Early View, 27 e12311. https://doi.org/10.1111/ede.12311 28 Pure ID: 260877183 29 30 Author accepted manuscript (accepted August 10 2019) 1 31 ABSTRACT. As a form of adaptive plasticity that allows organisms to shift their phenotype 32 toward the optimum, learning is inherently a source of developmental bias. Learning may be 33 of particular significance to the evolutionary biology community because it allows animals to 34 generate adaptively biased novel behavior tuned to the environment and, through social 35 learning, to propagate behavioral traits to other individuals, also in an adaptively biased 36 manner. We describe several types of developmental bias manifest in learning, including an 37 adaptive bias, historical bias, origination bias and transmission bias, stressing that these can 38 influence evolutionary dynamics through generating nonrandom phenotypic variation and/or 39 nonrandom environmental states.
    [Show full text]
  • Evolution & Development
    DOI: 10.1111/ede.12325 EDITORIAL Biases in the study of developmental bias In November 2018 the Santa Fe Institute hosted a two‐ workshop, why should we call it developmental bias, when day workshop titled Developmental Bias and Evolution, all we mean is development? funded by a grant from the John Templeton Founda- Brigandt (2019) responds to this challenge by positing tion. Involving 34 participants and 22 talks, the that even if we cannot agree on exactly what we mean by workshop covered a wide range of approaches toward developmental bias, including its distinctness from the study of bias exerted by developmental systems in development per se, the term, and its study are the production of phenotypic variation, the impact worthwhile and timely because they are able to motivate such bias might have on evolutionary dynamics, and a valuable research program. He argues that concepts the methods that exist to assess the nature and such as novelty or evolvability likewise carry with them consequences of this impact. Talks included historical some ambiguity, such that they mean different things at retrospectives, philosophical examinations, and a great different levels of biological organization, and to different diversity of empirical treatments of the subject. practitioners. What makes them valuable, however, is, Significant discussion and debate followed each pre- according to Brigandt, that they establish a shared sentation, and creative tensions emerged around key intellectual identity across disciplinary boundaries that issues that characterize the diversity of perceptions of motivates investigation, exchange, and a collective what, exactly, constitutes bias in developmental sys- advancing of an explanatory framework.
    [Show full text]