Evolution & Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Developmental Constraint to Evolvability
From Developmental Constraint to Evolvability How Concepts Figure in Explanation and Disciplinary Identity Ingo Brigandt Department of Philosophy, University of Alberta 2-40 Assiniboia Hall, Edmonton, AB T6G2E7, Canada [email protected] Abstract The concept of developmental constraint was at the heart of develop- mental approaches to evolution of the 1980s. While this idea was widely used to criticize neo-Darwinian evolutionary theory, critique does not yield an alternative framework that offers evolutionary explanations. In current Evo-devo the concept of constraint is of minor importance, whereas notions as evolvability are at the center of attention. The latter clearly defines an explanatory agenda for evolution- ary research, so that one could view the historical shift from ‘developmental con- straint’ towards ‘evolvability’ as the move from a concept that is a mere tool of criticism to a concept that establishes a positive explanatory project. However, by taking a look at how the concept of constraint was employed in the 1980s, I argue that developmental constraint was not just seen as restricting possibilities (‘con- straining’), but also as facilitating morphological change in several ways. Ac- counting for macroevolutionary transformation and the origin of novel form was an aim of these developmental approaches to evolution. Thus, the concept of de- velopmental constraint was part of a positive explanatory agenda long before the advent of Evo-devo as a genuine scientific discipline. In the 1980s, despite the lack of a clear disciplinary identity, this concept coordinated research among pale- ontologists, morphologists, and developmentally inclined evolutionary biologists. I discuss the different functions that scientific concepts can have, highlighting that instead of classifying or explaining natural phenomena, concepts such as ‘devel- opmental constraint’ and ‘evolvability’ are more important in setting explanatory agendas so as to provide intellectual coherence to scientific approaches. -
Program Nr: 1 from the 2004 ASHG Annual Meeting Mutations in A
Program Nr: 1 from the 2004 ASHG Annual Meeting Mutations in a novel member of the chromodomain gene family cause CHARGE syndrome. L.E.L.M. Vissers1, C.M.A. van Ravenswaaij1, R. Admiraal2, J.A. Hurst3, B.B.A. de Vries1, I.M. Janssen1, W.A. van der Vliet1, E.H.L.P.G. Huys1, P.J. de Jong4, B.C.J. Hamel1, E.F.P.M. Schoenmakers1, H.G. Brunner1, A. Geurts van Kessel1, J.A. Veltman1. 1) Dept Human Genetics, UMC Nijmegen, Nijmegen, Netherlands; 2) Dept Otorhinolaryngology, UMC Nijmegen, Nijmegen, Netherlands; 3) Dept Clinical Genetics, The Churchill Hospital, Oxford, United Kingdom; 4) Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, CA. CHARGE association denotes the non-random occurrence of ocular coloboma, heart defects, choanal atresia, retarded growth and development, genital hypoplasia, ear anomalies and deafness (OMIM #214800). Almost all patients with CHARGE association are sporadic and its cause was unknown. We and others hypothesized that CHARGE association is due to a genomic microdeletion or to a mutation in a gene affecting early embryonic development. In this study array- based comparative genomic hybridization (array CGH) was used to screen patients with CHARGE association for submicroscopic DNA copy number alterations. De novo overlapping microdeletions in 8q12 were identified in two patients on a genome-wide 1 Mb resolution BAC array. A 2.3 Mb region of deletion overlap was defined using a tiling resolution chromosome 8 microarray. Sequence analysis of genes residing within this critical region revealed mutations in the CHD7 gene in 10 of the 17 CHARGE patients without microdeletions, including 7 heterozygous stop-codon mutations. -
The Control of Shoot Branching: an Example of Plant Information Processing
Plant, Cell and Environment (2009) 32, 694–703 doi: 10.1111/j.1365-3040.2009.01930.x The control of shoot branching: an example of plant information processing OTTOLINE LEYSER Department of Biology, Area 11, University of York, York YO10 5YW, UK ABSTRACT the apical–basal axis defined by the establishment of the shoot apical meristem at one end, and the root apical mer- Throughout their life cycle, plants adjust their body plan istem at the other. Post-embryonically, the meristems give to suit the environmental conditions in which they are rise to the entire shoot and root systems, respectively. Fur- growing. A good example of this is in the regulation of thermore, the tissues they establish can produce secondary shoot branching. Axillary meristems laid down in each leaf meristems, which if activated can produce entirely new formed from the primary shoot apical meristem can remain axes of growth with the same developmental potential as dormant, or activate to produce a branch. The decision the primary root or shoot from which they were derived. whether to activate an axillary meristem involves the assess- Thus, the body plan of a plant is determined continuously ment of a wide range of external environmental, internal throughout its life cycle, allowing it to be exquisitely envi- physiological and developmental factors. Much of this infor- ronmentally responsive. Plants can alter their body plan to mation is conveyed to the axillary meristem via a network suit their environment, and thus the environmentally regu- of interacting hormonal signals that can integrate inputs lated development of new growth axes is functionally from diverse sources, combining multiple local signals to equivalent to environmentally regulated animal behav- generate a rich source of systemically transmitted informa- iours. -
Toward an Extended Evolutionary Synthesis 10-13 July 2008
18th Altenberg Workshop in Theoretical Biology 2008 Toward an Extended Evolutionary Synthesis 10-13 July 2008 organized by Massimo Pigliucci and Gerd B. Müller Konrad Lorenz Institute for Evolution and Cognition Research Altenberg, Austria The topic More than 60 years have passed since the conceptual integration of several strands of evolutionary theory into what has come to be called the Modern Synthesis. Despite major advances since, in all methodological and disciplinary domains of biology, the Modern Synthesis framework has remained surprisingly static and is still regarded as the standard theoretical paradigm of evolutionary biology. But for some time now there have been calls for an expansion of the Synthesis framework through the integration of more recent achievements in evolutionary theory. The challenge for the present workshop is clear: How do we make sense, conceptually, of the astounding advances in biology since the 1940s, when the Modern Synthesis was taking shape? Not only have we witnessed the molecular revolution, from the discovery of the structure of DNA to the genomic era, we are also grappling with the increasing feeling – as reflected, for example, by the proliferation of “-omics” (proteomics, metabolomics, “interactomics,” and even “phenomics”) – that we just don't have the theoretical and analytical tools necessary to make sense of the bewildering diversity and complexity of living organisms. By contrast, in organismal biology, a number of new approaches have opened up new theoretical horizons, with new possibilities -
On the Interaction of Function, Constraint and Complexity in Evolutionary Systems
UNIVERSITY OF SOUTHAMPTON FACULTY OF PHYSICAL SCIENCES AND ENGINEERING ELECTRONICS AND COMPUTER SCIENCE Volume 1 of 1 On The Interaction Of Function, Constraint And Complexity In Evolutionary Systems by Adam Paul Davies Thesis for the degree of Doctor of Philosophy April 2014 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF PHYSICAL SCIENCES AND ENGINEERING Electronics and Computer Science Doctor of Philosophy ON THE INTERACTION OF FUNCTION, CONSTRAINT AND COMPLEXITY IN EVOLUTIONARY SYSTEMS by Adam Paul Davies Biological evolution contains a general trend of increasing complexity of the most complex organisms. But artificial evolution experiments based on the mechanisms described in the current theory generally fail to reproduce this trend; instead, they commonly show systematic trends of complexity minimisation. In this dissertation we seek evolutionary mechanisms that can explain these apparently conflicting observations. To achieve this we use a reverse engineering approach by building computational simulations of evolution. One highlighted problem is that even if complexity is beneficial, evolutionary simulations struggle with apparent roadblocks that prevent them from scaling to complexity. Another is that even without roadblocks, it is not clear what drives evolution to become more complex at all. With respect to the former, a key roadblock is how to evolve ‘irreducibly complex’ or ‘non- decomposable’ functions. Evidence from biological evolution suggests a common way to achieve this is by combining existing functions – termed ‘tinkering’ or ‘building block evolution’. But in simulation this approach generally fails to scale across multiple levels of organisation in a recursive manner. We provide a model that identifies the problem hindering recursive evolution as increasing ‘burden’ in the form of ‘internal selection’ as joined functions become more complex. -
Why Call It Developmental Bias When It Is Just Development? Isaac Salazar-Ciudad1,2,3
Salazar-Ciudad Biology Direct (2021) 16:3 https://doi.org/10.1186/s13062-020-00289-w OPINION Open Access Why call it developmental bias when it is just development? Isaac Salazar-Ciudad1,2,3 Abstract The concept of developmental constraints has been central to understand the role of development in morphological evolution. Developmental constraints are classically defined as biases imposed by development on the distribution of morphological variation. This opinion article argues that the concepts of developmental constraints and developmental biases do not accurately represent the role of development in evolution. The concept of developmental constraints was coined to oppose the view that natural selection is all-capable and to highlight the importance of development for understanding evolution. In the modern synthesis, natural selection was seen as the main factor determining the direction of morphological evolution. For that to be the case, morphological variation needs to be isotropic (i.e. equally possible in all directions). The proponents of the developmental constraint concept argued that development makes that some morphological variation is more likely than other (i.e. variation is not isotropic), and that, thus, development constraints evolution by precluding natural selection from being all-capable. This article adds to the idea that development is not compatible with the isotropic expectation by arguing that, in fact, it could not be otherwise: there is no actual reason to expect that development could lead to isotropic morphological variation. It is then argued that, since the isotropic expectation is untenable, the role of development in evolution should not be understood as a departure from such an expectation. -
Emanuele Serrelli Nathalie Gontier Editors Explanation, Interpretation
Interdisciplinary Evolution Research 2 Emanuele Serrelli Nathalie Gontier Editors Macroevolution Explanation, Interpretation and Evidence Interdisciplinary Evolution Research Volume 2 Series editors Nathalie Gontier, Lisbon, Portugal Olga Pombo, Lisbon, Portugal [email protected] About the Series The time when only biologists studied evolution has long since passed. Accepting evolution requires us to come to terms with the fact that everything that exists must be the outcome of evolutionary processes. Today, a wide variety of academic disciplines are therefore confronted with evolutionary problems, ranging from physics and medicine, to linguistics, anthropology and sociology. Solving evolutionary problems also necessitates an inter- and transdisciplinary approach, which is why the Modern Synthesis is currently extended to include drift theory, symbiogenesis, lateral gene transfer, hybridization, epigenetics and punctuated equilibria theory. The series Interdisciplinary Evolution Research aims to provide a scholarly platform for the growing demand to examine specific evolutionary problems from the perspectives of multiple disciplines. It does not adhere to one specific academic field, one specific school of thought, or one specific evolutionary theory. Rather, books in the series thematically analyze how a variety of evolutionary fields and evolutionary theories provide insights into specific, well-defined evolutionary problems of life and the socio-cultural domain. Editors-in-chief of the series are Nathalie Gontier and Olga Pombo. The -
Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology Anna Hiatt
Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College Biology Faculty Research and Scholarship Biology 2013 Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology Anna Hiatt Gregory K. Davis Bryn Mawr College, [email protected] Caleb Trujillo Mark Terry Donald P. French See next page for additional authors Let us know how access to this document benefits ouy . Follow this and additional works at: http://repository.brynmawr.edu/bio_pubs Part of the Biology Commons Custom Citation Hiatt A, Davis GK, Trujillo C, Terry M, French DP, Price RM and Perez KE . "Getting to evo-devo: concepts and challenges for students learning evolutionary developmental biology". CBE-Life Sciences Education 12 (2013): 494-508. This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. http://repository.brynmawr.edu/bio_pubs/10 For more information, please contact [email protected]. Authors Anna Hiatt, Gregory K. Davis, Caleb Trujillo, Mark Terry, Donald P. French, Rebecca M. Price, and Kathryn E. Perez This article is available at Scholarship, Research, and Creative Work at Bryn Mawr College: http://repository.brynmawr.edu/ bio_pubs/10 CBE—Life Sciences Education Vol. 12, 494–508, Fall 2013 Article Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology Anna Hiatt,*† Gregory K. Davis,‡ Caleb Trujillo,§ Mark Terry, Donald P. French,* Rebecca M. Price,¶ and Kathryn E. Perez** *Department of Zoology, Oklahoma -
V Sem Zool Punctuated Equilibrium
V Sem Zool Punctuated Equilibrium Gradualism and punctuated equilibrium are two ways in which the evolution of a species can occur. A species can evolve by only one of these, or by both. Scientists think that species with a shorter evolution evolved mostly by punctuated equilibrium, and those with a longer evolution evolved mostly by gradualism. Both phyletic gradualism and punctuated equilibrium are speciation theory and are valid models for understanding macroevolution. Both theories describe the rates of speciation. For Gradualism, changes in species is slow and gradual, occurring in small periodic changes in the gene pool, whereas for Punctuated Equilibrium, evolution occurs in spurts of relatively rapid change with long periods of non-change. The gradualism model depicts evolution as a slow steady process in which organisms change and develop slowly over time. In contrast, the punctuated equilibrium model depicts evolution as long periods of no evolutionary change followed by rapid periods of change. Both are models for describing successive evolutionary changes due to the mechanisms of evolution in a time frame. Punctuated equilibrium The punctuated equilibrium hypothesis states that speciation events occur rapidly in geological time - over hundreds of thousands to millions of years and that little change occurs in the time between speciation events. In other words, change only happens under certain conditions, and it happens rapidly. Instead of a slow, continuous movement, evolution tends to be characterized by long periods of virtual standstill or equilibrium punctuated by episodes of very fast development of new forms. It was proposed by Eldridge and Gould to explain the gaps in the fossil record - the fact that the fossil record does not show smooth evolutionary transitions. -
EXPERIMENTAL EVIDENCE for SALTATIONAL CHROMOSOME EVOLUTION in CAL YCADENIA PAUCIFLORA GRAY (ASTERACEAE) Pauciflora Are Fairly Fe
Heredity (1980), 45 (1), 107-112 0018-067X/80/01940107$02.0O 1980. The Genetical Society of Great Britain EXPERIMENTALEVIDENCE FOR SALTATIONAL CHROMOSOME EVOLUTION IN CAL YCADENIA PAUCIFLORA GRAY (ASTERACEAE) GERALD D. CARR Department of Botany, University of Hawaii, 3190 Maile Way, Honolulu, Hawaii 96822, U.S.A. Received14.i.80 SUMMARY The fertility of the F1 structural heterozygote formed by crossing two aneuploid chromosome races of Calycadenia pauciflora is high despite the fact they are differentiated by the equivalent of three chromosome translocations. This and the fact that ancestral and derived structural homozygotes were recovered in experimental F2 and F3 progenies support the hypothesis that the derived race could have originated directly from the ancestral race in nature through a single saltational event involving multiple chromosome breaks. Two individuals with structurally unique, recombined chromosomes were also recovered in the F2 and the evolutionary potential of such products of meiosis in structural heterozygotes is considered to be significant. 1. INTRODUCTION THERE have been several experimental studies documenting the existence of pairs or groups of diploid plant species differentiated by little more than chromosome alterations, often accompanied by aneuploidy. Calycadenia, Chaenactis, Clarkia and Crepis are just a few of the genera in which this situation is best known or more frequent. In Clarkia, Lewis (1966) referred to this process of differentiation as saltational speciation. Others have used the term quantum evolution or quantum speciation in reference to this general phenomenon (cf. Grant, 1971). This type of chromosomal evolution requires that a new structural heterozygote pass through a "bottleneck of sterility" before the derived structural homozygote can be produced (cf. -
Tempo and Mode in the Macroevolutionary Reconstruction of Darwinism STEPHEN JAY GOULD Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
Proc. Nadl. Acad. Sci. USA Vol. 91, pp. 6764-6771, July 1994 Colloquium Paper This paper was presented at a coloquium ented "Tempo and Mode in Evolution" organized by Walter M. Fitch and Francisco J. Ayala, held January 27-29, 1994, by the National Academy of Sciences, in Irvine, CA. Tempo and mode in the macroevolutionary reconstruction of Darwinism STEPHEN JAY GOULD Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138 ABSTRACT Among the several central nings of Dar- But conceptual complexity is not reducible to a formula or winism, his version ofLyellian uniformitranism-the extrap- epigram (as we taxonomists of life's diversity should know olationist commitment to viewing causes ofsmall-scale, observ- better than most). Too much ink has been wasted in vain able change in modern populations as the complete source, by attempts to define the essence ofDarwin's ideas, or Darwin- smooth extension through geological time, of all magnitudes ism itself. Mayr (1) has correctly emphasized that many and sequences in evolution-has most contributed to the causal different, if related, Darwinisms exist, both in the thought of hegemony of microevolutlon and the assumption that paleon- the eponym himself, and in the subsequent history of evo- tology can document the contingent history of life but cannot lutionary biology-ranging from natural selection, to genea- act as a domain of novel evolutionary theory. G. G. Simpson logical connection of all living beings, to gradualism of tried to combat this view of paleontology as theoretically inert change. in his classic work, Tempo and Mode in Evolution (1944), with It would therefore be fatuous to claim that any one legit- a brilliant argument that the two subjects of his tide fall into a imate "essence" can be more basic or important than an- unue paleontological domain and that modes (processes and other. -
Genetic Assimilation and Canalisation in the Baldwin Effect
Genetic Assimilation and Canalisation in The Baldwin Effect Rob Mills and Richard A. Watson School of Electronics and Computer Science, University of Southampton, Southampton, UK, SO17 1BJ Email: [email protected], [email protected] Abstract. The Baldwin Effect indicates that individually learned behaviours acquired during an organism’s lifetime can influence the evolutionary path taken by a population, without any direct Lamarckian transfer of traits from phenotype to genotype. Several computational studies modelling this effect have included complications that restrict its applicability. Here we present a simplified model that is used to reveal the essential mechanisms and highlight several conceptual issues that have not been clearly defined in prior literature. In particular, we suggest that canalisation and genetic assimilation, often con- flated in previous studies, are separate concepts and the former is actually not required for non-heritable phenotypic variation to guide genetic variation. Ad- ditionally, learning, often considered to be essential for the Baldwin Effect, can be replaced with a more general phenotypic plasticity model. These simplifica- tions potentially permit the Baldwin Effect to operate in much more general cir- cumstances. 1 Introduction Our knowledge of modern genetics suggests that an organism's lifetime adaptations cannot influence the course of evolution because learned characteristics do not change ones own genes. In the late 19th century, Baldwin argued that although a direct effect of lifetime adaptation on genes is not possible, an indirect influence on the course of evolution is [1]. Subsequently his name has been associated with the impact that learning can have upon evolution. The ‘Baldwin Effect’ is based on two levels of search occurring: from generation to generation we have a slow genetic variation; and within each generation the variation due to lifetime learning is faster.