Animal Learning As a Source of Developmental Bias
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Developmental Constraint to Evolvability
From Developmental Constraint to Evolvability How Concepts Figure in Explanation and Disciplinary Identity Ingo Brigandt Department of Philosophy, University of Alberta 2-40 Assiniboia Hall, Edmonton, AB T6G2E7, Canada [email protected] Abstract The concept of developmental constraint was at the heart of develop- mental approaches to evolution of the 1980s. While this idea was widely used to criticize neo-Darwinian evolutionary theory, critique does not yield an alternative framework that offers evolutionary explanations. In current Evo-devo the concept of constraint is of minor importance, whereas notions as evolvability are at the center of attention. The latter clearly defines an explanatory agenda for evolution- ary research, so that one could view the historical shift from ‘developmental con- straint’ towards ‘evolvability’ as the move from a concept that is a mere tool of criticism to a concept that establishes a positive explanatory project. However, by taking a look at how the concept of constraint was employed in the 1980s, I argue that developmental constraint was not just seen as restricting possibilities (‘con- straining’), but also as facilitating morphological change in several ways. Ac- counting for macroevolutionary transformation and the origin of novel form was an aim of these developmental approaches to evolution. Thus, the concept of de- velopmental constraint was part of a positive explanatory agenda long before the advent of Evo-devo as a genuine scientific discipline. In the 1980s, despite the lack of a clear disciplinary identity, this concept coordinated research among pale- ontologists, morphologists, and developmentally inclined evolutionary biologists. I discuss the different functions that scientific concepts can have, highlighting that instead of classifying or explaining natural phenomena, concepts such as ‘devel- opmental constraint’ and ‘evolvability’ are more important in setting explanatory agendas so as to provide intellectual coherence to scientific approaches. -
Φ-Features in Animal Cognition
φ-Features in Animal Cognition Chris Golston This paper argues that the core φ-features behind grammatical person, number, and gender are widely used in animal cognition and are in no way limited to humans or to communication. Based on this, it is hypothesized (i) that the semantics behind φ-features were fixed long before primates evolved, (ii) that most go back as far as far as vertebrates, and (iii) that some are shared with insects and plants. Keywords: animal cognition; gender; number; person 1. Introduction Bickerton claims that language is ill understood as a communication system: [F]or most of us, language seems primarily, or even exclusively, to be a means of communication. But it is not even primarily a means of communication. Rather, it is a system of representation, a means for sorting and manipulating the plethora of information that deluges us throughout our waking life. (Bickerton 1990: 5) As Berwick & Chomsky (2016: 102) put it recently “language is fundamentally a system of thought”. Since much of our system of representation seems to be shared with other animals, it has been argued that we should “search for the ancestry of language not in prior systems of animal communication, but in prior representational systems” (Bickerton 1990: 23). In support of this, I provide evidence that all the major φ-features are shared with primates, most with vertebrates, and some with plants; and that there are no φ-features whose semantics are unique to humans. Specifically human categories, including all things that vary across human cultures, seem to I’d like to thank Steve Adisasmito-Smith, Charles Ettner, Sean Fulop, Steven Moran, Nadine Müller, three anonymous reviewers for EvoLang, two anonymous reviewers for Biolinguistics and Kleanthes Grohmann for help in identifying weakness in earlier drafts, as well as audiences at California State University Fresno, Marburg Universität, and Universitetet i Tromsø for helpful discussion. -
Why Call It Developmental Bias When It Is Just Development? Isaac Salazar-Ciudad1,2,3
Salazar-Ciudad Biology Direct (2021) 16:3 https://doi.org/10.1186/s13062-020-00289-w OPINION Open Access Why call it developmental bias when it is just development? Isaac Salazar-Ciudad1,2,3 Abstract The concept of developmental constraints has been central to understand the role of development in morphological evolution. Developmental constraints are classically defined as biases imposed by development on the distribution of morphological variation. This opinion article argues that the concepts of developmental constraints and developmental biases do not accurately represent the role of development in evolution. The concept of developmental constraints was coined to oppose the view that natural selection is all-capable and to highlight the importance of development for understanding evolution. In the modern synthesis, natural selection was seen as the main factor determining the direction of morphological evolution. For that to be the case, morphological variation needs to be isotropic (i.e. equally possible in all directions). The proponents of the developmental constraint concept argued that development makes that some morphological variation is more likely than other (i.e. variation is not isotropic), and that, thus, development constraints evolution by precluding natural selection from being all-capable. This article adds to the idea that development is not compatible with the isotropic expectation by arguing that, in fact, it could not be otherwise: there is no actual reason to expect that development could lead to isotropic morphological variation. It is then argued that, since the isotropic expectation is untenable, the role of development in evolution should not be understood as a departure from such an expectation. -
Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology Anna Hiatt
Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College Biology Faculty Research and Scholarship Biology 2013 Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology Anna Hiatt Gregory K. Davis Bryn Mawr College, [email protected] Caleb Trujillo Mark Terry Donald P. French See next page for additional authors Let us know how access to this document benefits ouy . Follow this and additional works at: http://repository.brynmawr.edu/bio_pubs Part of the Biology Commons Custom Citation Hiatt A, Davis GK, Trujillo C, Terry M, French DP, Price RM and Perez KE . "Getting to evo-devo: concepts and challenges for students learning evolutionary developmental biology". CBE-Life Sciences Education 12 (2013): 494-508. This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. http://repository.brynmawr.edu/bio_pubs/10 For more information, please contact [email protected]. Authors Anna Hiatt, Gregory K. Davis, Caleb Trujillo, Mark Terry, Donald P. French, Rebecca M. Price, and Kathryn E. Perez This article is available at Scholarship, Research, and Creative Work at Bryn Mawr College: http://repository.brynmawr.edu/ bio_pubs/10 CBE—Life Sciences Education Vol. 12, 494–508, Fall 2013 Article Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology Anna Hiatt,*† Gregory K. Davis,‡ Caleb Trujillo,§ Mark Terry, Donald P. French,* Rebecca M. Price,¶ and Kathryn E. Perez** *Department of Zoology, Oklahoma -
Magnetic and Celestial Orientation of Migrating European Glass Eels
Magnetic and Celestial Orientation of Migrating European Glass Eels (Anguilla anguilla) Cresci, Alessandro https://scholarship.miami.edu/view/delivery/01UOML_INST/12356199980002976 Cresci, A. (2020). Magnetic and Celestial Orientation of Migrating European Glass Eels (Anguilla anguilla) (University of Miami). Retrieved from https://scholarship.miami.edu/discovery/fulldisplay/alma991031453189802976/01U OML_INST:ResearchRepository Open 2020/05/11 19:16:33 UNIVERSITY OF MIAMI MAGNETIC AND CELESTIAL ORIENTATION OF MIGRATING EUROPEAN GLASS EELS (ANGUILLA ANGUILLA) By Alessandro Cresci A DISSERTATION Submitted to the Faculty of the University of Miami in partial fulfillment of the requirements for the degree of Doctor of Philosophy Coral Gables, Florida May 2020 ©2020 Alessandro Cresci All Rights Reserved UNIVERSITY OF MIAMI A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy MAGNETIC AND CELESTIAL ORIENTATION OF MIGRATING EUROPEAN GLASS EELS (ANGUILLA ANGUILLA) Alessandro Cresci Approved: ________________ _________________ Josefina Olascoaga, Ph.D. Joseph E. Serafy, Ph.D. Professor of Physical Oceanography Research Professor Ocean Sciences Marine Biology and Ecology ________________ _________________ William E. Johns, Ph.D. Evan K. D’Alessandro, Ph.D. Professor of Physical Oceanography Lecturer and Director, M.P.S Ocean Sciences Marine Biology and Ecology ________________ ________________ Howard I. Browman, Ph.D. Caroline M.F. Durif, Ph.D. Principal Research Scientist Principal Research Scientist Institute of Marine Research Institute of Marine Research ________________ Guillermo Prado, Ph.D. Dean of the Graduate School CRESCI, ALESSANDRO (Ph.D., Ocean Sciences) Magnetic and Celestial Orientation of Migrating (May 2020) European Glass Eels (Anguilla anguilla) Abstract of a dissertation at the University of Miami. Dissertation supervised by Professor Josefina Olascoaga. -
Collective Behavior As a Driver of Critical Transitions in Migratory Populations Andrew Berdahl1,2*†, Anieke Van Leeuwen2†, Simon A
Berdahl et al. Movement Ecology (2016) 4:18 DOI 10.1186/s40462-016-0083-8 RESEARCH Open Access Collective behavior as a driver of critical transitions in migratory populations Andrew Berdahl1,2*†, Anieke van Leeuwen2†, Simon A. Levin2 and Colin J. Torney2,3 Abstract Background: Mass migrations are among the most striking examples of animal movement in the natural world. Such migrations are major drivers of ecosystem processes and strongly influence the survival and fecundity of individuals. For migratory animals, a formidable challenge is to find their way over long distances and through complex, dynamic environments. However, recent theoretical and empirical work suggests that by traveling in groups, individuals are able to overcome these challenges and increase their ability to navigate. Here we use models to explore the implications of collective navigation on migratory, and population, dynamics, for both breeding migrations (to-and-fro migrations between distinct, fixed, end-points) and feeding migrations (loop migrations that track favorable conditions). Results: We show that while collective navigation does improve a population’s ability to migrate accurately, it can lead to Allee effects, causing the sudden collapse of populations if numbers fall below a critical threshold. In some scenarios, hysteresis prevents the migration from recovering even after the cause of the collapse has been removed. In collectively navigating populations that are locally adapted to specific breeding sites, a slight increase in mortality can cause a collapse of genetic population structure, rather than population size, making it more difficult to detect and prevent. Conclusions: Despite the large interest in collective behavior and its ubiquity in many migratory species, there is a notable lack of studies considering the implications of social navigation on the ecological dynamics of migratory species. -
Old Tricks, New Dogs: Ethology and Interactive Creatures
Old Tricks, New Dogs: Ethology and Interactive Creatures Bruce Mitchell Blumberg Bachelor of Arts, Amherst College, 1977 Master of Science, Sloan School of Management, MIT, 1981 SUBMITTED TO THE PROGRAM IN MEDIA ARTS AND SCIENCES, SCHOOL OF ARCHITECTURE AND PLANNING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY. February 1997 @ Massachusetts Institute of Technology, 1996. All Rights Reserved Author:...................................................... ............................ .......................................... Program in Media Arts and Sciences' September 27,1996 Certified By:................................. Pattie Maes Associate Professor Sony Corporation Career Development Professor of Media Arts and Science Program in Media Arts and Sciences Thesis Supervisor . A ccepted By:................................. ......... .... ............................ Stephen A. Benton Chair, Departmental Committee on Graduate Students Program in Media Arts and Sciences MAR 1 9 1997 2 Old Tricks, New Dogs: Ethology and Interactive Creatures Bruce Mitchell Blumberg SUBMITTED TO THE PROGRAM IN MEDIA ARTS AND SCIENCES, SCHOOL OF ARCHITECTURE AND PLANNING ON SEPTEMBER 27, 1996 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY Abstract This thesis seeks to address the problem of building things with behavior and character. By things we mean autonomous animated creatures or intelligent physical devices. By behavior we mean that they display the rich level of behavior found in animals. By char- acter we mean that the viewer should "know" what they are "feeling" and what they are likely to do next. We identify five key problems associated with building these kinds of creatures: Rele- vance (i.e. "do the right things"), Persistence (i.e. -
Fusion of Wildlife Tracking and Satellite Geomagnetic Data for the Study of Animal Migration Fernando Benitez-Paez1,2 , Vanessa Da Silva Brum-Bastos1 , Ciarán D
Benitez-Paez et al. Movement Ecology (2021) 9:31 https://doi.org/10.1186/s40462-021-00268-4 METHODOLOGY ARTICLE Open Access Fusion of wildlife tracking and satellite geomagnetic data for the study of animal migration Fernando Benitez-Paez1,2 , Vanessa da Silva Brum-Bastos1 , Ciarán D. Beggan3 , Jed A. Long1,4 and Urška Demšar1* Abstract Background: Migratory animals use information from the Earth’s magnetic field on their journeys. Geomagnetic navigation has been observed across many taxa, but how animals use geomagnetic information to find their way is still relatively unknown. Most migration studies use a static representation of geomagnetic field and do not consider its temporal variation. However, short-term temporal perturbations may affect how animals respond - to understand this phenomenon, we need to obtain fine resolution accurate geomagnetic measurements at the location and time of the animal. Satellite geomagnetic measurements provide a potential to create such accurate measurements, yet have not been used yet for exploration of animal migration. Methods: We develop a new tool for data fusion of satellite geomagnetic data (from the European Space Agency’s Swarm constellation) with animal tracking data using a spatio-temporal interpolation approach. We assess accuracy of the fusion through a comparison with calibrated terrestrial measurements from the International Real-time Magnetic Observatory Network (INTERMAGNET). We fit a generalized linear model (GLM) to assess how the absolute error of annotated geomagnetic intensity varies with interpolation parameters and with the local geomagnetic disturbance. Results: We find that the average absolute error of intensity is − 21.6 nT (95% CI [− 22.26555, − 20.96664]), which is at the lower range of the intensity that animals can sense. -
Evodevo: an Ongoing Revolution?
philosophies Article EvoDevo: An Ongoing Revolution? Salvatore Ivan Amato Department of Cognitive Sciences, University of Messina, Via Concezione 8, 98121 Messina, Italy; [email protected] or [email protected] Received: 27 September 2020; Accepted: 2 November 2020; Published: 5 November 2020 Abstract: Since its appearance, Evolutionary Developmental Biology (EvoDevo) has been called an emerging research program, a new paradigm, a new interdisciplinary field, or even a revolution. Behind these formulas, there is the awareness that something is changing in biology. EvoDevo is characterized by a variety of accounts and by an expanding theoretical framework. From an epistemological point of view, what is the relationship between EvoDevo and previous biological tradition? Is EvoDevo the carrier of a new message about how to conceive evolution and development? Furthermore, is it necessary to rethink the way we look at both of these processes? EvoDevo represents the attempt to synthesize two logics, that of evolution and that of development, and the way we conceive one affects the other. This synthesis is far from being fulfilled, but an adequate theory of development may represent a further step towards this achievement. In this article, an epistemological analysis of EvoDevo is presented, with particular attention paid to the relations to the Extended Evolutionary Synthesis (EES) and the Standard Evolutionary Synthesis (SET). Keywords: evolutionary developmental biology; evolutionary extended synthesis; theory of development 1. Introduction: The House That Charles Built Evolutionary biology, as well as science in general, is characterized by a continuous genealogy of problems, i.e., “a kind of dialectical sequence” of problems that are “linked together in a continuous family tree” [1] (p. -
A Release from Developmental Bias Accelerates Morphological Diversification in Butterfly Eyespots
A release from developmental bias accelerates morphological diversification in butterfly eyespots Oskar Brattströma,b,1,2, Kwaku Aduse-Pokua,3, Erik van Bergena,4, Vernon Frenchc, and Paul M. Brakefielda,d aDepartment of Zoology, University of Cambridge, CB2 3EJ Cambridge, United Kingdom; bAfrican Butterfly Research Institute (ABRI), 0800 Nairobi, Kenya; cInstitute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; and dCambridge University Museum of Zoology, CB2 3EJ Cambridge, United Kingdom Edited by Sean B. Carroll, Howard Hughes Medical Institute, College Park, MD, and approved September 8, 2020 (received for review April 28, 2020) Development can bias the independent evolution of traits sharing cells releasing a signal (e.g., a diffusible morphogen) that spreads ontogenetic pathways, making certain evolutionary changes less out to form a circular concentration gradient (21, 26). The sur- likely. The eyespots commonly found on butterfly wings each have rounding cells have sensitivity thresholds that direct the color of the concentric rings of differing colors, and these serially repeated pigmented scales that are formed. Below a certain signal threshold, pattern elements have been a focus for evo–devo research. In the the cells do not respond and will continue to develop into the butterfly family Nymphalidae, eyespots have been shown to func- normal base color of the wing, effectively forming the outer edge tion in startling or deflecting predators and to be involved in sex- of the eyespot. Despite two decades of research gradually unrav- ual selection. Previous work on a model species of Mycalesina eling the genetic basis of the developmental processes of butterfly butterfly, Bicyclus anynana, has provided insights into the devel- eyespots, the exact nature of the focal signal remains unknown. -
The Structure of Evolutionary Theory: Beyond Neo-Darwinism, Neo
1 2 3 The structure of evolutionary theory: Beyond Neo-Darwinism, 4 Neo-Lamarckism and biased historical narratives about the 5 Modern Synthesis 6 7 8 9 10 Erik I. Svensson 11 12 Evolutionary Ecology Unit, Department of Biology, Lund University, SE-223 62 Lund, 13 SWEDEN 14 15 Correspondence: [email protected] 16 17 18 19 1 20 Abstract 21 The last decades have seen frequent calls for a more extended evolutionary synthesis (EES) that 22 will supposedly overcome the limitations in the current evolutionary framework with its 23 intellectual roots in the Modern Synthesis (MS). Some radical critics even want to entirely 24 abandon the current evolutionary framework, claiming that the MS (often erroneously labelled 25 “Neo-Darwinism”) is outdated, and will soon be replaced by an entirely new framework, such 26 as the Third Way of Evolution (TWE). Such criticisms are not new, but have repeatedly re- 27 surfaced every decade since the formation of the MS, and were particularly articulated by 28 developmental biologist Conrad Waddington and paleontologist Stephen Jay Gould. 29 Waddington, Gould and later critics argued that the MS was too narrowly focused on genes and 30 natural selection, and that it ignored developmental processes, epigenetics, paleontology and 31 macroevolutionary phenomena. More recent critics partly recycle these old arguments and 32 argue that non-genetic inheritance, niche construction, phenotypic plasticity and developmental 33 bias necessitate major revision of evolutionary theory. Here I discuss these supposed 34 challenges, taking a historical perspective and tracing these arguments back to Waddington and 35 Gould. I dissect the old arguments by Waddington, Gould and more recent critics that the MS 36 was excessively gene centric and became increasingly “hardened” over time and narrowly 37 focused on natural selection. -
Particle Swarm Optimization Based Source Seeking Rui Zou, Vijay Kalivarapu, Eliot Winer, James Oliver, Sourabh Bhattacharya
1 Particle Swarm Optimization Based Source Seeking Rui Zou, Vijay Kalivarapu, Eliot Winer, James Oliver, Sourabh Bhattacharya Abstract—Signal source seeking using autonomous vehicles is a chemical/biological agent. Motivated from source-seeking a complex problem. The complexity increases manifold when behavior exhibited by natural species from a microscopic level signal intensities captured by physical sensors onboard are noisy [1] to a macroscopic level [2], researchers have developed and unreliable. Added to the fact that signal strength decays with distance, noisy environments make it extremely difficult to robots [3] and sensor networks [4] that can imitate these be- describe and model a decay function. This paper addresses our haviors in order to perform complex tasks such as environment work with seeking maximum signal strength in a continuous monitoring, search and rescue operations, explosive detection, electromagnetic signal source with mobile robots, using Particle drug detection, sensing leakage of hazardous chemicals, pol- Swarm Optimization (PSO). A one to one correspondence with lution sensing and environmental studies. swarm members in a PSO and physical mobile robots is estab- lished and the positions of the robots are iteratively updated In this work, we address the problem in which a team as the PSO algorithm proceeds forward. Since physical robots of mobile agents, called the seekers, attempt to find the are responsive to swarm position updates, modifications were location of a source that emits an electromagnetic signal required to implement the interaction between real robots and of unknown strength. The seekers can continuously sense the PSO algorithm. The development of modifications necessary the signal strength transmitted by the source at their current to implement PSO on mobile robots, and strategies to adapt to real life environments such as obstacles and collision objects are positions which generally decays with distance from the presented in this paper.